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Abstract

In this report, we are going to discuss a new solution to the electroweak hierarchy
problem called Relaxation. We will introduce a scalar axion-field that screens the
value of the Higgs vacuum expectation value (vev). Thus, we will show that this
mechanism could result in a small Higgs vev at the end of the dynamical evolution.
Finally, we are going to talk about superradiance around spinning black holes and
its connection to axions.
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1 Introduction

The mass of the Higgs particle (125 GeV) is not stable under radiative corrections from
Beyond Standard Model (BSM) states with large masses 1. Extreme fine-tuning is needed
to cancel these radiative corrections and obtain a small physical Higgs mass. This is called
the Hierarchy problem. The two standard approaches to solve the Hierarchy problem
are supersymmetry and composite Higgs models. But both have not been verified by
experiments at for example the LHC. In this report, we are going to talk about a new
approach to solve the Hierarchy problem, called Relaxation [3].

The Relaxion model [3] considers a potential which takes into account the interaction
between a scalar axion-like field, φ, (called the relaxion) and the Higgs field. This Higgs-
axion term in the potential results in bumps in the potential when the Higgs vev is
non-zero. The scalar field starts from a high enough initial value so that the Higgs
vacuum expectation value is zero. Then it rolls down until reaching a critical value φc,
where Higgs vev and the bumps start to grow. With the aid of the Hubble friction, the
field gets trapped in a potential minimum, which is rather close to the critical value, thus
reaching a vev that is much smaller than the cut-off of the model.

The report is organised as follows: first the Hierarchy problem and how it arises in BSM
theories will be explained in some detail. After that, some simulations of the Relaxion
model will be shown and constraints on these models will be discussed. Then, we are
going to study, as well, the relaxation model after the introduction of yet another axion
field [4]. Finally, we are going to treat superradiance around spinning black holes, which
can offer us a possible way to detect axions.

1This is a general feature of all scalar particles: unlike gauge bosons and fermions the mass of a scalar
particle is not protected by symmetry. The mass of the Standard Model (SM) fermion, for example,
is protected by the chiral symmetry [1] [2].
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2 Hierarchy problem

This section is based on lectures given by F. Brümmer in the DESY summerstudent
programme [1].

The Hierarchy problem arises when we consider extensions of the standard model. Since
the SM does not include gravity, it is expected that it can not be correct up to scales
larger than the Planck scale (1018 GeV). The Planck scale is the scale where gravity
becomes as strong as the SM forces (electro-weak and strong force).

The SM is thus expected to be an effective field theory (EFT) which breaks down at the
latest at the Planck scale. In order to describe physics above that scale we need a UV
completion of the theory. An example of an EFT is, for instance, the Fermi theory, which
is an effective theory for the electro-weak interactions at energies much below the W and
Z mass.

To see how the Hierarchy problem arises in BSM theories we will discuss one of the
simplest extensions of the SM (called type 1 seesaw). This model adds a right handed
neutrino (νR) of mass M to the SM. This results in the following Lagrangian (assuming
only one family):

L = LSM + νRi/∂νR +
1

2
MνRνR + h.c.+ yHlLνR + h.c. (1)

The first term is just the SM Lagrangian. The second term is the kinetic term for the right-
handed neutrino. The third term is a Majorana mass term for the right-handed neutrino.
The last term is the Yukawa interaction between the left-handed leptons (neutrino and
electron), the right-handed neutrino and the Higgs doublet H. y is the Yukawa coupling
strength. When the Higgs field gets a non-zero vev (v), a Dirac mass term is created
which gives the neutrinos a mass of yv.

The new physics scale is given by M , with M � v. For low energy processes νR will only
contribute to processes as a virtual particle since the energy available is not enough to
create a real νR.

The term yHlLνR has an important effect when we consider the 1-loop self interaction of
the Higgs. It results in an interaction of the form:
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Figure 1: Radiative corrections to the Higgs mass from right handed neutrino

If we add this term and construct the physical mass of the Higgs we get:

m2
φ,eff = m2

φ −
y2

8π2
M2 (2)

Assuming a Yukawa coupling of O(1), M is fixed by the tiny mass of the neutrino to
1013 GeV. The physical Higgs mass is O(100 GeV), namely 125 GeV.

Thus, in order to obtain a Higgs mass similar to what we see in observations, the two
terms on the right of equation 2 must cancel with a precision of 1 part in ∼ 1024. This
extreme fine-tuning of parameters is called the (electroweak) Hierarchy problem. This is
a general problem for UV completions of the SM and not specific to the model explained
above.

To summarize; the Hierarchy problem arises when viewing the SM as an effective field
theory. When we take into account new states with M � v, loop corrections of these
states to the Higgs mass result in large counter terms to the Higgs mass. To still get a
small value for the physical Higgs mass, like we see in experiments (125 GeV), extreme
fine-tuning is needed.
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3 Relaxation model

The Relaxion model is based on the interaction between an axion field and the Higgs
field, the potential describing this is the following [3]:

V (φ, h) = λh4 + (−M2 + gφ)h2 + gM2φ+ Λ4 cos(φ/f) (3)

where g is a coupling and it is responsible for the breaking of the shift symmetry φ →
φ + 2πf , M is the cut-off of the theory and Λ4 = µ3h. 2 µ is related to an energy scale
and is needed to get the dimensions correct. For the Quantum Chromodynamics (QCD)
axion µ is related to the QCD scale, ΛQCD. f is the decay constant of the axion. h is the
vev of the doublet defined as:

H =
1√
2

(
0
h

)
(4)

This potential is also shown in fig. 2.

We see that for φ < M2/g the Higgs mass is negative. This will result in spontaneous
symmetry breaking and will give the Higgs mass a non-zero vev. The vev is given by
(neglecting the contribution of the oscillatory term):

h(φ) =

{ √
M2−gφ

2λ
, φ < M2

g
:= φc

0 otherwise.
(5)

Using the FLRW metric, the evolution of φ will be governed by Friedmann equation:

φ̈+ 3HI φ̇+ V ′φ = 0 , (6)

where HI is the Hubble constant during inflation.

Now, before choosing the values of the constants, we will derive some constraints [3] that
are essential for the model to have a physical meaning.

The Hubble friction must be such that it allows the axion field to slow-roll. Moreover,
the vacuum energy during inflation ρinf should be greater than the vacuum energy change
along the V (φ) potential, ρφ. Then:

(φ̇)2

2
� ρφ =⇒

{
(V ′(φ)/(3HI))2

2
� V (φ) ' gM2

(
M2

g

)
=⇒ g � HI

(V ′(φ)/(3HI))2

2
� ρφ . ρinf = 3H2M2

pl =⇒ g � H2
I
Mpl

M2

(7)

H2
I =

ρinf

3M2
pl

&
M4

3M2
pl

=⇒ HI &
M2

Mpl

(8)

2Note that in the full Lagragian we should not only have the term ∼ gM2φ but all terms of the expansion
M4(gφ/M2 + (gφ/M2)2 + . . . ). To simplify the simulations done these terms will be ignored.
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We need slow-roll to ensure both that the dynamics is independent of the initial condition
of the field φ and that φ does not overshot the bumps created by Higgs vev. When slow-
roll is satisfied, the kinetic energy which is gained by going down the potential is taken
away by the Hubble friction, thus making the initial value of φ irrelevant.

Moreover, we have to assure that the evolution is dominated by classical rolling. In one
e-fold, quantum fluctuations of the size HI should be less important than the classical
change of the field given by: ∆φ ∼ φ̇/HI ∼ V ′φ/(3H

2
I ). Hence,

HI . (gM2)1/3 (9)

The slow-rolling of the axion will stop when the slope of the barriers Λ4/f becomes of
the order of the slope of the potential gM2:

v ∼ gM2f

µ3
=⇒ φend ∼ φc −

2λgM4f 2

µ6
(10)

Thus, when taking the values of the constant so as to simulate the dynamics of the axion-
field under this potential, we will choose µ to be such that φ gets stuck at φ ∼ 0.9φc,
which corresponds to a Higgs vev of v2 = 0.1M2

2λ
. So as to get the expected Higgs vev, we

will use λ = 0.1M2

v2 , with v = 246 GeV.

The potential is plotted in figure 2 and a zoom-in is plotted in 3.

10 000 20 000 30 000 40 000 50 000 60 000
Φ

0.5

1.0

1.5

2.0

V@ΦD

Figure 2: Potential with values M = 1, f = 10, H = 10−3 and g = 10−4.5 (in units
of 10 TeV). To be able to distinguish the bumps of the potential, we have
multiplied the oscillatory term by 100.
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Figure 3: Zoom-in of the previous plot between 0.95 M2/g and 1.01 M2/g

Using Mathematica we simulate the dynamics by solving equation 6 with the potential
given by equation 3. The dynamics of the field φ as a function of t is shown in figure
4. We clearly see the field getting over several bumps before it gets stuck in a certain
minimum of the potential.
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18 500
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Figure 4: Temporal evolution of field φ.

By solving the equation in one step, we encountered some numerical problems and sin-
gularities. Since a likely cause for this is the fact that we are trying to solve over a too
large range for φ, we tried to solve it iteratively. This resulted in the ability to solve the
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dynamics for g from this initial value to g = 10−6. Using these methods, we were able to
reach a minimum after passing almost 2000 bumps. Having passed lots of bumps means
that the minima are closely spaced together. Thus, in order to have a small value for the
Higgs vev, it is not important to end up in a specific minimum. A range of minima will
result in more or less similar value for the Higgs vev.

The final position of the field φ is plotted for different values of g in figure 5.

Figure 5: Final position of the field φ (minimum where it gets eventually stuck) in function
of log10(g). It coincides almost perfectly with the red line corresponding to the
function 0.9M2/g, which was imposed when choosing the parameter µ.
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4 Double scanner mechanism

The problem with the original model is that the axion field used is the QCD axion,
originally used to solve the strong CP problem [5]. The original Relaxion model however
predicts a charge-parity (CP) parameter of θ ∼ 1, which is in contradiction with the
observed value, θ ∼ 10−10 [3].

To solve this, but keep a term ∼ |h|, a new strong group can be proposed [3]. However,
this will result in an extra source of electro-weak symmetry breaking. To avoid these
problems in [4] another solution is proposed. Instead of ∼ |h|, as coefficient in front of
the cosine term, we take a term ∼ |h|2. This however creates quantum corrections at the
loop level which need to be dealt with. To show how these quantum corrections arise, we
will start with a potential similar to the original model:

V (φ,H) = Λ3gφ− Λ2(α− gφ

Λ
)|H|2+εΛ2|H|2cos(φ/f) (11)

where Λ is the UV cut-off scale of the model, 0 < g � 1 is a dimensionless constant
and is as before the responsible for the symmetry breaking φ → φ + 2πf , α is an O(1)
positive coefficient and ε� 1 is a dimensionless constant that controls the amplitude of
the oscillating term.

Quantum corrections will generate terms of the form ∼ εΛ4 cos(φ/f) and
∼ εΛ3gφ cos(φ/f) [4]. To see this we will first look at the two interaction vertices of this
potential:

Figure 6: Vertices gΛφ|H|2 (left) and εΛ2|H|2cos(φ/f) (right)

Radiative corrections are the result of closing loops. This results in the following dia-
grams:
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Figure 7: Closing loops of the diagrams in figure 6

These loop diagrams contribute the following terms to the potential; a loop means we
have to integrate the propagators over the independent momenta. Since the loops contain
one scalar propagator and one independent momentum, we end up with an integral of the
form

∫ Λ

0
d4p 1

p2 , where we have neglected masses and constants. Using only dimensional

analysis and neglecting constants, this integral will be of order ∼ Λ2. Taking into account
the interaction strength, we end up with:

gΛφ

∫ Λ

0

d4p
1

p2
∼ gΛ3φ

for the left diagram, which adds nothing to the potential since this term was already
present. And:

εΛ2 cos(φ/f)

∫ Λ

0

d4p
1

p2
∼ εΛ4 cos(φ/f)

for the right diagram. This will create bumps which are already present before the Higgs
vev creates bumps. This term will thus cause the field to get stuck before the critical
value is reached. Other quantum corrections terms can be created by combining the two
vertices as follows:

Figure 8: Other quantum corrections
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Figure 9: Some other quantum corrections

In a similar way as explained before, this will create the following terms in the potential
[4].

For the left diagram of figure 8 we get:

gφΛεΛ2 cos(φ/f)

∫ Λ

0

d4p
1

p4
∼ εgΛ3φ cos(φ/f)

For the right diagram of figure 8 we get:

(εΛ2 cos(φ/f))2

∫ Λ

0

d4p
1

p4
∼ ε2Λ4 cos2(φ/f)

For the diagram of figure 9 we get:

gφΛ(εΛ2 cos(φ/f))2

∫ Λ

0

d4p
1

p6
∼ ε2gΛ3φ cos2(φ/f)

So we end up with four quantum corrections terms, two of these are of order ε and the
other two of order ε2. These terms will destroy the dynamics of the model. In order to
solve this, [4] introduces a second axion field which then screens both terms generated
by O(ε) quantum corrections. The O(ε2) corrections will be dealt with by imposing a
specific constraint, as discussed later on.

Adding this extra field results in the following potential [4]:

V (φ, σ,H) = Λ4(
gφ

Λ
+
gσσ

Λ
)− Λ2(α− gφ

Λ
)|H|2+A(φ, σ,H) cos(φ/f) (12)

A(φ, σ,H) = εΛ4

(
β + cφ

gφ

Λ
− cσ

gσσ

Λ
+
|H|2

Λ2

)
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where gσ � 1 is a dimensionless coupling to the σ-axionfield and β, cφ, cσ are O(1)
dimensionless positive coefficients.

Important here are the terms in A. The three extra terms are the quantum corrections
from σ and φ. We imagine the evolution to go as follows [4]:

We start with initial values for φ and σ, such that the Higgs vev is zero and A is large,
this will result in large bumps; φ will be stuck in a minimum. σ will slow-roll down its
own potential since it does not feel the bumps 3.

This will decrease the steepness of the bumps, thus making it possible for φ to get out of
the minimum and start slow roll. This will go on until, like in the previous example, the
Higgs vev obtains a non zero expectation value and φ gets stuck in another minimum,
below the critical value. In the end the result is a value for the Higgs vev which can be
much smaller than the scale of new physics, without the need of any fine-tuning.

The Higgs vev is given in the following formula, where we again ignore the oscillatory
term:

H2(φ) =

{
Λ2(α− gφΛ ))

2λ
, φ > Λ

g
α := φc

0 otherwise.
(13)

In order for the field φ to have the behavior as explained and end up in minimum close
to the critical value some conditions must be fulfilled. Firstly we have the condition that
the steepness of the oscillatory term is smaller than the one from Λ3gφ. This is to make
sure that the Higgs field scans a large enough range and does not get stuck at the first
bump. This results in the following inequality:∣∣∣∣ 1f A(φ∗, σ,H(φ∗))

∣∣∣∣ . gΛ3

which trivially leads to these values:

φ∗ ∈

{
φc + cσgσ

cφg
(σ − σc)± f

cφε
, φ∗ > φc

φc + cσgσ
c′φg

(σ − σc)± f
c′φε

otherwise.
(14)

c′φ = cφ − 1/(2λ) σc = (gcφφc + βΛ)/(cσgσ)

3Because the oscillating potential is only dependent on φ not on σ. In the Friedman equation for σ
there will thus be no contribution from the oscillatory term
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To make sure that φ remains in this zone when it rolls down and does not get stuck
in another minimum before reaching the critical value φc, it has to fulfill the following
condition:

g

gσ
=
dφ(t)/dt

dσ(t)/dt
>
dφ∗
dσ

=
cσgσ
cφg

=⇒ cφg
2 > cσg

2
σ (15)

Once φ ≤ φc, φ must exit the band so as to get trapped in some vacuum. Then, if c′φ > 0

g

gσ
<
cσgσ
c′φg

=⇒ c′φg
2 < cσg

2
σ (16)

As for the case when c′φ < 0, since both slopes have different signs, the field φ will trivially
exit the band and finally get trapped in a minimum.

Moreover, we have to ensure that quantum correction terms like ε2Λ4 cos2(φ/f) are neg-
ligible:

ε . v2/Λ2, (17)

where v is the Higgs vev where it gets stuck, which analogously as in the former model
is the point where the slope of the oscillatory term and linear term coincide:

v2 ' gΛf

ε
(18)

The energy density carried by the axion fields is smaller than the inflation scale ρinf:

HI =

√
ρinf√

3Mpl

&
Λ2

√
3Mpl

=⇒ HI &
Λ2

Mpl

(19)

The condition for classical rolling is that quantum fluctuations of size HI remain smaller
than classical field displacements over one Hubble time:

∆σ ∼ H−1
I σ̇ ∼ H−2

I Vσ/3 & HI =⇒ H3
I . gσΛ3 (20)

From Eq. 17-20, we trivially get these bounds for g:

Λ3

M3
pl

. gσ . g .
v4

fΛ3
(21)

In order to simulate all the stages of the slow-rolling of both axion fields, we have to
start with a potential with two points (below and above φc) where the amplitude of the
oscillating therm is zero. These two point are given by the following expressions:
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{
minI(σ) = cσgσσ−βΛ

gcφ
,

minII(σ) =
cσgσσ−βΛ−αΛ

2λ

gc′φ

(22)

So that minII(σ0) < φc < minI(σ0) we have to fulfill the following conditions:

c′φ < 0 ,
cσσ0gσ

Λ
− β > αc (23)

We have verified that the following constants fulfill all our constraints:

For the dimensionless coefficients:
α = cφ = cσ = 1, λ = 10−1

And for the dimensionful parameters, in units of GeV:
Λ = f = 103, g = 10gσ = 10−3, 3HI = 40.

So as to get the Higgs value v = 246 GeV, we will simply use ε = Λ2g
v2 , which fulfills as

well Eq. 17.

Figure 10 shows the potential for σ = 1.5 Λ
gσ

. The two points where the amplitude of the
oscillating term vanishes have been marked with a black dot.

Figure 10: Potential for σ0 = 1.5 Λ
gσ

.

Now, we are able to solve the Friedmann equation for φ and σ. Starting at an initial
value of φ just between the two black dots (φ0 = 1.2φc) and an initial value of σ given
by 1.5 Λ

gσ
.
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Figure 11: Evolution of axion field φ.

In Fig 11, we have represented in red φ− φc, clearly seeing the different stages in which
it is involved. Firstly, it stays on the initial value until the slow-roll of the field σ enables
this point to coincide with the vanishment of the amplitude. Then, the field φ is able to
slow-roll until reaching the critical value within the allowed region of Eq. 14 (in blue).

Just after it crosses the critical value, it gets stuck in one minimum getting here out of the
allowed region of Eq. 14 and such that the Higgs vev (v2, in green) gets activated. The
final Higgs vev is v ' 424 GeV, which is of the same order of magnitude as the expected
value v = 246 GeV.

In the next figures, we can see how the field φ slow-rolls down the potential:

16



Figure 12: Evolution of field φ, for t = 0 (top left), t = 700 (top right), t = 1000 (middle
left), t = 1200 (middle right) and t = 1400 (bottom)

We see that it coincides well with the expected behaviour. We also see that the Higgs
field ends up in a minimum smaller than, but close to the critical value (1.0 · 106).
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5 Superradiance

Axion or axion-like particles pop up in several BSM theories to solve current problems in
the SM. The problems range from the strong CP problem to the cosmological constant
problem. As explained above, the existence of light axions is also a proposed solution
to the electroweak hierarchy problem. Most BSM theories predict one or several axions.
The following figure shows a plot of the cross section and mass of some of the proposed
axions.

Figure 13: Proposed axions [6]

In order to test these theories, we need (in)direct evidence for their existence and we need
to measure their mass. One possible way to detect axions are the “light shining through
a wall” experiments, like the ALPS experiment at DESY [7]. Another method would be
through the effect of superradiance [8] [9]. Superradiance is the effect by which, when
an axion scatters from a rotating (Kerr) BH, the reflected wave has a larger amplitude
than the incoming wave. Rotating black holes are not the only type of system where this
occurs, but however they are the one in which the superradiance of bosonic particles can
be better observed [8].

18



Light axions can bind to a Kerr black hole and form a cloud around it, called a gravita-
tional atom. This only happens when the BH size is of the same order as the Compton
wavelength of the axion [8]. When this happens, the axions extract energy/spin from the
BH, thus causing the BH to lose energy (spin-down). We will show that these axions will
have a specific effect on the distribution of BH’s and thus the effect of superradiance can
be used to detect axions. The properties of BH’s, like spin and mass, can be determined
from Gravitational Wave detections.

5.1 Kerr Black Holes

According to the no-hair theorem, all black hole solutions of the Einstein equations
are completely defined by three classical parameters: mass, electric charge and angular
momentum [10].

Here, we are going to deal with Kerr metric, which enables us to describe black holes
with angular momentum J . Using Boyer-Lindquist coordinates, the metric expression is
the following [11]:

ds2 = −
(

1− 2GMr
ρ2

)
dt2 − 4GMra sin2 θ

ρ2 dϕdt+ ρ2

∆
dr2

+ρ2dθ2 +
(
r2 + a2 + 2GMra2sin2θ

ρ2

)
sin2 θdϕ2

(24)

a ≡ J

GM
, ρ2 ≡ r2 + a2 cos2 θ , ∆ ≡ r2 − 2GMr + a2 , a∗ ≡ a

rg
≡ a

GM

being G the gravitational constant and M the BH mass. We obtain the singularities of
the black hole by setting ∆ to 0:

r± = rg

(
1±
√

1− a∗2
)

(25)

Since the outer horizon r+ only exists for a∗ ≤ 1, we have a maximum angular momentum
for a∗max = 1. For stationary observers (uµobs = (u0

obs, 0, 0, 0)), we have that u2
obs =

−g00(u0
obs)

2 = −1, which can only be satisfied for r ≤ r+
e (θ), the outer ergosphere (region

where g00 = 0):

r±e (θ) = rg

(
1±
√

1− a∗2 cos2 θ
)

(26)

Once a particle enters the outer ergosphere, it is forced to move in the tangential direction
and dragged by the rotating black hole, but however it is not forced towards the black
hole center. This happens only when the outer horizon is reached; from there on particles
are always moving towards the black hole center. Figure 14 shows the different regions
around a Kerr black hole.
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Figure 14: Regions of a Kerr black hole with a∗ = 0.9 and rg = 1.

5.2 Superradiance condition

We can establish a clear analogy between the system formed by a black hole of mass M
and radius rg and a massive boson of mass µa and the hydrogen atom [8]. It can be called
a gravitational atom [8] with quantum energy levels specified by {n, l,m} and energies
given by:

ω ' µa

(
1− α2

2n2

)
(27)

The zone where superradiance is possible corresponds to the region inside the plane Mbh

versus µa where Compton wavelength of the axion λa = h
cµa

(which in natural units is

λa = 2π
µa

) is comparable to rg:
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Figure 15: Superradiance zone in the plane log10(µa/eV ) versus log10(MBH/M�). We will
consider that λa is comparable to rg if rg/10 < λa < 10rg.

We see that for BH ranging from several M� to 100M�, superradiance is possible for
axion masses between 10−22 to 10−10. Looking back at figure 13 we see that a large range
of this axion plot can be investigated using superradiance.

The superradiance condition for a level with energy ω and magnetic quantum number m
is:

ω

m
< ω+, ω+ ≡ 1

2

(
a∗

1 +
√

1− a∗2
r−1
g

)
(28)

The superradiance rate has also to be fast enough to grow a maximally filled cloud:

ΓsrτBH ≥ logNmax , (29)

where Nmax '
GNM

2
BH

m
(1 − a∗) is the maximum number of bosons occupying the level,

τbh is the shortest time in which superradiance can be disturbed, which we will take
as τEddington/10 = 4 · 107 years, and the superradiance rate, using the non-relativistic
approximation from [12] (α/l � 1), has the following expression:

Γlmnsr = 2µα4l+4r+(mω+ − µa)Clmn (30)

Clmn =
24l+2(l + n)!

n2l+4(n− (l + 1))!

(
l!

(2l)! (2l + 1)!

)2 l∏
j=1

(
j2(1− a∗2) + 4r+2(mω+ − µa)2)

)
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We will always consider m = l = n − 1. The figure below shows Γsr as a function of µa
for different values of l.

l = 1

l = 2

l = 3

l = 4

0.0 0.5 1.0 1.5 2.0 2.5 3.0
ΜaH10-11eVL

10-12

10-10

10- 8

10- 6
Gsr r g

Figure 16: Γsrrg in function of µa (in eV), with a∗ = 0.99 and MBH = 10M� for l=1 to
l=4 from left to right.

Figure 17 shows the regions in the (MBH, a
∗) plane where superradiance occurs, for the

different l levels.

Figure 17: Superradiance regions in the plane MBH/M� versus spin a∗ for l=1 to l=5
from left to right.

22



We expect the following dynamics. Let us have a black hole with mass MBH and spin a∗0
and we initially have a cloud of Nmax(a

∗
0) axions. The initial quantum number l will be

the smallest possible such that the point (MBH, a
∗
0) fulfills the superradiance conditions.

Then, the number of axions will evolve in the following way [8]:

dN

dt
= ΓsrN (31)

extracting spin from the black hole by a∗ = N−1
max(N).

When reaching the point (MBH, a
∗) where the superradiance condition is not valid any-

more for this l, axions will annihilate into gravitons until reaching Nmax(a
∗) for the next

quantum level.

dN

dt
= −ΓaN

2 (32)

Γa ' 10−10(2α/l)p
GN

r3
g

, where p =

{
17, l = 1
4l + 1, l ≥ 2.

Afterwards, the number of axions will again increase by superradiance and the process
will repeat until reaching the zone where the superradiance condition does not hold for
any l.

We have computed these dynamics for a cloud of axions of µ = 10−11 eV around a black
hole of MBH = 6M� and initial spin a∗0 = 0.95, thus starting in l = 2 region. There are
three stages:

• The number of axions increase exponentially until having extracted enough spin to
the black hole so as to exit the superradiance zone for l = 2 (∼ 0.13 years).

• Then, axions are annihilated into gravitons until reaching some critical value (∼
1.9 · 105 years).

• Finally, level l = 3 becomes populated until leaving its superradiance zone (∼ 1600
years).

5.3 Distribution of black holes

To show the effect of supperradiance on the BH distribution we first consider the prob-
ability of finding a black hole of a certain mass. In [13] a Bayesian analysis of observed
masses of binary systems is done which resulted in the following BH distribution:

P (M) = M−1
0 e(Mmin−M)/M0 (33)
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where Mmin = 5.3M� and M0 = 4.7M�.

Then, considering that the spin distribution is flat [8], the expected distribution for 104

black holes would be:

Figure 18: Distribution of black holes in the plane MBH/M� versus spin a∗.

If we take into account the presence of an axion [14] there will be a cloud of axions
exponentially growing in each l-zone, this will make the black hole lose spin until leaving
the superradiance region. Thus in the presence of axions we expect no BHs in the regions
where superradiance occurs. After a certain time, the distribution for 10,000 black holes
will be like this:
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Figure 19: Distribution of black holes with an axion of µa = 6 · 10−13 eV.

We see that all the BHs initially located in the superradiance regions have moved down
into a region where superradiance is no longer valid. This shows that axions through
the effect of superradiance can have a measurable effect on the BH distribution. By
measuring mass and spin of a large amount of BHs, the existence of axions could be
proven, in principle. According to [14], it is much more complicated to measure this
effect in an experiment, due to large errors in the measurement of the BH spin.
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6 Conclusions

In this report we have discussed the Hierarchy problem and investigated one of its possible
solutions, the Relaxion models. We have seen that dynamical models like the original
and the double scanner model could in principle result in a value for the Higgs vev:
v � Mnew physics. This value would be naturally small and would thus not suffer from
fine-tuning. However, there are a large number of conditions which have to be fulfilled
by these axions.

We have investigated the Relaxation models by simulating the dynamics using Mathemat-
ica and have tested the effect the different parameters/constants have on the dynamics.

These models require the existence of light axions. The hope is to find these axions in
the future by looking, for example, at the BH distribution and distinguish the effect of
superradiance from the axion cloud on this distribution.
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