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Abstract

The SM is a powerful theory that describes an enormous variety of physics
processes. However, it has limitations that points to the necessity of searching
more completed theories. In many of them, the top quark plays an important role
due to its great mass. In this project, we have worked with a simple extension
of the SM Higgs, the Two Higgs-Doublet Model (2HDM). This model proposes
five Higgs boson and two of them contribute to the production of ¢t pair. Our
aim is, using a new set of polarization of spin correlation observables, to perform
comprisons between 2HDM predictions and ATLAS data to exclude or constrain
the free parameters of this model.
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1 Introduction

The Standard Model of particle physics (SM) is a quantum field theory that describes
the elementary particles and their interactions at a subatomic level. The SM assumes
that all matter is formed by elementary particles that are characterized by their quan-
tum numbers. The elementary particles are classified in two types according to the SM:
fermions (spin 3, described by the Fermi-Dirac statistics) and bosons (integer spin, de-
scribed by the Bose-Einstein statistics). Fermions are divided into three families formed
by three charged leptons, three neutrinos, and six quarks. For each of these particles,
there exists an antiparticle with the same mass and opposite quantum numbers. This
gives a total of 24 fermionic particles. The bosons are classified into two groups, those
which are associated with fundamental interactions between fermions, and the Higgs
boson. There are three fundamental interactions in the SM: the strong force, the weak
force and the electromagnetism mediated by the gluon (g), the bosons W*, Z and the
photon respectively. The Higgs boson is responsible for the mass of the particles [1, 2, 3].

The SM is a powerful theory that describes an enormous variety of physics processes.
However, it has limitations that points to the necessity of searching more completed the-
ories. These new theories might unify weak and strong interactions with gravity (which
is not included in the SM). Moreover, the SM does not explain the neutrino masses [4]
and there is no candidate for dark matter.

Theories Beyond the Standard Model (BSM) propose new ways to solve these limita-
tions. For example, supersymmetry (SUSY) [5] proposes the existence of a supersym-
metric particle for each particle of the SM. This theory solves some problems of the SM
like renormalization and it gives a candidate for dark matter. Other theories, like the
Great Unification Theories (GUT), try to unify the three interactions described by the
SM in a unique interaction at high energies and predict the existence of new bosons such
as Z’ and W'. It also explains the masses of the neutrinos [6, 7].

A way for testing these theories is studying the properties of particles. For example, a
set of observables that caracterize the top spin structure were proposed in [9] and mea-
sured, for the first time, by the ATLAS collaboration [10] that have not been compared
yet with BSM theories.

In this report we compare the behaviour of those observables in the SM with one class
of BSM models, the two Higgs-Doublet model (2HDM). We also compare the measured
values with the predictions of all those models to try to constrain the free parameters
of the 2HDM that we study.



2 Theory

2.1 The Top Quark

The top quark is a fermion of spin s = 1/2 and charge ) = +2/3 discovered at Fermilab
in 1995 [11, 12]. It was predicted by the Standard Model as the companion of isospin
of the bottom quark belonging to the third generation of fermions. It is the heaviest
elementary particle of the SM. Its mass is about 35 times the mass of the second heavi-
est quark (the bottom quark). This very large mass comes from the coupling with the
Higgs boson (the top quark has the highest coupling with this boson). A more detailed
explanation of its properties can be found in the Particle Data Group book [1].

Since the lifetime of the top quark is ~ 0.5 107245 and the typical hadronization time
is ~ 3fm/c ~ 3.3 107**s [13], the top quark decays before hadronization and before
any consequent spin-flip can take place. This offers a unique opportunity to study the
properties of a bare quark and the properties of its spin.

At hadron colliders, top quarks are mainly produced in ¢t pairs via the strong interac-
tion. The quarks and gluons of the initial state are unpolarised, which means that their
spins are not preferentially aligned with any given direction. The top quarks produced
via QCD are expected to be almost unpolarized but their spins are expected to be cor-
related. The spins of the top quarks do not become decorrelated due to hadronization,
so their spin information is transfered to their decay products. This makes it possible
to measure the top quark pair’s spin structure using angular observables of their decay
products. In this report we are going to use the 15 observables defined and measured in
[10]. These observables are related with the top quark pair’s spin density matrix that
is presented in section 2.3. In order to measure all observables, the final-state particles
of the decay chains of the pair ¢t have to be reconstructed and identified correctly. The
top quark decays in almost all cases via electroweak interaction into a b quark and a W
boson (the CKM matrix element is |Vy| = 0.99914 + 0.00005 [1]). The W boson decays
either leptonically (to one lepton and one neutrino) or hadronically (to one quark and
one antiquark). As charged leptons retain more information about the spin state of the
top quarks, and they can be precisely reconstructed, the measurements of these observ-
ables were performed in the dileptonic final state (both W decay leptonically, leading to
a final state with two quarks, two charged leptons, and two neutrinos). The dileptonic
channel offers a pure sample since the background contribution is smaller than in the
other channels (fully hadronic or semileptonic).

2.2 Two-Higgs-Doublet model

The two Higgs Doublet Model is a simple extension of SM Higgs, with two complex
Higgs field-doublets and five Higgs bosons of spin 0 [14]. Those bosons are h (CP-even,
neutral, SM like), H(CP-even, neutral, high mass), A (CP-odd, neutral, high mass), H+



and H- (charged, high mass). This theory has 7 free parameters: my, ma, my = mg,
= my_, the mixing angle a among the neutral Higgs bosons, the ratio of the vacuum
expectation values of the two Higgs doublets fields ®; and ®,, tan 5 = v1/v2, and the
potential m?, of the softly break term.

In this model, the ¢t pair could be produced via the following Feynman diagrams:
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Figure 1: Feynman diagrams for ¢¢ production in 2HDM.

The usual way to discover those new particles would be to look for a bump in the ¢t pair
invariant mass distribution but the interference of the other Feynman diagrams make
our mesurement less sensitive. Those interferences deform the usual bump that becomes
a dip and a bump as we see in Figures 2, 3 and 4. Due to the limited resolution on the
tt invariant mass, the shape of the signal makes it more difficult to detect as we see in.
For this reason, the authors [15] could only exclude a few models in their analysis as we
can see in Figure 5 where just the models below the blue line are excluded. For solving
this problem, we have to look in other top properties. In this report we will look in the
spin polarization and correlation of the top pair. In the next section a set of polarization
and spin correlation observables will be presented. We will study the behaviour of these
observables in different 2HDM models to try to exclude some of them and constrain
their free parameters.



Figure 2: ¢t pair invariant mass distribution fot the process H — tt with my
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Figure 3: Pure resonance signal (S) and signal+interference (S+I) for my; distributions

for my = 500 GeV.
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Figure 5: Exclusion plots obtained by [15] using the t¢ invariant mass for the different
models that we study in this report.

excluded.

The models below the blue line are

Several MC simulations have been performed for this model changing the different free
parameters for the processes gg — A — tt and gg — H — tt [15]. Table 1 shows the list
of ntuples that we use in the data analysis. The parameters of the model that we change



for the comparison with the data and the SM are tan 8 (between 0.40 — 9.00), m 4 (500
and 750 GeV) and my (500 and 750 GeV). The rest of the parameters are known from
the SM or we fix them.

2.3 Polarization and spin correlation

The degree of polarization of a particle (P) is the expectation value of the helicity of
the particle:

P={%p) (1)

where ? is the spin of the particle and p is a unitary vector in the direction of the
momentum of the particle.

The spin correlation (C') can be expressed as the ratio of the difference of spin-aligned
pairs and spin anti-aligned pairs in a given frame of reference (spin-quantization axis):

_ N AN -
N (M) + N(H) +

C 2)

Tthe squared spin density matrix of ¢f production is defined as:

\M|2 xA+Bt st +B s+ Cijs1i82; (3)

where A fixes the cross section of ¢ production, B* corresponds to the polarization
vectors for the top and antitop quark, s™ denote the spin vectors of those quarks and
C;; is the spin correlation matrix [2, 9].

The equation (3) can be rewritten in terms of its angular distributions with respect to
the production angles of the leptons which come from the top and antitop quark as:

1 d*o 1 " u u
vdeosfdeost, — 4 (1 + B% cos % + B cos0” — C(a,b) cosﬁJrcosQli) (4)

where B¢, B® and C(a, b) are the polarization and spin correlation along the spin quan-
tization axes a and b. The angles 0% and 6 are the angles between the momentum
direction of a top quark decay particle in its parent top quark’s rest frame and the axis
a or b. The subscript +(-) refers to the top (antitop) quark. From equation (4) one can



Table 1: Signal+interference (S+1I) sample parameters, for the pseudoscalar Higgs boson
A and the scalar H. The cross-sections are from MadGraph, for the processes
gg — A — tt and g9 — H — tt in the semileptonic+dileptonic channels,
sin(8 — a) = 1. The samples were simulated in ATLFAST-II. Table obtained
from [15]

Higgs boson Mass Higgs boson | tan r MG o S+1
[GeV] [GeV] [pb)]

0.40 142.950 0.3449200
0.50  91.489  0.5227500
0.68  49.467  0.4777999
500 1.40  11.687  0.1620898
2.00 5.754  0.0805555
5.00 1.144  0.0037320
9.00 1.025 -0.0073180
0.40 230.239 0.3462499
0.50 147.355 0.3590277
750 0.70  75.186  0.2546666
1.40 18.820 0.0775444
2.00 9.261  0.0383016

0.40  80.559  0.4141900
0.50  51.559  0.3286700
0.70  26.309  0.2068600
500 1.40  6.594  0.0630540
2.00  3.259  0.0328520
5.00  0.901  0.0049130
9.00 0.744  0.0016100
0.40 189.642 0.1759333
0.50 121.373 0.1569277
750 0.64 74.083 0.1174666
1.40  15.506  0.0314588
2.00 7.637 0.0162188

pseudoscalar A

scalar H




retrieve the relation (5) for the spin correlation between the axes a and b.
C(a,b) =-9 <cos 0% cos 011> (5)
Integrating one of the angles in equation (4) gives the single-differential cross section (6).

I do 1
odcosl, 2

(1 + B“cos 01) (6)

From equation (6) one can retrieve the relation:

B* = 3{(cos ) (7)

All the observables are based on cos where, to define the different 6 angles (angles
between the direction of the momentum of the decayed lepton and an axis) the following
basis is chosen using three orthogonal spin quantization axes:

e The helicity axis (k) is defined as the top quark direction in the ¢t rest frame

e The transverse axis (n) is defined to be transverse to the production plane created
by the top quark direction and the beam axis

e The r-axis (r) is an axis orthogonal to the other two axis

~

. v

n

*
\\

Beam

Figure 6: Illustrative drawing of the chosen basis for the top quark decay product.

With this definition of the axes the autors of [9] define a set of observables summarized
in Table 2. Each one of the observables is sensitive to one coefficient of the spin density

10



matrix.

Table 2: The top spin observables, their definitions and their expectation value.

Name Expectation value Observable
Helicity polarization B* cos 0%
Transverse polarization B" cos 0"
R polarization B cos 0",
Helicity correlation C(k, k) cos 0% cos O*
Tranverse correlation C(n,n) cos 07 cos 0"
R correlation C(r,r) cos ¢’ cos 0"
R-Hel Sum C(r,k) 4+ C(k,r) | cos, cosb* + cosb% cosf”
R-Hel Dift C(r,k) — C(k,r) | cos® cos® —cosb cosf”
Trans-Hel Sum C(n,k) + C(k,n) | cos@? cosb* + cos % cos 6™
Trans-Hel Diff C(n,k) — C(k,n) | cos@? cosf* — cos 6% cosb™
Trans-R Sum C(n,r)+ C(r,n) | cosf} cosf” + cos b’ cosf"
Trans R-Diff C(n,r) —C(r,n) | cos@} cosf” — cosf’, cosf"

Those observables are not correlated so they are a great tool to test the validity of the
SM and to search for theories BSM. In this report we use this observables to study the
compatibility between the data and the Two-Higgs-Doublet models (2HDM).

2.4 Chi-squared test with correlations between the bins

In the analysis of the results, we will need to compare the simulated data from the
2HDM with the simulated data form the SM and the real data from ATLAS detector.
The 2 test is used to compare simulated data and the models. The x? test is given by:

= zn: [/ (B;)) = fi(B;)]

(8)
where f;(B;) is the theoretical frequency for B; observed value, f(B;) is the expected
frequency and o? [f;(B;)] is the variance associated to the B; value.

In the case the comparison is made between simulations and the ATLAS measurements,

the correlations between the different bins is taken into account. Considering this in the
x? test we have to use the covariance matrix defined as:

11



Vij = 0i0;Cij (9)

where (C;j is the correlation matrix and o; is the error associated with bin i.

With this matrix we can calculate the x? using [16].

= ATV A (10)

where V=1 is the inverse of the covariance matrix, and A is:

Az’ - Ndatai - Nmodeli (11)

3 Results and discussion

In this report we compare the behaviour of the spin observables defined in the SM [9]
and the different 2HDM models of [15] with the measurements performed by ATLAS
collaboration in [10]. The purpose of this comparison is trying to find any deviation
between the data and the 2HDM in order to find new physics BSM or to discard some
of the 2HDM, limiting the possible values of their free parameters.

For constructing the observables we use the MC simulations of the Table 1 and the SM,
we reconstructed the dileptonic decay of the ¢t system and the spin quantization axes
defined in section 2.2. With this information, we calculated the 15 spin correlation and
polarization observables for each event.

3.1 Compatibility between the SM and the 2HDM

First of all, we compare the behaviour of this observables between the SM and the dif-
ferent 2HDM to check if, with enough accuracy, we could distinguish them. An example
of this comparison for the 15 observables is shown in Figures 7, 8 and 9. In Table 3 is
shown a compilation of the probability of coincidence using the x? test between the SM
and each of the 2HDM that we study.

In results shown in Table 3 we can observe that, for all the 2HDM, there are some
observables (like the correlations) that are incompatible with the SM for each 2HDM.
Other observables show incompatibilities just for some of them (like the polarizations).
If enough accuracy is reached in the measured data, it would be possible to distinguish
between the SM and the 2HDM with the corresponding parameters. To compare the
compatible observables we should increase the amount of MC data until we can distin-
guish the two models and then, we would compare with the data.

12
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3.2 Compatibility between the ATLAS data and the different
models

Once we know the observables for which we can distinguish each model from SM, we
compare the MC simulations with the measured data from ATLAS [10]. An example of
this comparison for some of the observables is shown in Figure 10. In those plots we can
see that some observables have more discrepancy between the 2HDM and the data than
others. For example, the observables cos 8% and cos 6" cos §” +cos 67, cos 8" do not let us
exclude this model because, in the first case, the behaviour is really similar and, in the
second, the error bars are too big. However, the observable cos ¢ cos” show a great
discrepancy between the model and the measurement. With a more detailed analysis,
we could exclude this model.

Performing these comparisons for more 2HDM and observables we have found several
plots which show sensitivity between the SM, the 2HDM distributions and the data (e.g.
Figure 11).

In Table 4 is shown a compilation of the probability of coincidence using the y? test
without considering correlations between the ATLAS data and different models (all the
2HDM that we study and the SM). In this table we can see that, the more sensitive
observables are the correlation cos Hi cos0* | cos 0" cos 0" and cos 07 cos 0.

In Table 5 is shown the same compilation of the probability of coincidence but, this
time, using the x? test taking into account the correlations (as we studied in section
2.4). Comparing these tables (with and without correlation) we can see that, in general,
the correlation between the bins decrease the probability of coincidence.

Although a more detailed analysis has to be performed, we have several evidences of

models that we could exclude that the usual method described in section 2.2 could not
(e.g. Figure 12).
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Figure 10: Example of plots for each kind of observable comparing the SM, one 2HDM
with m4 = 500 GeV and tan § = 0.50 and the ATLAS data. The probability
of coincidence have been calculated using the x? test considering correlations
(as shown in section 2.4).
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Figure 11:

18



SM (p = 0.136261)

tan B=0.70 (p = 1.14877e-28)

—+— data

A =750GeV

o V5 = 8 TeV, 20.3 fb?, all limits at 95% CL
0.8 3
0.6

0.4

N
N
H‘H\‘\H‘\H‘\H‘H\‘H\‘H\‘H\‘\H‘\H‘\H

0.2

=

B F
o|® E
sS|o 1.5;—__ . _i_
os—t———%+—
-1 08 06 04 02 O 02 04 06 08 1
cos®’. cosé' 500 550 600 650 700 750

ma [GeV]

Figure 12: Left: comparison between the ATLAS data and the 2HDM with m, =
750 GeV and tan3 = 0.70 for the observable cos @’ cos¢” . Right: exclu-
sion plot from [15] for the pseudoescalar A.

4 Conclusions

Many theories have been proposed to solve the limitations of the Standard Model. The
techniques used for this finality are diverse. In many of them, the top quark plays an
important role due to its great mass which might mean that he would play a special
role with BSM particles. If supermassive particles exist, they would probably decay
to top quark (or to t¢ pair). In this project, we have worked with a simple extension
of the SM Higgs, the 2HDM. This model proposes five Higgs boson and two of them
contribute to the production of ¢t pairs via the Feynman diagram of Figure 1. We have
also seen that the authors of [9] tried to use the invariant mass of ¢t pair to find this
particles but, the interference between Feynman diagrams caused the measurements to
be less sensitive, reason for which we were able to exclude only a few values of the free
model parameters. This difficulty in finding particles has encouraged to study others
properties of top quark, in our case, the polarization and the spin correlation of the tt
pair. In [15] the authors used a set of observables, described in Section 2.2, and they
compared with the SM without observing any significative discrepancy. In this work, we
have compared the behaviour of these observables in different 2HDM, seeing that we can
always find some observable which differs with SM and allows us to distinguish it from
SM. Then, we performed the same comparison in [9], but, in this case, we compared the
ATLAS data with the results obtained from reconstructing the observables for the MC
simulations of 2HDM.

The results we obtained from doing these comparisons are very promising, since we ob-
served significative discrepancies between measured values and the predicted by lots of
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2HDM. The different preliminay statistical analysis we have performed point out that,
in general, the correlations are the observables which are most sensitive because their
measurements have relatively small associated errors. If we examine the results provided
by the x? test, without considering the correlations, we see that the biggest discrepan-
cies we can find in the observable cos 8" cos 6" for all 2HDM with the scalar H. Also, we
observe a significative discrepancy in the observable cos §* in the model with m 4 = 500
y tan # = 9.00.

Performing a more complete statistical test (x* with correlations), as we showed in Sec-
tion 2.4, we noted some results with a higher discrepancy between 2HDM and data. This
is because, in general, the correlations tended to move the data away from the models
prediction. The biggest discrepancies are still observed in the observables related with
the correlations ( cos 6% cos 6%, cos 07 cos 0™, cos 6. cosf" ).

This is the first attempt to interpret the measurement of the top spin observables to
constrain new physics models. Results seem very promising but are still very preliminary.
More studies are needed to understand the sensitivity of the observables and optimize
the interpretation. For example, we have consider that the correlation affects at all the
error bar of the data but, in fact, it does not affect to the modeling uncertainty.

This could lead to very interesting results in terms of interpretation of precise top quark
properties.
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