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Abstract

Two-dimensional model of colloidal crystal consisting of polydisperse spherical
particles was produced using Monte Carlo methods. The influence of particle size
dispersion is studied by means of X-ray diffraction. The width of the diffraction
peaks is considered in frame of Williamson-Hall approach.
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1 Introduction

A colloidal crystal is an ordered array of colloid particles (see Fig.1). Colloid particles
are hard-core particles and have typical size between 1 and 1000 nanometers. Colloidal
crystals are widely spread in nature: opal, wings of butterflies and beetles, setae of
polychaete worms are all examples of colloidal crystals [1, 2]. Artificial colloidal crystals
are usually made of crystalline, glass or polymer particles of different shapes. Colloidal
crystals have found application as photonic band gap materials (photonic crystals) [3].
They are also a perspective modelling system for studying of self-assembly.

Figure 1: SEM image of a colloidal crystal film [3].

While ordinary crystals consist of atoms, ions or molecules, that all have the same size,
it is impossible to fabricate the monodisperse colloidal particles. Even the small poly-
dispersity results in appearing of different defects of colloidal crystal structure [4].

The aim of this project is to build two- and three-dimensional models of colloidal crystal
and to study the influence of polydispersity on the structure of a colloidal crystal and
how the defects of the structure reveal themselves in X-ray diffraction pattern.

2 X-Ray diffraction theory

One of the common methods to investigate the structure of materials is X-ray diffraction.
Let us consider a diffraction of a plane wave from an isolated particle. Kinematical
diffraction theory predicts the following amplitude of the diffracted wave

A(Q) =

∫
ρ(r)ei(Q·r)dr. (1)

Here ρ(r) is electron density. The integral F(Q) =
∫
ρ(r)ei(Q·r)dr

V
is called the form factor.

It depends on electron density of a particle and describes the amplitude of a scatter-
ing wave at momentum transfer Q. Sometimes these integrals can’t be evaluated an-
alytically and require numerical methods. In our approximation colloidal particles are
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spheres with radii Rn normally distributed, so the form factor can be easily calculated as

Fn(Q) =
1

Vn

y

Vn

ei(Q·r)dr =
1

Vn

Rn∫
0

2π∫
0

π∫
0

eiQr cos θr2 sin θdθdϕdr =
1

Vn

Rn∫
0

4π
sin(Qr)

Qr
r2dr

= 3

[
sin(QRn)−QRn cos(QRn)

Q3R3
n

]
.

(2)

Now let us consider N particles of different radius situated at positions rk. If the
particles are small enough, we can assume that each particle is illuminated by a plane
wave. Hovewer this can be not true on a larger scale of interparticle distances. Because
of that one has to introduce a beam profile function B(r), that takes inhomogenuity of
incident beam into account. In this work we used Gaussian beam profile

B(r) = A exp

(
−

[
(x− x0)2

2σ2
x

+
(y − y0)2

2σ2
y

])
. (3)

Here the coefficient A is an amplitude of incoming beam; x0, y0 are the coordinates of its
center; σx, σy correspond to the size of the beam in two perpendicular directions. In our
approximation we used round beam( A = 1, σx = σy = σ), so Eq. 3 can be simplified

B(r) = exp

(
−

[
(x− x0)2 + (y − y0)2

2σ2

])
. (4)

We took beam with 25µm half width at half maximum (HWHM). As long as particle
mean radius equals to 0, 4µm, HWHM of the Gaussian profile is approximately 36 par-
ticle diameters. Summing up the contributions from all particles one finally gets the
following equation for the amplitude of the diffracted wave

A(Q) =
N∑
k=1

B(rk)Fk(Q)ei(Q·rk). (5)

Later we will be interested in cross section Qz = 0 of reciprocal space. This corresponds
to the diffraction pattern in the approximation of flat Ewald sphere

A(Q) =
N∑
k=1

B(rk)Fk(Q)ei(Qxxk+Qyyk). (6)

All modern detectors can only measure X-ray wave intensity, not amplitude. The inten-
sity of the diffracted wave can be easily found as a modulus squared of intensity

I(Q) = |A(Q)|2. (7)
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3 Monte Carlo method

Monte Carlo (MC) methods are widely used in order to simulate the real structure of the
colloidal crystals. In these methods random processes are used to put the system into
equilibrium state, starting from any initial state. Here we developed our own algorithm
of colloidal crystal construction, that is based on work of Allard [4], but differs from it.
Instead of giving random distribution for particles in space as it is done in [4], we start
from ideal hexagonal lattice.

Algorithm starts with generating ideal hexagonal lattice and positioning colloidal parti-
cles at its nodes. Radii of particles are distributed normally (Gaussian) with mean value
Rmean and dispersion σ (see Fig.2)

N (Rn|Rmean, σ
2) =

1√
2σ2π

exp
(
−
[(Rn −Rmean)2

2σ2

])
. (8)

Essential idea of this computational algorithm is using randomness to solve problems
that may be deterministic in principle. In MC process we made large number of at-
tempts to move one particle in colloidal crystall. In our interpretation, each attempt
consists of five steps:

1. Choosing random particle in crystal and random movement for it.
2. Counting particle energy in the potential field of neighbouring particles before and

after the movement (Ebefore and Eafter).
To calculate interaction between particles, Lennard-Jones potential is used. Most
common expressions of this potentials are

UL−J = 4ε

[(σ
r

)12

−
(σ
r

)6
]

= ε

[(rm
r

)12

− 2
(rm
r

)6
]
, (9)

where ε is the depth of the potential well, σ is the finite distance at which inter-
particle potential equals zero, r is the distance between the particles, rm is the
distance at which the potential reaches its minimum.

3. Calculating energy difference: ∆E = Eafter − Ebefore
4. Calculating Monte Carlo exponent: Mexp = exp

[
− ∆E

T

]
,

where temperature decreases by: T = 1
2

exp
[
− L

106

]
.

Here L is a number of Monte Carlo attempt.
5. As long as Monte Carlo method is based on central limit theorem, we assume MC

exponent as Boltzmann probability of this energy state. There are few possible
cases:

• ∆E < 0 - that means that system has energetically stabilised. It is dictated
by minimal total potential energy principle. In this case the movement is
accepted.
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• ∆E > 0, but Mexp > R, where R is a random number in range [0, 1).
This situation corresponds to more probable state (assuming Boltzmann dis-
tribution). In this case the movement is also accepted.

• ∆E > 0 and Mexp < R, where R is a random number in range [0, 1).
This situation corresponds to less probable state (assuming Boltzmann dis-
tribution). In this case the movoment is declined and the system remains in
its old state.

Finally, after 6 ·106 iteration an optimal colloidal crystal is formed and presented in Fig.
2. With this algorithm we fulfill detailed balance and Boltzmann statistics.

Figure 2: Initial ideal hexagonal lattice (left) and the same lattice after N = 6 · 106

Monte Carlo steps (right).

4 Calculation of X-ray diffraction

Using Eqs. (2,4,6) we calculated the intensity I(Q) of the diffracted wave. The two-
dimensional plot I(Qx, Qy) is shown in Fig.3. As one can see the Bragg peaks exhibiting
sixfold rotational symmery, that appear due to periodicity of the lattice. Bragg peaks
have finite width that is a result of a non-ideal structure of the colloidal crystal. A
strong background scatterring at small values of Q, that also appears due to non-ideal
structure of the lattice.
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Figure 3: Two-dimensional diffraction pattern.

Figure 4: Radial cut of two-dimensional diffraction pattern.

5 Three-dimensional model

In three-dimensional case we assume that lattice is hexagonal close-packed (hcp) (see
Fig.5). The structure corresponds to the highest possible density and it was observed in
real colloidal crystals.
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Figure 5: Three-dimentional lattice consisting of 20× 20× 20 particles with σ = 10%.

6 Results overview

In order to analyze influence of polydispersity on crystal structure diffraction methods
could be used. By estimating Bragg peak width we can conclude about typical size of
domain, formed by colloidal particles. We use Gaussian fit for cross sections of structure
factor S(Q) in the vicinity of the Bragg peak

G(Q) ≈ A exp

(
− (Q−Qn)2

2γ2

)
. (10)

Our aim is to determine the dependance of Bragg peak width (γ) on dispersion of radius
(σ).

6.1 One-dimensional case

In one-dimensional case the structure factor can be evaluated analytically. Let us con-
sider a line of closely packed spheres with radiuses distrubuted normally (see Eq.8).

x1 = 0

xj+1 = xj + rj + rj+1

rj ∝ N (R, σ2)

If we calculate the structure factor, we will get the following equation

S(Q) =

〈
1

N

N∑
j,k

eiq(xj−xk)

〉
=

1− 2e−3q2σ2
+ e−4q2σ2

+ 2e−q
2σ2

cos (2qR)(1− e−q2σ2
)

1− 2e−2q2σ2 cos (2qR) + e−4q2σ2 .

(11)
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Results of our simulation ideally match this theoretical prediction (see Fig.6).

Figure 6: Comparison between theoretical prediction and numerical calculation for struc-
ture factor in one-dimensional case (σ = 10%).

After decomposition of the structure factor function near peak position (in Taylor series)
we can get the following approximation

S(q ≈ qn) =

(σ2q2n
R

)2(
1 + 1

sinhσ2q2n

)(
q − qn

)2
+
(σ2q2n

R

)2 . (12)

Here qn = πn
R

are the positions of the peaks of the structure factor. This function refers

to Lorentzian profile with width γ = σ2q2n
R

. So we can conclude that in one-dimensional
case Bragg peak width is proportional to second power of particle radius dispersion.

6.2 Williamson-Hall plot

In two-dimensional case situation is more complicated. A peak width dependance on
dispersion is more elusive. We need to use numerical methods to determine the depen-
dance. First, to analyse cross sections in radial and azimuthal direction we need only
strusture factor S(Q) which is defined by following equation

S(Q) =

∣∣∣∣∣
N∑
k=1

ei(Q·rk)

∣∣∣∣∣
2

. (13)

We need only the structure factor because if we take into account particle form factor
some peaks of structure factor, corresponding to minima of form factor will disappear.
After Gaussian fitting we can estimate Bragg peak width (γ) and draw Williamson
and Hall plot similar to one used by M. A. Moram and M. E. Vickers [5]. Originally
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Williamson and Hall used that method to analyse mosaic structures. We can also assume,
that due to defects, the domains are formed in colloidal crystals which is similar to
mosaic structure of common crystals. In this case Bragg peaks become wider with order
of reflection because of domain misorientation and mean interparticle distance change
in 2D or 3D space.

6.3 Radial cross section of structure factor

Diffraction maximuma become wider in radial direction because of dispersion of the
interparticle distances. More dispersion of particle radius is, more dispersion of inter-
particle distance is, wider peak gets (see Fig.7).

Figure 7: Origin of diffraction peak broadening in radial direction.

We have calculated radial cross sections of structure factor and measured γ-parameter of
Gaussian fit in order to build dependances of γ on Qr for different dispersions of radius
(σ) (see Fig.8).

Figure 8: Radial cross section of structure factor for different dispersions.
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The radial Bragg peak position is defined by following equation

Qrad =
2π

〈d〉
(14)

Here 〈d〉 is corresponding to mean interparticle distance. It is known that γ = ∆Qrad =
∆Qd

rad+∆QLR
rad [5].After taking derivative of Qrad we can state that γ is a linear function

of Qrad (see Fig.9).

γ = ∆
(2π

d

)
+

2π

LR
=

2π∆d

〈d〉2
+

2π

LR
=

2π

LR
+

∆d

〈d〉
Qrad (15)

Here LR is mean size of colloidal crystal domain in radial direction.

Figure 9: Williamson-Hall plot for radial cross section.

By calculating line slopes and intercections with ordinate axis in Williamson-Hall plot,
we can define ∆d/〈d〉 and 2π/LR respectively (see Fig.10). The σ-dependance of the
slope resembles power law ∂γ

∂σ
∝ σn with n ≈ 3. Clearly this result differs from what we

obtained for 1D-model, for which n = 1. The domain size also increases with σ, which
is counter-intuitive and requires further investigations.
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Figure 10: Slope (left) and mean colloidal crystal domain size (right) dependance on
dispersion of radius (σ).

6.4 Azimuthal cross section of structure factor

Diffraction maxima become wider in azimuthal direction because of disorientation of
colloidal domains. More dispersion of particle radius is, more angular disorientaion is,
wider peak gets (see Fig.11).

Figure 11: Origin of diffraction peak broadening in azimuthal direction.

We have calculated azimuthal cross sections of structure factor and measured γ-parameter
of Gaussian fit in order to build dependances of γ on Qr for different dispersions of radius
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(σ). The azimuthal Bragg peak width is described by following equation

∆Qϕ =
2π

LA
+Qrad · tan (α). (16)

Here LA is mean size of colloidal crystal domain in angular direction and α is mean
angular domain disorientation.

Figure 12: Williamson-Hall plot for angular cross section.

By calculating line slopes and intercections with ordinate axis in Williamson-Hall plot,
we can define tan (α) and 2π/LA respectively (see Fig.13).

Figure 13: Slope (left) and mean colloidal crystal domain size (right) dependance on
dispersion of radius (σ).
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σ-dependance of angular domain disorientation resembles power law for small values of
σ. However, for large values of σ disorientation seems to approach saturation, contrary
to what we observed for radial direction. Again, the size of domain increases with σ,
which requires further investigation.

7 Summary and conclusions

We developed an algorithm that gives one a 2D or 3D colloidal crystal consisted of
polydisperse spheres. This algorithm is based on Monte Carlo approach and it tries to
pack a given set of spheres in a configuration with the highest density. The structure
of obtained colloidal crystalls was studied by analysis of corresponding 2D diffraction
patterns.
The width of the diffraction peaks in radial and azimuthal directions were analysed
in frames of Williamson-Hall approach. It appears, that the variation of interparticle
distances and angular disorientation of crystalline domains increases with dispersion
of particle size. In 1D case we have shown that one should expect linear dependance
between interparticle distances dispersion and size dispersion. Contrary to that, in 2D
case our simulations give one power-law dependance with n ≈ 3. This result was not
explained theoretically, and we doubt if this problem can be solved analitically in 2D
case.
The weak point of our algorithm is time required to construct a colloidal crystal. A
number of MC steps, that one have to execute increases dramatically with number of
particles in crystal. It is particularly crucial in 3D case, where number of particles is
proportional to the third power of crystal size. For this reason simulations for 3D crystals
are still to be done. However, the algorithm can be significantly speeded up by using
so-called event-chain Monte Carlo algorithm, that can be parallelized.
Another question, is the influence of the initial state on final configuration of the crystal.
In ideal case the MC process should bring the system in equilibrium state, which is
independent on initial state. However, this process requires extremely large number of
MC steps, when systems with high density are considered. Probably in case of hard
spheres it is even not possible, since particles can not intersect each other. In this case
the final state depends on initial configuration, independently of number of MC steps.
These problems require further investigation.
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