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1. Introduction 

During the DESY summer students program it was my task to help with the construction and 

simulation of a femtosecond soft X-ray pulse shaper. The shaping of soft X-ray FEL pulses is 

quite important for research, as FEL pulses are usually not  Fourier limited but longer. One of 

the tasks of a pulse shaper is compressing a linearly chirped pulse down to the Fourier limit. 

This allows for experiments with higher time resolution that will help further progress in 

medical research, chemistry, biology and physics. 

My work here consisted of two parts: participating in the assembling of the soft X-ray pulse 

shaper and simulating its performances using Wolfram Mathematica™. 

 

2. Theory 

2.1. Free Electron Laser 

A FEL consists of a particle accelerator and special magnets called undulators. In the particle 

accelerator electrons are accelerated to the speed of light, reaching energies in the order of 

1GeV. These high energy electrons are then sent into undulators, magnets made of a series 

of small dipoles with alternate polarity. In the undulators the electrons are deflected into a 

sinusoidal trajectory due to  the alternating perpendicular magnetic field due to Lorentz 

force interaction.  

This interaction also leads to deceleration, i.e. loss of energy. This energy is then emitted as 

photons, their energy depending on the magnetic field strength and the geometry of the 

undulator, as well as the angle Θ in which the photon comes from the undulator, where 0 is 

parallel to the electron beam. The radiation wavelength 𝜆 is given by the equation: 

𝜆 =
𝜆𝑢

2𝛾2
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𝐾2

2
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Where: 

𝐾 =
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2𝜋𝑚𝑐
 



Here 𝜆𝑢 the undulator wavelength (thickness of two magnets), 𝛾 Einstein’s 𝛾-factor and B 

the magnetic field strength, c the velocity of light, e the electric charge, and m is the electron 

mass. These FEL pulses have only a very short duration, as the electrons are ultra-relativistic 

and contained in a bunch which is just about 1ps long.  As the electrons interact with their 

emitted photons, more so the ones with very small Θ, the microbunching process takes 

place, where the electrons form subgroups within the electron bunch, which are spatially 

separated by 𝜆. Under ideal circumstances this process could lead to emission of coherent 

light (when a seeding scheme e.g. HGHG is used) in the form of a Fourier limited Gaussian 

pulse. In practice though, this is not quite the case. To compress a pulse down to its Fourier 

limit a pulse shaper with special mask is needed. 

 

2.2. Ultrashort Pulses 

Ultrashort pulses are pulses with only a few femtoseconds time duration. Such pulses can be 

expressed in either angular frequency ω or in time and phase domain. These two 

representations are equivalent and can be transformed into one another using a Fourier 

transform: 

𝑬(𝑡) = 𝐴(𝑡)𝑒𝑖𝜙(𝑡) =
1

√2𝜋
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∞
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Where: 

𝑬(𝜔) =  𝐴(𝜔)𝑒𝑖𝜙(𝜔) 

is the electric field in frequency domain and E(t) in time domain.  

The product of time duration and energy bandwidth cannot be lower than the Fourier limit, 

which reads for a Gaussian pulse: 

𝛥𝐸[𝑒𝑉]𝛥𝑡[𝑓𝑠] ≥ 1.825. 

 

2.3. Fourier Limited Pulse and Chirped Pulse 



A Fourier limited pulse is defined by its constant phase, such that 

𝜙𝐹𝐿 ∝ 𝐶𝑜𝑠(𝜔0𝑡) 

A linearly chirped pulse is a little more complex. Here the instantaneous frequency 

𝜔(𝑡) =
𝑑𝜙

𝑑𝑡
 changes with time, therefore the chirp 

𝑑2𝜙

𝑑𝑡2 ≠ 0. 

This lets us expand the phase around 𝜔0: 

𝜙(𝜔) = 𝜙(𝜔0) +
𝑑𝜙

𝑑𝑡
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Here 𝜙(𝜔0) is the absolute phase, 
𝑑𝜙

𝑑𝑡
(𝜔0) a delay between pulse and an arbitrary origin and  

𝑑2𝜙

𝑑𝑡2  the chirp of the phase. In the experiment the chirp can be determined using the HWHM 

of the incoming and outgoing pulse. The chirp can be expressed by [Leslie’s Book, 

Fundaments of Photonics, B.E.A. Saleh and M.C. Teich]: 
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2.4. Pulse Shaping 

Using gratings and some specific kinds of mask, it is possible to shape ultrashort pulses in 

time and frequency domain. For doing so a common device is a 4f pulse shaper, where two 

identical lenses or mirrors are used in conjunction with two identical gratings and the mask. 

Each optical device is a focal length apart from one another, such that the length of the 

whole system is four times the focal length. It is also very important that the optical path 

length is the same for all frequencies. This yields a focused and wavelength dispersed beam 

in the so-called Fourier plane where the mask is located (an LCD modulator in Figure 1). 



 

Figure 1: Sketch of the 4f-Steup. An LCD modulator used as mask, and it is located in the Fourier plane. The distance 
between grating and lens, as well as lens and focal plane is the lenses focal length respectively. 

When the mask is applied to the signal, the calculation can be done in the frequency space, 

such that the outgoing pulse can be calculated as: 

𝑬𝑜𝑢𝑡(𝜔) =  𝑴(𝜔) 𝑬𝑖𝑛(𝜔) 

𝑴(𝜔) =  𝐴𝑀𝑎𝑠𝑘(𝜔)𝑒𝑖𝜙𝑀𝑎𝑠𝑘(𝜔) 

with M(ω) being the mask in frequency space. This yields the following equations: 

𝐴𝑜𝑢𝑡(𝜔) = 𝐴𝑀𝑎𝑠𝑘(𝜔) 𝐴𝑖𝑛(𝜔) 

𝜙𝑜𝑢𝑡(𝜔)= 𝜙𝑀𝑎𝑠𝑘(𝜔)+ 𝜙𝑖𝑛(𝜔) 

So for a known input pulse and a desired output pulse one can easily calculate the function 

the mask is supposed to have. 

For this particular case, a Gaussian shaped linearly chirped input pulse was used to form a 

Gaussian Fourier limited output.  

 

3. The Experiment 

3.1. Experimental Setup 

The pulse shaper consists of a 4f-setup within vacuum chambers. It consists of concave 

mirrors instead of lenses for focusing the beam, as soft X-rays are absorbed by any kind of 

matter. The mask is a micro mirror array consisting of many small mirrors next to one 

another having a width of 45µm and a separation of 5µm. Each of those mirrors can be 

tuned in height separately from one another. This enables very fine tuning of the masks 

phase shift in frequency space.  



The geometry of this setup dictates a slightly nonlinear dispersion of the frequency in 

position space: 

𝑥(𝜔) = 𝑓 (𝑇𝑎𝑛 [
𝜋

2
− 𝛾] − 𝑇𝑎𝑛[

𝜋

2
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where f is the lenses focal length, γ the angle between focal plane and grating normal, d the 

distance between two grating lines and c is the speed of light. 

 

Figure 2: Sketch of the setups geometry.  

 

3.2. Simulating the Experiment with Mathematica 

It was my task to write a program for simulating the micro mirror array with Mathematica.  

The incoming pulse is a Gaussian one with a linearly chirped phase and the outgoing one is 

desired to be as close at possible to a Fourier limited Gaussian pulse. To simulate the 

behavior of this setup the incoming and desired output pulse in time domain were sampled 

and transformed into frequency domain using the Mathematica FFT routine. The micro 

mirror array was moved in order to compensate the phase delay of the frequency in the 

middle of the mirror. Therefore the position of the mirrors can be written as:  

𝑦(𝜔) =
𝑐

𝜔
 [𝜙𝑜𝑢𝑡(𝜔)- 𝜙𝑖𝑛(𝜔)] 



where c is the velocity of light and y is the height of the corresponding mirror inducing a 

phase shift from 𝜙𝑖𝑛 to 𝜙𝑜𝑢𝑡. 

This height of the mirrors is used further to simulate a mask, that  is applied all points of the 

sampled incoming pulse in frequency space. 

This should yield something similar to the desired outgoing pulse in frequency space, which 

then can be transformed back into the time domain. This should then yield the desired 

outgoing pulse in time domain. 

3.2.1. Results of the Simulation 

The simulated chirped incoming Pulse has FWHM of 118fs, the outgoing Fourier limited 

pulse a FWHM duration of 11.2 fs. This yields a chirp of 1.748 ⨯ 1029 for a bandwidth of 0.5% 

at 38nm. 

The incoming pulse had a Gaussian intensity distribution in the time domain with a linear 

chirp.  

 

Figure 3: Temporal intensity profile in arbitrary units of the incoming pulse with respect to time in s. 

Using the Fourier transform of the incoming Pulse (Figure 3) and the Fourier transform of 

the desired outgoing pulse (Figure 8), one can obtain the phase difference of both pulses. 
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From this information, the program can calculate the height of the mirrors in m of the MMA, 

which are shown in Figure 4. 

 

Figure 4: Displacement of the respective micro mirror in the MMA to obtain the desired phase shift. 

Applying this mask to the incoming pulse as shown in Figure 5 one gets the shaped pulse in 

frequency space as shown in Figure 6. 

 

Figure 5: Shape of the Intensity profile in arbitrary units of the incoming pulse in frequency space in rad/s. 
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Figure 6: Shape of the Intensity profile in arbitrary units of the incoming pulse in angular frequency in rad/s space after 
applying the mask. 

 

As one can see in Figure 6, there are several dents in the Gaussian pulse. This is due to the 

distance between the micro mirrors. In this picture one can see that there are only seven 

micro mirrors actively shaping the pulse.  

The Fourier transform of this pulse yields the temporal distribution of the shaped pulse, 

which can be seen in Figure 7. Comparing this result to the desired outgoing pulse shown in 

Figure 8, one can see big discrepancies. The intensity distribution is not Gaussian anymore 

and the phase is not as well defined as desired. 

Also the temporal length of the shaped pulse is way bigger than desired. The pulses FWHM is 

116fs, which is slightly shorter than the 118fs long incoming, chirped pulse.  
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Figure 7: Temporal envelope incoming pulse after applying the mask in arbitrary units vs. time in s. 

 

Figure 8: Temporal envelope of the desired outgoing pulse in arbitrary units vs. time in s. 
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5. Conclusion and Outlook 

In my time as a summer student I managed to create the first version of a simulation 

program for simulating a MMA pulse shaper. This program needs to be optimized further to 

yield good results though. As it stands the program still has some bugs and needs further 

optimization for calculating the mirror positions. 

It is important to note, that the first, basic version of the program is working and only a few 

minor adjustments need to be done to make this project a full success and to simulate a real 

pulse shaper. 


