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Abstract

Monte-Carlo simulations of unknown heavy particle mX ≥ 260Gev undergoing
double-Higgs decay: X → HH, as well as SM double Higgs production were
analysed. Two techniques were used - simple cuts on various variables, and
Boosted Decision Trees (BDT) to separate signal from background. It was

demonstrated that BDTs give much better results as far as signal
efficiency/background rejection is concerned. This analysis was later applied to a

sample of real data taken from LHC collisions.
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channel BR decay width [MeV]

H → bb̄ 58.2% 2.38
H → WW 21.4% 0.874
H → gg 8.2% 0.335
H → τ τ̄ 6.3% 0.256
H → cc̄ 2.9% 0.118
H → ZZ 2.6% 0.107
H → γγ 0.23% 9.28 · 10−3

other ≤ 1%

Table 1: Branching ratios for Higgs boson of the mass mH = 125GeV [4].

1 Introduction

In 2012, ATLAS and CMS experiments at LHC, CERN announced discovery of a particle
consistent with Standard Model Higgs boson [1]. It has a mass around mH = 125GeV ,
with intrinsic width of a few 10 MeV, which is not accessible at LHC - the visible
width of Higgs resonance is due to limitations imposed by detector resolution. It’s the
only scalar (J = 0) particle observed up to date. [2] However, not all properties of a
newest observed particle had been identified - in particular, Higgs self-coupling λHHH
is of interest, considering that cubic and quartic terms play significant role in Higgs
mechanism of electroweak symmetry breaking.

1.1 Single Higgs production and observation

Four dominant modes for Higgs production at the energies accessible to the LHC are:

• Gluon fusion gg → H

• Vector boson fusion qq′ → qq′H

• Higgs-strahlung qq′ → HW

• Associated top production qq′ → tt̄H, gg → tt̄H

Higgs couples to heavy particles preferentially; in ≈ 60% of cases, it decays into a pair
of b-quarks (top is not accessible kinematically). Other decay channels include WW∗
and ZZ∗, where one of the bosons is produced off-shell due to kinematics, H → l−l+

where τ lepton dominates, since fermionic coupling to Higgs is proportional to the mass.
Initial discovery of Higgs by ATLAS and CMS collaborations in 2012 was made in a rare
H → γγ channel. As Higgs doesn’t possess an electric charge, it cannot directly couple
to photons - even at leading order this has to proceed via top quark loop. Fig. 1 shows
single H boson branching ratios as a function of the mass. One immediately can notice
that γγ BR is very small compared to bb̄, or WW . However, it’s very clean. Table 1
shows values of H branching ratios for mH = 125GeV .
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Figure 1: Higgs SM cross-sections, from ATLAS website
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√
s, TeV σgg→HH , fb σqq′→qq′HH , fb σqq′→WHH , fb σqq→ZHH , fb σqq gg→HHtt̄, fb

8 8.16 0.49 0.21 0.14 0.21
14 33.89 2.01 0.57 0.42 1.02

√
s, TeV σgg→H , pb σqq′→qq′H , fb σqq′→WH , fb σqq→ZH , fb σqq gg→Ht̄t, fb

8 21.42 702.50 420.70 1650 133.0
13 48.57 1373 883.70 3925 507.1

Table 2: Comparison between H and HH production cross-sections in the Standard
Model [3].

Figure 2: Production of Higgs pair via gluon fusion at the leading order. Box and triangle
diagrams interfere destructively, resulting in a very low cross-section.

1.2 Di-Higgs production and observation

Just like single Higgs production, di-Higgs is dominated by a gluon fusion which is at
least an order of magnitude bigger than VBF, Di-Higgstrahlung or 2-Higgs production
in association with top quarks. However, cross-section for 2 Higgs production is signifi-
cantly lower, with numbers of events around 50 per 3000fb−1 integrated luminosity [3].

Table 2 shows comparison between single Higgs and double Higgs production within the
Standard Model. As one can see, there is a factor of 10−3−10−4 between the two. HH is
very rare - one event per several thousands Higgs produced; if there is any New Physics
significantly affecting HH production, such as existance of heavy (mX ≥ 260 GeV )
resonances coupled to Higgs and thus undergoing X → HH, it should be observed as
deviation from predicted very low number of events.

We assume that, after a pair of Higgs bosons is produced, each boson decays according
to measured branching ratios independently. Thus, requiring both Higgses to undertake
H → γγ decay would suppress an already rare process by an additional factor of (2.27 ·
10−3)2 ≈ 5.15 · 10−6. If one wishes to use methods developed in H → γγ searches, but
avoid suppressing signal too much, it is necessary to consider another boson decaying
with a high BR. The highest BR, as Table 1 and Fig.1 show, is H → bb̄. However, that
introduces a considerable background of single H production in association with 2 b-jets,
or 2 jets wrongly tagged as b-jets.
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2 Analysis

2.1 Initial Data

In this project, I worked with Monte-Carlo (MC) simulated data sets for SM background,
SM di-Higgs decays, and templates for massive resonances at 260, 275, 300, 325, 350,
400, 450, 500, 750 and 1000 GeV. In the last part of the project, I applied analysis we
developed to a sample of real data from LHC Run 2. In all samples an initial cut was
applied to jets: pT ≥ 20GeV to get rid of soft QCD background.

2.2 Event Selection

Events in the initial ntuples have the following variables:

• event weight - used in MC samples; set to 1 for all events in real data

• jet n - number of jets in the event

• photon n - number of photons in the event

• mγγ - reconstructed invariant mass of two photons with highest transverse mo-
menta pT

• Ejet - energy of each jet

• ηjet - pseudorapidity of each jet

• φjet - φ angular component for each jet

• pTjet - transverse momenta of jets

• Jet from Higgs - Monete-Carlo only; boolean flag that identifies whether jet is final
state of a Higgs boson or not

• jet MV2c10 - variable related to b-tagging

• Eγ - energy of each photon

• ηγ - pseudorapidity of each photon

• φγ - angular component of each photon

• pTγ - transverse momenta of photons

Each sample came with the following cuts applied:

• jet n ≥ 2

• photon n ≥ 2
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Figure 3: Comparison between selection by highest pT and by reconstructed mass for
mX = 300GeV .

• pTjet ≥ 20GeV for all jets

Events that do not pass those cuts have zero probability to be signal. Then, for events
that have three or more jets, we need to select a pair to be Higgs candidate. Two options
are possible:
- Select two jets with the highest tranverse momenta pT

- Reconstruct invariant mass for each of the jets; select one that is closest to mH =
125 GeV . Both of the approaches were tested, using ”Jet from Higgs” flag for MC
simulated data. Figs. 3-7 show the results. The left bin is number of events with 0
selected jets from Higgs decay, the middle bin is number of events with 1 selected jet
from Higgs and the other not, and the right bin is amount of events with both jets
correctly identified as coming from Higgs.
As one can see, for all samples selection by invariant mass produces better results than
by highest pT , and therefore this is the one subsequently used in analysis. For photons,
we select two with the highest pT as Higgs’ final state candidates.
We expect to see signal (if there is any) as a clear peak in mγγ - reconstructed mass of
two photons, similar to single Higgs production. As Fig.8 shows, we’re looking for a very
weak signal on top of large background; our goal is to create a classification algorithm
that will improve signal significance, defined as:

Significance =
S√
B

while retaining high signal efficiency. We started with cut based analysis on our input
variables. Figure 9 shows plots of signal efficiency and signal significance (as defined
above) against the low cut on highest pT (of 2 selected jets) for lightest mX = 260GeV
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Figure 4: Comparison between pT and invariant mass selection for mX = 500 GeV
template

Figure 5: Comparison between pT and invariant mass selection for mX = 750GeV
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Figure 6: Comparison between pT and invariant mass selection for mX = 1000GeV

Figure 7: Comparison between pT and invariant mass selection for Standard Model HH
sample.
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Figure 8: Spectrum of mγγ. Continious line at the top is SM background; peak around
mH = 125 is from decay of mX = 300 heavy resonance template on the left
and from mX = 1000 on the right.

sample. Fig.10 shows the same plot for 2nd jet, and Fig.11 shows the plot of reconstructed
dijet mass (that is not among initial variables, but can be reconstructed by reading
E, φ, η, pT of the selected jets and combining their 4-vectors). Blue dashed line is drawn
at 0.95 signal efficiency; signal significance is normalized to its’ maximal value, that is
in that case of the order of magnitude 10−3–10−4.
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Figure 9: Signal significance and signal efficiency as functions of low cut on pT1

Figure 10: Signal significance and signal efficiency as functions of low cut on pT2
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Figure 11: Signal significance and signal efficiency as function of low cut on dijet mass
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Figure 12: On the left-hand side - mX = 400 signal in some of the 83 variables we
constructed; on the right-hand side is the background in the same variables.

As one can see, any cut on pT2 beyond the initial one at 20GeV decreases significance.
For pT1 , moving cut from 20 GeV to 25 GeV results in small (≈ 7%) gain in significance
while retaining 95% of the signal. For dijet mass, discarding events with mjj ≤ 50GeV
also improves significance while retaining most of the signal. Those values are different
for higher mass samples, but we need to be as generous as possible to avoid losing any
possible signal. To summarize, following simple cuts were placed during analysis:

• njets ≥ 2

• nγ ≥ 2

• pT1 ≥ 25GeV

• pT2 ≥ 20GeV

• mjj ≥ 50GeV

2.3 Multivariate techniques

In the next part of this project, we turned to Multivariate Analysis (MVA) in order to
obtain better separation between signal and background events. First of all, we took
initial data (as described in 2.1) and created 83 different variables by combining 4-vectors
and taking their various components. Figs. 12-14 shows how mX = 400GeV looks in
some of those variables compared to background (right-hand side) - if we have different
shapes for signal and background events, we can hope to distinguish between them.
We used TMVA[5] toolkit in order to implement our multivariate analysis. Boosted
Decision Trees (BDT) are fairly simple and robust algorithm, that makes it a popular
choice for data analysis in HEP. We also tried to implement a Multilayered Perceptron
classifier, but weren’t successful with it.
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Figure 13: LHS - mX = 400GeV sample; RHS - SM background

Figure 14: LHS - mX = 400GeV sample, RHS - SM background
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Figure 15: Schematic of a boosted decision tree, courtesy A. Rogozhnikov on github
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Figure 16: Classifier response for a single BDT trained on all samples simultaneously

Fig. 15 demonstrates a very simple schematic of a BDT. In our analysis, we used
N = 800 decision trees with MaxDepth = 3, i.e no more than three forks on each
individual tree. Each individual decision tree attempts to classify whether a given event
is signal-like or background-like, resulting in a score of -1 or +1. In the end, scores from
all trees are added and normalized to N , therefore an output of a BDT classifier is a
real number in range from -1 to 1.
Like other MVA algorithms, BDT needs to be trained, then tested - evaluated on a
known datset that is not part of the training. Each of our simulated data samples was
split into two, according to a very simple algorithm: read the input TTree event-by-event
basis, do a virtual coin-flip using Python’s numpy library random function, if a result
is 0, assign this event to a training tree; if a result is 1, assign this event to a testing
tree. For training, we fed all training samples into BDT simultaneously - since we want
to be able to see all possible signals. Then, it was applied to each of the testing samples
simultaneously; results are presented at Fig.16. As one can see, the separation between
signal and background is not very good. Figure 17 shows so-called ROC (Receiver
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Figure 17: ROC for a single classifier trained on all training events

Operator Curves) for each of the samples - a common metric used to evaluate how good
is a given classification. In order to improve our resolution, we decided to split our
data further into two categories. One included Standard Model HH sample and heavy
(mX ≥ 450) resonances, another included light (260 ≤ mX ≤ 400) resonances. Two
separate BDTs were created; one for each cathegory. Each of the BDTs was then tested
on corresponding testing samples, no cross-category tests were performed (i.e we have
not measured how well classifier for light resonances separates heavy resonances and SM
HH from background, and vice versa). Figure 18 shows classifier response for each of
those; a considerable improvement over a single classifier.
By comparing Fig.19 to Fig.17, one can see that two classifiers result in better back-
ground rejection at high singal efficiency; especially in the problematic (light resonances)
region where we could not achieve a good separation. Now, instead of placing simple one-
dimensional cuts on the input variables, we can place a cut on the classifier: all events
with classifier score greater than this value are considered signal-like and all events with
classifier score lower than this value are considered background-like. Figs. 20-21 shows
significance and signal efficiency depending on the value of classifier score cut; compared
to Figs.9-11, it demonstrates a great improvement.
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Figure 18: Two classifiers response for MC testing samples; LHS - high mass + SM
classifier, RHS - low mass classifier

Figure 19: LHS - ROC for high mass classifier, RHS - ROC for low mass classifier
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Figure 20: Signal significance and efficiency curves for mX = 260, 300, 350
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Figure 21: Signal significance and efficiency curves for mX = 500, 750, 1000
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Figure 22: mγγ of the real data sample after classification

3 Results

We applied classification algorithm described in Section 2 to a sample of real colli-
sions data. Cut-off classifier score was set to be 0; i.e everything with positive classi-
fier score was considered signal-like and everything with negative score was considered
background-like. Fig.22 shows mγγ plots after classification; background-like is in red
and signal-like is in blue.
We modelled our SM background as an exponential fit to those functions, Fig.23 shows
results after the fitting. Fits seems to be not so good for the low-mass signal-like events,
but for the high-mass signal-like events, we do see a very clear peak around mH =
125GeV .

3.1 Discussion

- Do we really see a signal? Hard to tell. We’re considering bb̄γγ final states; but
they’re not exclusive to the HH. A single Higgs produced in association with 2 jets -
for example, in VBF, or tt̄H with tops decaying quickly into b-jets + W bosons, and
possibly some other processes can end up with the same final state and pass our loose
selection criteria. Our modelling of the background did not account for singe Higgs
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Figure 23: Exponential fits to mγγ
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production; thus, it is irreducible in our current approach. A logical next step would be
to deal with that: extend initial feature space to leptons, account for missing energy if
there is any; come up with additional classifier focusing on jets to distinguish ones that
are produced in Higgs’ decay from other processes - which is not an easy task, that’s
why H → γγ and H → W+W−, as well as other states, are used in analysis despite
lower branching ratios than H → bb̄.
In order to reach any conclusions and (possibly) place limits on HH → bb̄γγ , one needs
to evaluate this background from single Higgs production, using data from current Higgs
studies and/or theoretical predictions for SM H → γγ with at least 2 jets that can pass
our criteria. Which is, unfortunately, beyond the scope of this summer project.
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