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Abstract

The possibility of including b-tagging scores as additional variables in the classifi-
cation BDT for the t#H, with H — bb, single-lepton channel was investigated. It
was found that in the >6 jets with 3 b-jets region, the background in the highest
BDT score bin could be reduced by almost half. A further study revealed that
these b-tagging jets discriminate against non-tt + bb sourced backgrounds. At
present only binned b-tagging variables are feasible, however the introduction of
these still gives promising performance improvements.
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1. Introduction

1.1. Top Associated Higgs Production

The Higgs production mechanism that this investigation focuses on is top associated
Higgs production. Precise measurement of the ttH vertex seen in figure 1 would allow
us to calculate the Yukawa coupling of the top to the Higgs. Theoretically, the H — bb
decay mode pictured would produce the largest number of ttH associated events out
of any decay mode. Unfortunately, the presence of very large backgrounds makes this
signal one of the hardest channels to detect.

I BT -
A b
H
b
A
700000/ —

Figure 1: The t¢H production process, with H — bb decay mode.

1.2. The tf + bb Background

The ¢t + bb background is the main source of issues when it comes to measuring the ttH
with H — bb signal. As seen in figure 2 the final state particles of the tf + bb are the
same as those in the signal: t, £, b, and b. This is what makes the signal so hard to
distinguish.

Figure 2: The tf + bb background process.

1.3. The Single-Lepton Channel

Top quarks decay almost exclusively to a b quark and a W boson, as such we expect to
see 4 b-jets in our singal. These 4 b quarks can be seen in figure 3, which displays the



single-lepton channel. This single-lepton channel, so named because only one of the W
bosons decays to give a charged lepton, is the signal that this project specifically focuses
on. Other possible channels include ones in which the W bosons decay only to quarks,
or the dilepton state where both of the W bosons decay to leptons. It can be seen from
this single-lepton channel we expect 6 jets, 4 of which are b-jets. That is providing there
are no additional gluon jets, or jets lost in the detector.
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Figure 3: The expected process in the single-lepton channel.

2. Categorising the Data

2.1. Jet b-tagging

b-tagging is the flavour tagging process used to decide whether a given jet was sourced
from a b quark. The bottom quark does not decay immediately after it is produced; and
so it travels a short distance before it hadronises. If a jet vertex is found to be displaced
from the interaction vertex, then the parent particle could be a b quark. Figure 4 shows
a diagram of such a displaced vertex. Aside from this, information regarding a jet’s
width, and multiplicity, can also be used to classify the jet’s source. To obtain optimal
performance, many of these b-tagging methods are used together by implementing an
artificial neural network.[1] The issue is that the b-tagging algorithms are not perfect,
often a b-jet will not be tagged, and sometimes other particles such as charm quarks are
incorrectly tagged as a b.

The final output of these algorithms is a b-tagging score, in this case the mv2c10
variable, which classifies how b-like the jet is. Cuts can then be made on this value
to decide which b-tagging efficiency is appropriate for the analysis. Higher efficiencies
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Figure 4: An example of a displaced b-jet vertex.|[2]

yield more b-tagged jets, but have a lower purity. The b-tagging efficiency used in this
investigation was 70%, yielding a purity of 97.46%. A list of the weight cuts at different
efficiencies can be found in appendix B.

2.2. Defining Regions

The data is split into 9 different categories, or regions, based on how many jets and
b-jets there are in each event. Table 1 shows how these regions are defined. The red
shaded regions, 5, 7 and 8, are of most interest. These regions provide the most optimal
signal, as the number of jets, and number of b-jets, is very similar to those we expect
from our signal.

4 jets 5 jets >6 jets
2 b-tags 0 3 6
3 b-tags 1 4 7
>4 b-tags 2 5 8

Table 1: The definitions of the regions used to categorise the Monte Carlo data.
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Figure 5: The components of each categorisation region’s background. 3]

The pie charts shown in figure 5 outline the different sources of background in each
region. Unfortunately, Regions 5 and 8 are dominated by tt + bb sourced backgrounds.
In Region 7, however, the tf + bb is still less than half the total background.

3. The Multivariate Analysis

3.1. Why Use Multivariate Analysis?

Figure 6 shows a plot of the number of jets with ppr > 40 GeV in Region 7. Both the
signal and background histograms peak at almost the same value. This is disappointing
since this variable supposedly provides the best signal to background separation in this
region. In this case, a variable’s separation is defined by the ratio of overlapping and
non-overlapping areas of the two histograms. Clearly then, single variable cuts will not
be useful in this analysis. Instead the cuts need to be made more dynamically, varying
multiple variables at the same time. In fact, the analysis done in this region uses 17
variables! This truly is a Multivariate Analysis (MVA). Beyond a 2 or 3 variables it
becomes increasingly difficult for a human to set these cuts by hand. Instead machine
learning techniques must be used to properly analyses the 17-dimensional hyperspace.
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Figure 6: The number of jets with pr > 40 GeV in Region 7, for both the signal and
background samples.

3.2. Boosted Decision Trees

Boosted Decision Trees (BDTs) are the MVA method of choice in this investigation. A
decision tree, is a flow-chart-like network of yes/no nodes. At each node a cut on some
variable is applied, with nodes deeper often cutting in a way more specific to the events
that reach it. These cuts allow an event to be classified as signal-like or background-
like (or somewhere in between). Due to the large number of variable choices at each
node, a single tree is far from powerful. The variables choices are largely random, albeit
weighted by the separating power each one would give on the dataset. This means that
any single decision tree actually has a very poor performance, and do not classify much
better than a random guesser would. However, by boosting the decisions trees, we can
combine many of these weak classifiers into one strong classifier. The boosting algorithm
used in this project was the AdaBoost, or “Adaptive Boosting”, algorithm. Simply put
this algorithm uses a weighted sum of the outcomes of many different trees as it’s final
classification. The BDT is trained by acting it on known training data, and comparing
the outcome to the true classification. The weighting of each tree is then adjusted, based
on some error function, potentially improving its future performance. Many iterations
of this process will improve the BDT’s classifying power.

3.3. Receiver Operating Characteristic

A good way of determining the classification power of a BDT is it’s Receiver Operating
Characteristic (ROC) curve. An example ROC curve is shown in figure 7. These plots
are a representation of the BDT’s profile, at various signal efficiency thresholds. Any
one point on the curve gives the signal efficiency (true positive rate) and the background
rejection (true negative rate) of the BDT. The black line on this example plot represents
a random guesser. A perfect classifier would be one that extends all the way to the



top-right of the plot. The red line is a much more realistic curve for a BDT classifier.
The further it extends towards the top-right corner, and the larger the area underneath
the ROC curve, the better the MVA has performed.
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Figure 7: An example ROC curve, the black line shows the behaviour of a random
guesser. The red line is a much better classifier.

3.4. BDT Overtraining

An issue with using BDT classifiers is that they have a tendency to overtrain. Over-
training is where the BDT has begun to focus on random fluctuations and noise in the
training dataset. An overtrained BDT will perform better with the training data than
with a second, testing, sample. Figure 8 shows an overtraining plot of the BDT acting
in Region 7. If the training histogram (dots) are at higher values than the testing his-
tograms (shaded) then the BDT has been overtrained. Whilst this plot does show some
of this behaviour, this is actually a good example of a BDT in which the overtraining
level is acceptable. The amount of separation in the signal and background histograms
on this plot corresponds to the classification power of the BDT. A larger separation is
generally better here.
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Figure 8: The effect of b-tagging variables in Region 7 for tt + bb only backgrounds, as
well as non-tt + bb sourced backgrounds.

4. The MVA Setup
4.1. The MVA Variables

At present, the classification BDT uses just two types of variables: general kinematic
variables, and variables from the Higgs reconstruction BDT.[3] In accordance with cur-
rent analysis, these same variables were used in this investigation (all full list can be
found in appendix A). In addition to these variables, the mv2c10 values from the jet
b-tagging stage were also introduced. Whilst the b-tagging results had already been
used to define the categorisation regions, it was postulated that these scores could still
provide further signal vs background separation power.

For each given event, there are multiple jets. As such, the jets are sorted by mv2c10,
with each jet providing an separate b-tagging variable for the event. The highest mv2c10
value would become that event’s mv2c10_1, the second highest would fill mv2c10_2,
and so on. These new variables are what are of particular interest for the classification
BDT.

Consider now Region 7, with >6 jets and 3 b-tagged jets. In the optimal case, each
signal event would have 4 b-tagged-jets. Hence, it is expected that the signal in this
region will have a b-jet that was missed by the b-tagging. As such, one would imagine
that a signal event’s 4th highest mv2c10 value would still be high in this region, albeit
just below the b-tagging cutoff. This is indeed what is seen in figure 9d. A peak is
clearly seen around 0.8 in the signal data, that is not present in the background data.
The preselection was done here at 70% b-tagging efficiency, so as expected this peak
represents the jets that fell just below the tagging cutoff.



Testing the effectiveness of these b-tagging variables in the BDT revealed that both
mv2c10_3 and mv2c10_4 were effective at improving the classifier’s performance. This
is somewhat intuitive, since these two variables describe the jets that are nearest to
the b-tagging cutoff. The remaining plots in figure 9 show the histograms of these
variables. One can see that in all regions there is some separation between the signal
and background plots of mv2c10_4. The separation in the mv2c10_3 is much more
modest, with the exception of in Region 7 where it looks to have some discriminating
power. It was decided that both mv2c10_3 and mv2c10_4 would be investigated further
as additional MVA variables.

4.2. BDT Settings

Toolkit for Multivariate Analysis (TMVA) was used to generate the BDTs that were
investigated. As with the basic set of variables used in this project, the BDT settings
are the same as those used in the current analysis. These settings are as follows:

e Boost type: AdaBoost
o AdaBoostBeta: 0.15

NTrees: 400 in Regions 7 & 8, and 250 in Region 5.

MaxDepth: 5 in Regions 7 & 8, and 4 in Region 5.
nCuts: 80

MinNodeSize: 4% in Regions 7 & 8, and 5% in Region 5.

4.3. Testing the MVA

In order to test the MVA, the BDT was trained with a gradually increasing number of
variables, starting with just 1 variable, all the way up the full set of 17 variables. Figure
10 shows the ROC curves for 4 of such BDTs in Region 7. Clearly, the BDT using
just 1 variable is a very weak classifier, barely performing better than random guessing.
However, as more variables are added, the ability of the BDT to distinguish signal and
background events increases.

10
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Figure 9: The 3rd and 4th highest b-tagging values, in each region of interest.
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Figure 10: The effect of adding more variables to the analysis in Region 7.

In the figure, the green curve is mostly obscured by the blue curve. This suggests that
the BDT did not improve with the addition of the final 6 variables. This was to be
somewhat expected, since variables were added in decreasing order of importance. This
importance rating is based on the structure of the final, 17 variable BDT. As such,
the conclusion should be that less important variables improve the BDT less, not that
over 11 variables is somehow disadvantageous. This can be further seen in the plot in
appendix C, in which the variables are added in the opposite order. In said plot the
converging behaviour of the plot no longer manifests. A further study could be one
which investigates removing these less important variables.

Variable importance rankings are determined by comparing how often each of the vari-
ables appear in the decision trees. This calculation is a sum that counts the number of
nodes a variable occurs in, weighted by the number of training events that reached that
node and by the square of the separation gained by including said node. Hence, the
importance ranking often differs from the separation ranking. Separation tests the vari-
ables independent of the MVA, where as the importance ranks how strongly a variable
features in the BDT.

12



5. Adding b-tagging Variables

5.1. ROC Improvements

Figure 11 shows how the analysis in Region 7 improved after both mv2c10_3 and
mv2c10_4 were introduced to the MVA. Introducing these variables clearly improves
the BDT’s performance; much more so than many of the preexisting variables. Both
the mv2c10_3 and mv2c10_4 variables appear to improve the classification by approxi-
mately the same amount when used separately, however the biggest improvement comes
from adding them both.
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Figure 11: The effect of introducing b-tagging variables to the analysis in Region 7.

The highest BDT scoring bin in the currently ATLAS analysis, in Region 7, is at a signal
efficiency of 18%.[3] This corresponds to the bin with the highest statistical significance.
Reading off from this plot we see that introducing the b-tagging variables increases the
background rejection from ~95% to ~97%. This means that adding these two b-tagging
variables has almost halved our background in this bin, taking it from ~5% to ~ 3%.
Figures 12a and 12b show the effects of adding b-tagging variables to the analysis in
Regions 5 and 8 respectively. The improvements here are much more modest than those
seen in Region 7, however in both cases introducing mv2c10_3 and mv2c10_4 does
improve the performance of the BDTs.

13
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Figure 12: The introduction of b-tagging variables to the analysis in Regions 5 & 8.
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Figure 13: How the background sources effect the overtraining plots in Region 7.
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5.2. t{ + bb Background Study

In order to discover why the b-tagging variables were so effective, a study was conducted
on the different components comprising Region 7’s background. The pie chart for Region
7, shown earlier in figure 5, shows the different sources of Region 7’s background. The
proportion of tf 4+ bb sourced background is much less than half. This is in contrast to
the backgrounds of Regions 5 & 8, in which the vast majority of the background comes
from tf + bb sources. It was therefore hypothesised that mv2c10_3 and mv2c10_4 best
discriminate against the non-tf + bb components of the background.

The two overtraining plots in figure 13 show the performance of the BDT with £ + bb
sourced background only, and without any ¢Z 4 bb sourced background at all. Note that
the tf4bb sourced background plot looks very similar to the overtraining plot seen earlier
in figure 8. The plot excluding ¢f 4 bb sourced background however looks very different.
The BDT performs much better, and the signal proves much more separable than previ-
ously. The plots in this background study includes the b-tagging variables, which could
be the source of improvement seen in the plot excluding the tf + bb backgrounds.
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Figure 14: The effect of b-tagging variables in Region 7 for tt + bb only backgrounds, as
well as non-tt + bb sourced backgrounds.

In order to truly discover the effect of the b-tagging variables on these backgrounds,
BDTs were trained with and without the inclusion of mv2c10_3 and mv2c10_4. Figure
14 shows the ROC curves of in Region 7, for different background sources, with and
without the b-tagging variables. Whilst there is a small improvement made to the
tt + bb only performance, it it only slight. The real improvement however comes with
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the non-tf + bb background. Here the BDT’s performance increases dramatically once
the b-tagging variables are added. This is logical, since we expect fewer b-jets in the
non-tf + bb backgrounds, which means that their mv2c10 are likely to be much lower.
This is especially true for mv2c10_3 and mv2c10_4, since we would expect the b-jets
sourced from the top quarks to occupy the mv2c10_1 and mv2c10_2 slots. The plots
in figure 15 show similar results for Regions 5 and 8. The curves for non-tf + bb are
very noisy in these regions. It is assumed that this is due to the lower number of events
available for these backgrounds, in these regions, however that has not been confirmed.
The slight increase in performance seen by introducing the b-tagging variables to the
Region 7 tf + bb only study is not seen here. This could suggest that the b-tagging
variables can only consistently improve the classification of signal against non-tf + bb
backgrounds.
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Figure 15: The effect of b-tagging variables in Regions 5 & 8 for tt+bb only backgrounds,
as well as non-tf + bb sourced backgrounds.
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5.3. Binned b-tagging Variables

In order to have continuous b-tagging scores, the Monte Carlo data must be calibrated
with the real detector data. This means that, in reality, it is somewhat infeasible to
attain continuous b-tagging values. Instead, binned b-tagging scores are used. As the
calibration is improved, the binning will become higher and higher resolution, however
at present the binning is quite a low resolution.

An investigation was conducted to ascertain how these binned b-tagging variables would
perform compared to the previously tested continuous ones. The binning used was as
follows:

e Bin 0: mv2c10 < the 85% b-tagging efficiency cut.
e Bin 1: mv2c10 < the 77% b-tagging efficiency cut.
e Bin 2: mv2c10 < the 70% b-tagging efficiency cut.
e Bin 3: mv2c10 < the 60% b-tagging efficiency cut.
e Bin 4: mv2c10 < the 50% b-tagging efficiency cut.
e Bin 5: mv2c10 < the 30% b-tagging efficiency cut.

e Bin 6: mv2c10 > the 30% b-tagging efficiency cut.
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Figure 16: The effect of binned vs continuous b-tagging variables in Region 7.
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The plot in figure 16 shows there is only a very small depreciation in BDT performance
when the b-tagging variables are binned instead of continuous. This result is important
as it means that b-tagging variables could potentially be added to the current BDT
classifiers. The plot seen in figure 17 show that Regions 5 and 8 also perform similarly
when the b-tagging variables are binned. The greatest difference is seen in the Region
5 plot. This indicates that a higher resolution binning than the one considered here is
required for the performance to better match that of the continuous variables. Despite
this, there is still a distinct improvement over not using the b-tagging variables at all.
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(a) IThe Region 5 ROC plot. (b) The Region 8 ROC plot.

Figure 17: The effect of binned vs continuous b-tagging variables in Regions 5 & 8.

18



6. Conclusion

The possibility of including the mv2c10 b-tagging scores as additional MVA variables
was investigated. It was shown that in Region 7, >6 jets with 3 b-jets, the background
in the highest BDT score bin could be reduced by almost half. These variables are most
effective in this region due to the high proportion of non-tf + bb sourced backgrounds.
Whist the b-tagging variables do not provide much discriminating power against tf + bb
backgrounds, they were still able to improve the BDT performance in regions where the
tt + bb backgrounds feature heavily.

Currently the b-tagging variables attainable from real data are binned, as opposed to
continuous. It was shown that binned b-tagging values can still improve the classification
BDT. A further study would have to be conducted to investigate how the b-tagging
variables perform at even lower binning resolutions, which are much closer to what is
currently possible.
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A. The Current Classification BDT Variables [3]

Variable

Definition

Region

> 6j, > 4b [ > 6j, 3b | 5j, > 4b

General kinematic variables

AR™® Average AR for all b-tagged jet pairs v v v
AR between the two b-tagged jets with the
ARy PT largest vector sum pr v — —
Anppax Maximum An between any two jets v v v
' Mass of the combination of any two b-tagged
miin AR jets with the smallest AR v v -
_ Mass of the combination of any two jets with
mpin A8 the smallest AR - - v
Mass of the combination of a b-tagged jet and
E}‘“‘ P any jet with the largest vector sum pr - v -
jet5 pr of fifth leading jet
et T v v v
' Number of b-jet pairs with invariant mass within
N e 30 30 GeV of the Higgs boson mass v - v
Ni%t Number of jets with pr > 40 GeV B % B
o Scalar sum of jet pr B v v
_ AR between the lepton and the combination
AR DR of the two b-tagged jets with the smallest AR - - v
1.5)\s, where ), is the second eigenvalue of the
Aplanarity momentum tensor built with all jets v v v
Scalar sum of the pr divided by the sum of the E
Centrality for all jets and the lepton v v v
Second Fox-Wolfram moment computed using
H1 all jets and the lepton v v v
Variables from Reconstruction BDT output
BDT Output v v v
my Higgs boson mass v v v
T H bieptop Mass of Higgs boson and b-jet from leptonic top v - -
A Rpiggshh AR between b-jets from the Higgs boson 4 v v
ARy AR between Higgs boson and tf system v v v
ARy Jeptop AR between Higgs boson and leptonic top v - -
AR badiop AR between Higgs boson and b-jet from hadronic top - v v
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B. mv2cl10 b-tagging Cuts

b-jet Efficiency [%)] | Purity [%] | Weight Cut
29.99 99.95 0.9977155
50.05 99.62 0.9769329
60.03 99.00 0.934906
69.97 97.46 0.8244273
76.97 95.17 0.645925
84.95 89.66 0.1758475
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C. Adding Variables in Order of Least Importance
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Figure 18: The effect of adding more variables to the analysis in Region 7. Unlike in
figure 10, the variables were added in ascending order of importance, instead
of descending.
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