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Abstract

In the present report the Weak Gravity Conjecture, its sharpened statements, and
its application to phenomenology are discussed. In literature circular, spherical,
and toroidal compactifications of the Standard Model were studied. We perform
analitical calculation of the radion potential in S1/Z2 orbifold type of compactifi-
cation for scalar lagrangian with kinetic and potential boundary terms that lead to
non-trivial boundary conditions. Also we discuss calculation procedures in curved
spacetime.
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1. Introduction

The weak gravity conjecture (WGC) is a bright example of how theory and phenomenol-
ogy can yield interesting results when considered together. Firstly, the conjecture was
first formulated in [1]. In its simplest form it states that for gauge field coupled to
gravity, there exists a state of mass m and charge Q, satisfying the inequality

m

MPl

≤ |Q|, (1)

where the exact equality has been yet found only for a SUSY theory with BPS states
(state that preserve some of the supersymmetry turn out to saturate the relation). In
other words, gravity is always the weakest force. There are several motivations for WGC
but essentially they stem out of Gell-Mann principle ”Everything that is not forbidden
is compulsory” and the observation that no consistent compactification of string theory
is known to violate the conjecture. One of the arguments is that black holes should
be forced to decay after they get big enough, because otherwise there would be a large
number of remnants in the Universe.

This statement was used to test effective theories and setting constraints (see [8-
10] references in [2]). They can be imposed by a number of reasons, one of them is
reading that gravitational correction to the running constants should be less than the
contributions from other fields. Also, one gets untrivial result concerning the trusted
cut-off scale in theories with monopoles, which takes the value of

Λ ∼ gMPl, (2)

where g is a coupling constant. It presents the reason for the source of problems in the
limit of g → 0.

Recently, WGC was sharpened in [6], where authors speculated that the equality will
only be reached in SUSY theories with BPS states and nowhere else. They support
this conclusion by mentioning that equality, if present, should not be sensitive to small
perturbations, which is not the case for a generic theory, except for SUSY. Moreover,
the strict inequality in the relation has been obtained by a number of cases, which are
enlisted in [6]. In addition, the authors proposed another conjecture, which states that
”non-supersymmetric AdS is not renormalisable as a consistent quantum theory with
low energy description in term of the Einstein gravity coupled to a finite number of
matter fields”. In practice it means that a stable AdS vacuum under compactification
of some effective field theories (EFT) renders it inconsistent at UV scale.

Authors of [2] made use of the new conjecture and obtained constraints on the masses
of light particles in the SM via compactifying 1 and 2 spacelike dimensions. The research
tool is the radion potential. If it exhibits an AdS minimum for some SM configuration
in any type of compactification, it means that one can rule out this configuration as
inconsistent with UV completion. The obtained results are very interesting as they
contain two important statements. Firstly, neutrinos with Majorana masses are excluded
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by the observed value of cosmological constant

Λ0 ≈ 3.25× 10−11 (eV)4

(with assumption that no other light particles are present in spectrum). Therefore,
a potential measurement of ν-less double β decay would imply additional BSM light
particles. The other statement is that the mere presence of neutrinos give support for a
non-vanishing cosmological constant. This is the first particle physics argument implying
a non-zero value of Λ without any cosmological input.

In the present report we are intent to discuss how AdS vacua might appear in com-
pactified SM, techniques that one might use to calculate effective potentials, and then
we will consider the case of orbifold compactification with localized kinetic and potential
boundary terms. The calculation of AdS space Casimir energy is presented in Appendix
as an example of dealing with curved spacetime.

1.1. Compactification on a circle

Papers [2, 5] consider 1D compactification on S1. The 4D metric reads

ds2 =
r2

R2
dx2µ +R2dϕ2, (3)

where r is some constant, R is the radius of compactification, and ϕ ∈ [0, 2π) is the 4th
coordinate. We consider the mostly positive type of metric throughout this report. The
3D action then yields the effective potential, associated with R ”field”, which is usually
referred to as ”radion”, consists of two terms – cosmological constant contribution and
the overall Casimir energy. The potential reads as

V (R) =
2πr3Λ

R2
−

∑
all particles

(2πR)
r3

R3
(−1)siniρi(R), (4)

where si = 0(1) for bosons and fermions respectively, ni denotes the number of degrees
of freedom and

ρi(R) =
∞∑
j=1

2m4
i

(2π)2
K2(2πRmij)

(2πRmij)2
miR�1−−−−→

miR�1−−−−→
[

π2

90(2πR)4
− π2

6(2πR)4
(miR)2 +

π2

48(2πR)4
(miR)4 +O(miR)6

]
,

where mi is the mass of the ith particle. This expression can be derived by a variety of
techniques, one of them being Green function method, which is used by [5], seeks for
the periodic Green function and then acts on it by the energy-stress operator.

The authors of [2] applied the radion potential (4) to SM and seeked for a V (R) < 0
minimum. If there is one, the parameters are excluded by the WGC. Depending on the
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assumed hierarchy structure and the value of the mass of the lightest neutrino flavor,
they obtained potentials such as the one in Figure 1.1.

The radion potential (4) with only free massless particles (photon and graviton) has
a maximum at the point

Rmax =

(
1

120π2Λ

)1/4

= 7.55 · 1010 GeV−1 . (5)

The associated mass scale here is

M =
1

2πRmax

= 2.11 · 10−3 eV, (6)

which, taking into account the exponential suppression of the Casimir contribution e−mR,
means that only neutrinos and other light unobserved particles might give any sugnificant
contribution to the radion potential.

The Casimir contribution is exponentially suppressed by the factor of e−mR, and taken
the value of Λ, only particles roughly of order 10−3eV might influence the behaviour of
the radion potential [2]. The contribution of electron and other particles can be totally
neglected.

����������������
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Figure 1: Radion potential for different neutrino hierarchies and masses. On the left side
we reproduced the plot for normal hierarchy (6-8 eV from black to red). On
the right side the plot for inverted hierarchy (1.5-3.0 eV from black to red) is
taken from [2]

.

2. Orbifold compactification

Another way of compactifying 4D manifold is on a so-called orbifold, which is basically
an interval, or topologically S1/Z2. This type of finite dimension has advantages over
circle in 5D spacetime as it solves the chirality problem as mentioned in [8]. In addition,
on this interval one is able to impose different boundary conditions from that on a circle.
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2.1. Classical contribution

The action compactified on S1 has no Casimir energy contribution at the tree level. It
is not, however, obvious, that this is the case for any other compactification. Here we
will show, that indeed for orbifold case it is also true.

We consider a generic scalar lagrangian in 4D spacetime with local kinetic and poten-
tial boundary terms at one side in curved spacetime.

S = −1

2

∫
d4x
√
−g
(
(∂Mφ)2 +m2φ2

)
+ S̃, (7)

S̃ = −1

2

∫
d3x
√
−g · 1

µ

(
a1µ

2φ2 + b1g
µν∂µφ∂νφ

)
, (8)

with µ as mass-dimension parameter and a1, b1 as some numerical constants. The equa-
tion of motion reads

(�−m2)φ− 2µa1δ(y)φ+ 2
b1
µ
δ(y)�3φ = 0, (9)

where � = 1√
−g∂µ (

√
−ggµν∂ν) is a D’Alambertian operator, and �3 is the same but

with summation indices running in 3D space.

Thus, if we generally assume Neuman boundary condition of the outer side of the
brane, the delta terms transfer it to

∂yφ− µa1φ+
b1
µ
�3φ = 0, (10)

which is easily obtained by integrating (9) in the vicinity of the boundary.

Partial integration of the action leads to

S =
1

2

∫
d3x
√
−g φ∂yφ

∣∣
y=0
− 1

2µ

∫
d3x
√
−g
(
a1µ

2φ2 − b1φ ·�3φ
)∣∣
y=0

, (11)

which is equal to zero regardless of whether Neuman or Dirichlet boundary conditions are
imposed on the outer surface of the boundary. The same is true for the local boundary
term at the other end on the orbifold.

2.2. Radion potential

To apply the WGC sharpened hypothesis one should construct the radion potential in
spacetime of our choice and take a look at its minima. Since cosmological constant has
a vanishing value, we describe our 4D spacetime as flat.

The metric takes the form of (3), which is the Weyl rescaled metric of

ds2 = dx2µ + γ2 · dy2, (12)
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where y ∈ [0, L] represents the finite dimension (L = const) and γ is a scaling parameter.
The reason for one to rescale it is because after integrating our the 4th coordinate, one
obtains

Sgrav =

∫
d3x dy

√
−gR =

∫
d3x
√
−g3γR, (13)

where g3 indicates the 3D metric and R is the Ricci scalar. To make the gravitational
term look canonical, one can implement conformal transformations [14]:

gµν → g′µν = Ω2gµν , (14)

R → R′ = Ω−2
(
R+

�Ω

Ω

)
. (15)

The case of Ω2 = γ−1 leads to the canonical form. One gets the metric

ds2 =
1

γ
dx2µ + γdy2. (16)

It is straightforward to calculate the lambda term contribution to the radion potential
now

−
∫
dy
√
−g (−Λ) =

ΛL

γ
(17)

2.3. Casimir energy

Another contribution to the radion potential is due to light particles in the theory. In SM
there are 2 massless free bosons (photon and graviton), each of them having 2 degrees of
freedom; and three flavours of neutrino. Their Casimir contribution is highly dependent
on the exact mass values, as shown in [2]. In this section we derive Casimir energy for
scalar fields with special boundary conditions. We will calculate the effective action,
which can be easily translated to effective potential by sign flipping

Γeff = −Veff . (18)

Casimir energy is a 1-loop effect in our spacetime. In pursue of 1-loop effective action
one follows Peskin & Shreder textbook

Z[J ] = e−iE[J ] =

∫
Dφ exp

[
i

∫
d4x(L[φ] + Jφ)

]
(19)

Γ[φcl] ≡ −E[J ]−
∫
d4y J(y)φcl(y) (20)

To the quadratic order one finds that

Γ[φcl] =

∫
d4xL[φcl] +

i

2
log det

[
− δ2L
δφδφ

]
(21)
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We consider 4D space with metric (3) with local boundary terms

S = −1

2

∫
d3x dy

(
(∂µφ)2 + γ−2(∂yφ)2 +m2γ−1φ2

)
+ S̃, (22)

S̃ = −
∫
d3x dy · δ(y)

µ
γ−1/2

(
a1µ

2γ−1φ2 + b1∂µφ∂νφ
)
− (23)

−
∫
d3x dy · δ(y − L)

µ
γ−1/2

(
a2µ

2γ−1φ2 + b2∂µφ∂νφ
)
, (24)

where µ is a mass-dimension parameter and ai, bi are numerical constants. The equations
of motion and boundary conditions read

(∂2µ + γ−2∂2y − γ−1m2)φ = 0,

∂yφ− 1
µ
γ−1/2

[
a1µ

2γ−1φ− γ−2b1(m2γ − ∂2y)φ
]∣∣
y=0

= 0,

∂yφ+ 1
µ
γ−1/2

[
a2µ

2γ−1φ− γ−2b2(m2γ − ∂2y)φ
]∣∣
y=L

= 0;

(25)

where boundary terms on the plane y = L are introduced analogously (with the same
sign), and we have employed the equation of motion for ∂2µφ in boundary conditions.
Introducing variable substitutions such as

M2 = γm2; µ̃2 = γµ2; Ai = aiγ
−2; Bi = biγ

−2, (26)

one makes the equations look more neat.

In flat space general solution can be decomposed as follows:

φ(xµ, y) =

∫
d3p

(2π)3
eipµx

µ

ϕ(pµ) ·
∑
n

(A sin(λny) +B cos(λny)), (27)

where λn satisfy the boundary conditions in (25).

One loop effective action then reads

Γ1−loop =
i

2

∫
dp0
2π

∫
d2pi

(2π)2

∑
n

log
[
p2µ + γ−2

(
λ2n +M2

)]
, (28)

Firstly, we perform Wick rotation, integrate out p0, and to ourselves to dimensional
regularization ε→ 0. One obtains

−1

2

∫
d2−εp

(2π)2−ε

∑
n

√
p2i + γ−2 (λ2n +M2) (29)

For convenience we denote Λ2
n = M2 + λ2. The integral over p can be carried out in

the following manner:

−1

2

∫
d2−ε p

(2π)2−ε

√
γ−2Λ2

n + p2 = −2ε−3π
ε−2
2

Γ
(
2−ε
2

) · ∞∫
0

p1−ε · (p2 + γ−2Λ2
n)1/2dp = (30)

−2ε−2π
ε−2
2

Γ
(
2−ε
2

) γ−3+εΛ3−ε
n ·

∞∫
0

p−ε/2(p+ 1)1/2dp = 2ε−4π
ε−3
2 · Γ

(
ε− 3

2

)
γ−3+εΛ3−ε

n , (31)
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where the integral was performed using beta-function properties. Thus, one-loop effec-
tive action is reduced to the sum over Λn

Γ1−loop = 2ε−4π
ε−3
2 γ−3+ε · Γ

(
ε− 3

2

)
·
∑
n

Λ3−ε
n . (32)

Before we start dealing with the sum let us write the eigenvalue problem for λn
explicitly. Boundary conditions (25) with substitution (27) lead to

tanλL = − λ(C2 + C1)

µ̃λ2 − C1C2

, where Ci = Bi(λ
2 +M2)− Aiµ̃2. (33)

In other words, Λn are defined as zeros of the function

F (Λ) =
[
−C1C2 + µ̃(Λ2 −M2)

]
· tan

(√
Λ2 −M2L

)
+ (C1 + C2) ·

√
Λ2 −M2, (34)

where Ci = BiΛ
2 − Aiµ̃2.

We apply analytic continuation to calculate the sum in (32), for which we define
s = ε− 3 but initially calculate the sum for positive values of s, and then take the limit
s→ −3. For sufficiently large s the sum can be cast into form∑

n

Λ−sn −
∑
n

Z−sn =
1

2πi

∫
C

dz z−s
F ′(z)

F (z)
=

s

2πi

∫
C

dz z−s−1 log [F (z)] , (35)

where

Zn =

√
M2 +

(π
L

)2(
n+

1

2

)2

(36)

are the poles of F (z); C contour goes along Re z axis and circumscribes all poles and
zeros of F (z), which are more than M , in counterclockwise manner. More precisely,

C = (∞+ iδ,M + iδ) ∪ (M + iδ,M − iδ) ∪ (M − iδ,∞− iδ), (37)

where the middle interval is in the form of a semicircle, placed on the right of the point
z = M .To deal with the integral in (35) we perform analytical continuation and transform the
contour into a more convenient form. According to the residual theorem it is possible
if the contour transformation does not change the poles that the contour circumscribes.
In principle, one should prove this fact precisely but since we do not expect poles to
exist anywhere except for real axis, we just present a plot on the complex plane for some
arbitrary values of constants of the order of one.

We tried different constant values but poles and zeros are always of the real axis. For
Fig.(2.3),(2.3) we took M = 5.0, µ̃ = 1.0, A1 = 0.9, A2 = 0.2, B1 = 0.5, B2 = 0.9, L =
1.0.
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Figure 2: The initial (blue) integration contour gets transformed (red).
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Figure 4: The white region at the
Arg F (z) plot between points
z = 0, z = M does not have
poles, as shown here.

Thus, we transform the contour into the sum of two separate ones. The first one
takes the form of a straight line and runs down along the imaginary axis, whereas the
other one is a circular counterclockwise contour around z = M . The rest two integrals
between the points z = 0 and z = M cancel each other. The function (34) for Λ = ix
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transfers to

i · F (ix) ≡ F̃ (x) =

=
[
(B1x

2 + A1µ̃
2)(B2x

2 + A2µ̃
2) + µ̃(x2 +M2)

]
· tanh

(√
x2 +M2L

)
+
[
(B2 +B1)x

2 + (A2 + A1)µ̃
2
]
·
√
x2 +M2. (38)

The integral over imaginary axis is simplified via variable substitution z = ix:

s

2πi

−i∞∫
i∞

dz z−s−1 log [F (z)] =
s

2πi

∞∫
∞

dx i−sx−s−1 log [F (ix)] = (39)

=
s

2πi

0∫
∞

dx i−sx−s−1 log
[
F̃ (x)

]
+

s

2πi

∞∫
0

dx isx−s−1 log
[
F̃ (x)

]
= (40)

=
s

π
sin
(πs

2

)
·
∞∫
0

dx x−s−1 log
[
F̃ (x)

]
. (41)

The only problem is that F̃ (x) 6→ 1 when x → ∞. To solve it we add and subtract
the asymptotics of F̃ (x) which we denote as F0(x):

F0(x) =
[
(B1x

2 + A1µ̃
2)(B2x

2 + A2µ̃
2) + µ̃(x2 +M2)

]
+
[
(B2 +B1)x

2 + (A2 + A1)µ̃
2
]
·
√
x2 +M2 (42)

Thus, apart from the convergent integral, we also have two divergent integrals: over
Im z and around the point z = M . The last one vanishes when s < 0 because

lim
δ→0

δ−s log δ = 0. (43)

For the same reason the integral

∞∫
δ

dx x−s−1 log [F0(x)] =
1

s

∞∫
δ

dx x−s
F ′0(x)

F0(x)
(44)

diverges as δ to some power which vanishes then in the limit s→ −3.

Overall, the sum in (32) becomes

∑
n

Λ−sn =
∑
n

Z−sn +
s

π
sin
(πs

2

)
·
∞∫
0

dx x−s−1 log

[
F̃ (x)

F0(x)

]
. (45)
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One can take the sum (36) in the limit ML� 1. Expanding the expression in Taylor
series (√

1 + x
)−s

= 1− sx

2
+

1

8
(2s+ s2)x2 − 1

48
(8s+ 6s2 + s3)x3+

+
1

384
(48s+ 44s2 + 12s3 + s4)x4 +O(x5) (46)

and using the identity
∞∑
n=0

(n+ 1/2)−s = (2s − 1)ζ(s), one obtains for the case s = −3:

∑
n

Z3
n =

(π
L

)3
·
[
− 7

960
+

1

16

(ML)2

π2
+

3

8
γ̃

(ML)4

π4
− 7ζ(3)

16
· (ML)6

π6
+O(ML)8

]
, (47)

where γ̃ is Euler-Mascheroni constant and we omited the divergent term 1
s+3

(ML)4

π4 . The
divergence of this term is not unexpected, as constant vacuum density always appears
to be infinite.

Overall, the effective action has the form of (32), where s→ −3 limit is assumed and
the sum over Λ is defined by (42), (38), (45), and (47).

3. Conclusions

In this report we presented the ideas of the Weak Gravity Conjecture and what has been
done recently concerning its phenomenological applications. We took another compact-
ification manifold which we believe might give better constraints on Standard Model
parameters due to its localized boundary terms. The analytical calculations were per-
formed. Although the phenomenological application of these results has not been yet
discussed, the present calculation represents a ready setup.

Fermion case should also be studied in future, since its Casimir energy might behave
differently from that of scalar contribution with opposite sign.

Appendices

A. AdS-space Casimir energy.

Although compactification of AdS space is not directly related to WGC, it is quite
important in modern theoretical applications. For this reason we find description of this
case relevant anyway.

Here we consider the case of scalar field action without local terms with Dirichle
boundary conditions. We mostly follow [4], where the case of 5D space was assumed.
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The action reads

S =

∫
d4x
√
−g 1

2

[
−gMN∂Mφ∂Nφ−m2φ2

]
. (48)

The metric in this space can be cast into the form

gµν = e−2kyηµνdx
µdxν + dy2, ηµν = diag{−,+,+,+}, (49)

where y ∈ [0, πR] is the x3 coordinate. The 1-loop contribution to the effective action
looks like

Γ1−loop =
i

2
log det

[√
−g(−� +m2)

]
, (50)

where � operator is defined by

� =
1√
−g

∂M(
√
−ggMN∂N) = e2ky∂2µ + ∂2y − 3k∂y. (51)

It is straightforward to check that the equation

(∂2y − 3k∂y +M2e2ky −m2)f(y) = 0 (52)

has solution of the form

f(y) = e
3
2
ky

[
A · Jν

(
M · eky

k

)
+B · Yν

(
M · eky

k

)]
, (53)

where ν =
√

9
4

+ m2

k2
and coefficients A and B are defined by normalisation and boundary

conditions.

Thus, to solve the eigenvalue problem (50) we perform a decomposition:

φ = ϕ(xµ) · f(y) (54)

and obtain
√
−g(−� +m2)φ = e−3ky+2ky(M2

N + p2µ)φ, (55)

where Mn are effective masses that appear due to the bulk action, and p2µ = ηµνp
µpν .

Overall, the (50) transforms to

Γ1−loop =
i

2

∫
dp0
2π

∫
d2pi

(2π)2

∑
n

[−ky + log(M2
n + p2µ)] (56)

Wick rotation, dimensional regularization, and integration over spatial impulses in the
same manner as in the section 2.3 leads to the result

Γ1−loop = 2ε−4π
ε−3
2 · Γ

(
ε− 3

2

)
·
∑
n

M3−ε
n . (57)
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Recall that Mn are defined by the Dirichlet boundary condition:

Jν

(
Mn

k

)
· Yν

(
Mne

πkR

k

)
− Yν

(
Mn

k

)
· Jν

(
Mne

πkR

k

)
= 0. (58)

For convenience, we denote a = e−πkR, xn = Mn/(ka). Then, it takes the form

F (xn) ≡ Jν(xn) · Yν(axn)− Yν(xn) · Jν(axn) = 0. (59)

We compute the sum via complex integral methods:∑
n

x−sn =
1

2πi

∫
C

dz z−s
F ′(z)

F (z)
=

s

2πi

∫
C

dz z−s−1 log [Jν (z) · Yν (az)− Yν (z) · Jν (az)] ,

(60)

where C contour goes along z ∈ R, z > 0 axis and circumscribes all the positive F (z)
poles (except for possible pole at z = 0). The assymtotics of the function under logarithm
is the following:

Jν (z) · Yν (az)− Yν (z) · Jν (az)
z→∞−−−→ 2

πz
√
a

sin ((a− 1)z) =
−i

πz
√
a

(
ei(a−1)z − e−i(a−1)z

)
(61)

Contour C consists of two parts C+ and C− which run parallel to the Re(z) axis in
the 1st and in the 4th quadrant respectively. For them the asymptotics read

∓ i

πz
√
a
e±i(a−1)z. (62)

Now we add and subtract the assymptotics from the expression for the sum∑
n

x−sn =
s

2πi

∫
C±

dz z−s−1 log
[
±iπz

√
a · e±iz(1−a)F (z)

]
− s

2πi

∫
C±

dz z−s−1 log
[
±iπz

√
a · e±iz(1−a)

]
.

(63)

The last integral has the only pole z = 0 which is not present in the integration
contour. Thus, it is possible to integrate along the imaginary axis from z = i∞ + δ to
z = i∞+ δ.

Let us take the second integral. We divide the logarithm into sum of two. One of the
terms read

δ∫
i∞+δ

dz z−s−1iz(1− a)−
δ−i∞∫
δ

dz z−s−1iz(1− a) =
2i(1− a)

(1− s)
· δ1−s, (64)
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while the other term has the form
δ∫

i∞+δ

dz z−s−1 log
(
iπz
√
a
)

+

−i∞+δ∫
δ

dz z−s−1 log
(
−iπz

√
a
)

= (65)

=
1

−s
z−s log

(
iπz
√
a
)∣∣δ
i∞+δ

+
1

−s
z−s log

(
−iπz

√
a
)∣∣−i∞+δ

δ
+

1

s
z−s · 1

z

∣∣∣∣−i∞+δ

i∞+δ

= (66)

= −1

s
δ−s log(−1) = −iπ

s
δ−s (67)

Overall, the asymptotics term contribution to the sum is

− s
π
·
[

(1− a)

(1− s)
δ1−s − π

2s
δ−s
]
. (68)

This contribution is negligent in the limit of our interest (s → −3). Thus, the sum
(63) has the form

∑
x−sn =

s

π
sin
(πs

2

) ∞∫
0

dt t−s−1 log
[
2t
√
a e−t(1−a) (Kν(t) · Iν(at)−Kν(at) · Iν(t))

]
,

(69)

where we used

Jν(iz) = iνIν(z), (70)

Yν(iz) = iν+1Iν(z)− 2

π
i−νKν(z), (71)

sin
πs

2
= (−i)−s − (−i)s. (72)

The sum is still ill-defined for s = −3 + ε. Thus, we transform it as follows:

∑
x−sn =

−3

π

{ ∞∫
0

dt t2+ε log

[
1− Kν(t) · Iν(at)

Kν(at) · Iν(t)

]
(73)

+

∞∫
0

dt t2+ε log

[√
2

t
e−tIν(t)

]
+

1

a3−ε

∞∫
0

dt t2+ε log

[
−
√

2

t
etKν(t)

]}
, (74)

Going back to (30) we get

Γ1−loop =
2

3π
(ka)3−ε ·

∑
n

x3−εn = Γ1 + Γ2 a
3 − 2(ka)3

π2

∞∫
0

dt t2 log

[
1− Kν(t) · Iν(at)

Kν(at) · Iν(t)

]
,

(75)

where Γ1 and Γ2 are not dependent on a. The numerical value of the integral appears
to be negative.
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