Arangement of an Optical Spectrometer Setup
at Petra Ill Beamline P23

Max Stober, Technische Universitat Dresden, Germany

September 6, 2016

Abstract

The Petra III is one of the worlds most brilliant sources for x-ray synchrotron
radiation, located at the DESY (Deutsches Elektronen Synchrotron) na-
tional German research center in Hamburg.

Over the course of my work at DESY Summer Student Programme 2016
I have set up, tested and calibrated an optical spectrometer for the soon
opening beamline P23. Using the software development kit (SDK), deliv-
ered by the hardware manufacturer, a programming interface for python,
named andorpy has been created. This will be used for the control of exper-
iments on x-ray induced photoluminescence of nanostructures. Moreover,
the software includes a command interface for the device and management
of the data via the Sardana server system. Interactive macros have been
prepared, suitable for several experimental setups.

As a result, the optical spectrometer can now be routinely used by scientists
without any further programming necessary.

Contents
1 Motivation

2 Experimental Technique
2.1 The Spectrometer Setup
2.2 Calibration

2.3 Cosmic Particle Events

3 Enabling Device Control via Python
3.1 Access to C Libraries
3.2 Andorpy - a new Python Package

3.3 Help and Documentation

4 Enabling Remote Control via Sardana
4.1 The Sardana/Tango Infrastructure
4.2 Sardana Scriptingo
4.3 Sending and Receiving Data

5

Conclusion

References

A Alphabetical List of all Andorpy Functions

B Code for the Sardana Interface

11

11

13

18

1. Motivation

Photo luminescence induced by X-ray synchrotron radiation offers interesting op-
portunities of characterizing electronic properties of new nano materials, and there-
fore revealing information relevant for their potential in future application. As a
relatively young field, this effect is often refered to as XEOL (X-Ray Excited
Optical Luminescence) [4]. The method uses a secondary radiation usually in a
wavelength range 300 nm - 1200 nm, does not interfere with other registration
channels as X-ray scattering, electrophysical, temperature, etc and is also very
good suited for in situ experimental environments.

Due to complex emittance spectra, as well as the relatively low crosssection of
X ray - to - luminescence excitation process, the devices for its detection have to
be very sensitive and specailly designed for this type of measurements.

The aim of this work is to incorporate the specialized equipment necessary for
XEOL experiments into the general beamline control infrastructure of PETRA.

2. Experimental Technique

2.1. The Spectrometer Setup

At the P23 beamline at PETRA, the XEOL measurements will be made by a state
of the art Shamrock 303i Spectrometer, manufactured by Andor. The device uses
blazed gratings in a Litthrow configuration - meaning the diffraction angle and the
incident angle at the grating are identical. The layout is sketched in Figure 2.1.
Three blazed gratings are exchangeable by rotating their holder ("turret”) with a
stepper motor, thus enabling different wavelength intervals.

An iVac 316 CCD from the same manufacturer is attached to the spectrometers
body and both devices are connected to a PC for controlling and data reading.

2.2. Calibration

Transporting the spectrometer, exchanging parts or exposing it to major changes
in temperature will lead to small mechanical displacements of the components,
and therefore to incorrect data.

As a compensation, there are several degrees of freedom for calibrating the spec-
trometer, without opening its hood. An offset value can be set for the detector
and every one of the three gratings, using the spectral lines of a Xe gas discharge

> PC and Network
Server Connection

mirrors
turret with

3 gratings

X-ray
synchrotron
radiation

optical fibre

Figure 1: Sketch of the spectrometer setup working principle, with a possible ap-
plication scenario demonstrated.

lamp as a reference. Fig. 2 demonstrates a small correction of that offset, as it
was necessary after the delivery. The offset is saved in a nonvolatile memory in-
tegrated to the device, so that those offset values will be the same after power off
or connecting to a different PC.

2.3. Cosmic Particle Events

High energy cosmic particles, like muons, can easily pass the building walls and
the detectors case. When they approach the CCD, there is a chance for them to
produce several thousand photoelectrons, and therefore counts which where not
originated from the experiment. Such events can be observed approximately every
10 seconds, and lead to the risk of being mistaken for actual sharp spectral lines
(see Fig. 3).

Data from hasep23dev:10000/p23/andordisplay/dev.01

5000+

4000

3000

counts

2000

1000, I st e g et gt~

420 440 460 480 500 520 540 560
wavelength (nm) [calibration lines [exit]

Data from hasep23dev:10000/p23/andordisplay/dev.01

5000

4000

3000

counts

2000

1000 z\..wjbr_z\-u\w‘ N st sttt msop s s oty
0 . s ‘ ‘ ‘
420 440 460 480 500 520 540 560
wavelength (nm) [calibration lines | [exit |

Figure 2: Spectrum of the test lamp with a slightly incorrect calibration and with
a grating-offset correction (lower frame).

Those events are always limited to 1-4 pixels, and can be removed by compar-
ing two scans and replacing the pixels with weighted data from the previous scan,
if such an event is registered. The Spectrometer has a build in function for that,
which was made accessible in Python via andorpy.ccd.SetFilter().

3. Enabling Device Control via Python

Due to the expanding popularity of python for scientific purpose, one would like
to have a unified software environment for laboratory devices. In this case the
aim is to collect data and control settings of the spectrometer and its CCD in a
simple and well documented way. The python package created to do so was named
andorpy.

Data from hasep23dev:10000/p23/andordisplay/dev.01

5000
4000+
w
T 3000
2
o
5
2000
. e
1000 g
0 . .
420 440 460 480 500 520 540 560
wavelength (nm) [calibration lines | [exit |
Data from hasep23dev:10000/p23/andordisplay/dev.01
5000
4000
2
< 3000
o
5
2000
st
1000
0 . .
420 440 460 480 500 520 540 560
wavelength (nm) [calibration [ines | [exit |

Figure 3: Spectrum featuring a cosmic particle event and without cosmic particle
event (lower frame). Activating cosmic particle filtering does not discard
whole datasets; the function only replaces a small number of pixels.

3.1. Access to C Libraries

Andor, the manufacturer of CCD cameras, Spectrometer, Microscopes and other
devices offers a SDK package for all of their devices. This package consists of two
parts, one for CCD, cameras and microscopes, the other for their spectrometers.
All of the functions in those packages are written in C++.

The andorpy functions access those two libraries via ctypes. The following mini-
mal example shows how to perform that in case of the CCD library:

load ctypes functions:
import ctypes.util
import ctypes

locate the library files:

ccd_-1lib = ctypes.CDLL(ctypes.util.find_library ("andor"))

Initialize the device:
error = ccd_lib.Initialize ()

Get Temperature of the ccd sensor:
T = ctypes.c_int (0)

error = ccd_lib.GetTemperature (ctypes.pointer (T))

print "Temperature: " + str(int(T.value))

Every variable passed to the Andor SDK library has to be defined as a ctype
object of the appropriate type - in this case ctypes.c_int for an integer. It is
important, not to forget the backwards conversion into normal python data types
via your_c_variable.value, as it was done in the last line of the small example.

3.2. Andorpy - a new Python Package

Of course, repeating the steps described in the previous section every single time
a function of the Andor SDK is needed would be not very practical. Using the
andorpy package, which was created over the course of the Desy Summer Student
Programme, the same thing can be done more easily:

import andorpy
T = andorpy.ccd.GetTemperature ()

print "Temperature: " + str(T[1l]))

Now there is no need to take care of the conversion between ctypes objects and
usual Python variables anymore. Return values of an andorpy function are always
tuples, with an error or status message at the index [0] and data stored at the
other indices.

The package can be obtained via download from the beamline group network
space. In its main directory andorpy_main the installation routine can be started
by entering

>>> python setup.py install --user

, where the --user flag can be left out if the package shall be available for all
computer users (admin rights are required then).

3.3. Help and Documentation

A full sized manual for andorpy has been created over the course of the software
development [3]. However, research has shown, that the probability of such a
document to be read is close to zero [6]. If andorpy is already installed one can
access help for each function via andorpy.function?. A quick way to do this is
via ipython.

Example: Getting help on the SetAcquisitionMode function:

>>> import andorpy
>>> andorpy.ccd.SetAcquisitionMode?

This will print a text regarding the usage of the function and its purpose. Also all
possible parameters and return values are described briefly as in the SDK users
guide.

4. Enabling Remote Control via Sardana

While performing experiments with synchrotron radiation it is usually not allowed
to stay in the same room as the measurement devices, for safety reasons. Con-
trolling the spectrometer setup and receiving its data via a computer network is
therefore required.

4.1. The Sardana/Tango Infrastructure

Sardana is an environment for control applications, especially in large installations,
based on the Tango controls system. There where two main features used:

1. Sardana Macros for controlling device parameters, calibration and exper-
imental settings.

2. Tango Device Server for sending, saving and receiving data produced by
the devices

Figure 4 shows a basic outline of the whole system.

4.2. Sardana Scripting

Sardana Macros are written in plain python, with some restrictions that need to
be considered. For instance there is no local reading or writing of files possible

sets and

via Spock Sardana Macros checks settings
on macroserver \

User PC Experimental Setup PC
v% Tango Server fﬁck
I:I python data flow
application + status
Iil/
The User The Spectrometer

Figure 4: Overview of the infrastructure, as used for the remote control and data
acquisition with the andor spectrometer setup.

(use write to Tango server instead) and the print command is disabled (use self.
output instead). A collection of 5 Macros was prepared, to be able to handle most
situations of data acquisition:

e andor_init initializes the spectrometer and detector, sets all parameters to
the default value (except calibration parameters).

e andor_settings opens a menu that allows you to show and change the most
common settings of the devices.

e andor_measure starts the masurement and safes all the data on a Sardana
server. Tose data then can be viewed from all beamline PCs

e andor_shutdown closes the system. If the applications are closed without
calling that function a segmentation fault will be caused, that often leaves
the devices not responding (power off reset may be nessecarry)

e andor_status prints status messages from CCD and spectrometer.

All of those macros are contained in the file andor_macros.py, which is listed in
the appendix B. This, of course, can and should be used as a help to create macros
for more specific functions in the future.

4.3. Sending and Receiving Data

A Tango device server has been setup specifically for the spectrometer. It offers 3
ways of datastream:

e AndorData sends arrays of integer values - these are used to store the counts
for each pixel of the CCD

e AndorDataCalibration sends an array of float values - these are used to
store the wavelength for each pixel (equal to the x-axis of the plots like in
Figure 2).

e InfoString sends a string of textdata. It can in principle be used to store
any kind of information, like settings or status. it is used this way in the
example code of appendix B.

Writing data to the server is performed in the following way:

import PyTango

andor_display = PyTango.DeviceProxy ("hasep23dev:10000/p23/
andordisplay/dev.01")

data = andorpy.ccd.GetAcquiredData ()

andor_display.AndorData = datal[l]

Those data now can be accessed by a python script running on any beamline PC,
simply via:

andor_display = PyTango.DeviceProxy ("hasep23dev:10000/p23/
andordisplay/dev.01")
data = andor_display.AndorData

Using these functions, a simple tool for viewing data and saving them was created:
Andor Display . Figure 2 and 3 are actually screenshots of that tool. Morover,
the script saves all the data in textfiles, hdf5 files and also as a row of screenshots
in a pdf file.

10

5. Conclusion

The startup and test procedures taken on the new optical spectrometer setup have
been a success. Comparison of obtained data from a xenon gas discharge lamp
with spectra from literature has proven that all parts work together well, even
though some minor recalibration after transport has been necessary.

As the main part of my work within the DESY Summer Student Program, an
easy to use interface of the devices functions for Python was created. In prepara-
tion of future experimental practice, this enables the development of automated
measurement routines and data aquisition to be much faster than by using C and
much more flexible than by using the manufacturers GUI software, which comes
without any source files. Moreover, remote controlling the apparatus and gath-
ering data via a server was enabled by using Sardana Macros and Tango Server.
This enables the devices to be used without any further programming at all.

Therefore the collection of computer programs and their documentation should
be seen as the overall outcome of that experimental work, more than the rather
small amount of data created.

Acknowledgement

I would like to thank all my dear colleagues, who where never hesitating to answer
questions and in an indispensable manner helped me finding errors and correcting
mistakes. I have learned a lot in those weeks, and it is thanks to you.

Moreover, the DESY Summer Student organizers shall not be forgotten to be
mentioned, together with all the highly motivated lecturers - Enabling me to have
a great and inspiring time here in Hamburg.

References

[1] Andorpy - How it works and how it’s integrated into Sardana Macros (software
documentation) Max Stéber

[2] Shamrock Spectrometer at Petra III Beamline 23 Quick Start Guide (short
documentation) Maz Stéber

[3] andorpy (python software package) and utils Maz Stober

[4] A time resolved microfocus facility at the Diamond Light Source J F' W Mos-
selmans et. al.

11

[5] Andor SDK User’s Guide andor.com

[6] Why Don’t People Read the Manual? David G. Nowick, Karen Ward
- Unwersity of Texas at FEl Paso, Department of Computer Science

http: //digitalcommons. utep. edu/cgi/viewcontent. cgi?article=
10106 context=cs_papers

12

A. Alphabetical List of all Andorpy Functions

The names of these functions have not been changed, even though some of them
are quite long. The reason for this is to avoid confusion when reading the andor

SDK users guide or official examples written in C.

Note:

1. One example of usage for each function is contained in the testsuite test_
all_functions.py.

2. The function descriptions in this table are based on and in parts equal to
those in the SDK manual [5]

Function

Description

Input

Output

| Tested |

Note

AbortAcquisition
(ced)

This function aborts the cur-
rent acquisition if one is active.

none

none

OK

This is especially use-
ful, if acquisition mode
5 (run until abort)
is active. see also:
ccd.Set AcquisitionMode

CoolerOn (ccd)

Switches on the cooling. On
some systems the rate of tem-
perature change is controlled
until the temperature is within
3°C of the set value. Control
is returned immediately to the
calling application.

none

none

OK

see also: Initialize, Set-
Temperature, GetTemper-
ature

CoolerOff (ccd)

Switches off the cooling. The
rate of temperature change is
controlled in some models until
the temperature reaches 0°C.
Control is returned immedi-
ately to the calling application.

none

none

OK

see also:
CoolerOn

Initialize,

FreelnternalMemory
(ced)

This function will deallocate
any memory used internally to
store the previously acquired
data. Note that once this func-
tion has been called, data from
last acquisition cannot be re-
trived.

none

none

OK

GetAcquiredData
(ced)

This function will return the
data from the last acquisi-
tion. The data are returned as
long integers (32-bit signed in-
tegers).

Int:
length

length*int
array:
counts

OK

13

GetAcquisitionTimings || This function will return the | none Float: OK exposure = valid exposure
(ced) current ”valid” acquisition exposure time in seconds; accumu-
timing information. This func- Float: ac- late = valid accumulate cy-
tion should be used after all cumulate cle time in seconds; ki-
the acquisitions settings have Float: netic= valid kinetic cycle
been set, e.g. SetExposure- kinetic time in seconds
Time, SetKineticCycleTime
and SetReadMode etc. The
values returned are the actual
times wused in subsequent
acquisitions. This function is
required as it is possible to set
the exposure time to 20ms,
accumulate cycle time to 30ms
and then set the readout mode
to full image. As it can take
250ms to read out an image it
is not possible to have a cycle
time of 30ms.

GetDetector (ccd) This function returns the size | none Int: xpix- | OK The horizontal number of
of the detector in pixels. The els Int: pixels is important for
horizontal axis is taken to be ypixels the Spectrometer calibra-
the axis parallel to the readout tion (see example test_
register. all_functions.py

GetFilterMode (ccd) This function returns the cur- | none Int: sta- | OK —
rent state of the cosmic ray fil- tus 0 =
tering mode. OFF 2 =

ON

GetPixelSize (ccd) This function returns the di- | none Float: OK The return value xSize is
mension of the pixels in the de- xSize: important for the spec-
tector in microns. width trometers calibration.

of pixel See also: spectrometer.
Float: ShamrockSetPixelWidth,

ySize: ShamrockGetCalibration

height of

pixel

GetStatus (ced) This function will return the | none String: OK Read the SDK user’s
current status of the Andor error guide or the use
SDK system. This function help(ccd.GetStatus)
should be called before an ac- to view the list of pos-
quisition is started to ensure sible errors and a short
that it is IDLE and during an description.
acquisition to monitor the pro-
cess. mode.

GetStatus (ccd) This function will return the | none String: OK Read the SDK user’s
current status of the Andor error guide or the use
SDK system. This function help(ccd.GetStatus)
should be called before an ac- to view the list of pos-
quisition is started to ensure sible errors and a short
that it is IDLE and during an description.
acquisition to monitor the pro-
cess. mode.

GetTemperature (ccd) This function returns the tem- | none Int: T OK GetTemperatureF may re-

perature of the detector to the
nearest degree. It also gives
the status of cooling process.

turn a more accurate value,
because it uses float in-
stead of int

14

Initialize (ccd) This function will initialize the | none none OK No need to call this func-

Andor SDK System. As part of tion, if ShamrocklInitialize
the initialization procedure on has already been called.
some cameras (i.e. Classic, iS- Only use one to decrease
tar and earlier iXion) the DLL startup time by several sec-
will need access to a DETEC- onds!
TOR.INI which contains infor-
mation relating to the detec-
tor head, number pixels, read-
out speeds etc. If your system
has multiple cameras then see
the section Controlling multi-
ple cameras (Andor SDK users
guide)

SetAccumulationCy- This function will set the ac- | Float: none OK Please refer to andor SDK

cleTime (ccd) cumulation cycle time to the | time user’s guide SECTION 5
nearest valid value not less | (seconds) - ACQUISITION MODES
than the given value. The ac- for further information.
tual cycle time used is obtained
by GetAcquisitionTimings.

SetAcquisitionMode This function will set the ac- | Int: none OK In Mode 5 only, the camera

(ced) quisition mode to be used on | mode continually acquires data
the next StartAcquisition. Ac- until the AbortAcquisition
quisition modes to select: 1 = function is called. By using
Single Scan, 2 = Accumulate, 3 the ccd.SetDriverEvent
= Kinetics, 4 = Fast Kinetics, function you will be noti-
5 = Run till abort. fied as each acquisition is

completed.

SetExposureTime This function will set the ex- | Float: none OK Please refer to andor SDK

(ced) posure time to the nearest | time user’s guide SECTION 5
valid value not less than the | (seconds) - ACQUISITION MODES
given value. The actual expo- for further information.
sure time used is obtained by
GetAcquisitionTimings.

SetFanMode (ccd) Allows the user to control the | Int: none OK Possible reason to use this:
mode of the camera fan. If | mode 0 avoiding vibration caused
the system is cooled, the fan | = fan by fan. USE WITH CAU-
should only be turned off for | full, 1 = TION!
short periods of time. Dur- | fan low,
ing this time the body of the | 2 = fan
camera will warm up which | off

could compromise cooling ca-
pabilities. If the camera body
reaches too high a tempera-
ture, depends on camera, the
buzzer will sound. If this
happens, turn off the exter-
nal power supply and allow the
system to stabilize before con-
tinuing.

15

SetFilterMode (ccd) This function will set the state | Int: none OK Cosmic particle events can
of the cosmic ray filter mode | mode 0 lead to extremely high
for future acquisitions. If the | = off, 2 counts and therefore are
filter mode is on, consecutive | = on not erased by choosing
scans in an accumulation will high exposure time. It
be compared and any cosmic is highly recommended us-
ray-like features that are only ing this function for ev-
present in one scan will be re- ery acquisition. CAU-
placed with a scaled version of TION: does not work in
the corresponding pixel value single scan mode (see ccd.
in the correct scan. SetAcquisitionMode) and

if the number of accumula-
tions is set less than 2

SetNumberAccumula- This function will set the num- | Int: none OK It is recommended to set

tions (ced) ber of scans accumulated in | number this at least to 2, in order
memory. This will only take | of scans to enable the cosmic parti-
effect if the acquisition mode cle filter to work. See also:
is either Accumulate or Kinetic SetFilterMode
Series. Parameters int number:
number of scans to accumulate.

SetReadMode(ccd) This function will set the read- | Int: none see Read SDK user’s guide for
out mode to be used on the | mode foot- information on how those
subsequent acquisitions. Read- note! modes operate.
out modes: 0 = Full Vertical
Binning, 1 = Multi-Track, 2
= Random-Track, 3 = Single-

Track, 4 = Image.

SetTemperature (ccd) This function will set the de- | Int: T none OK Don’t forget CoolerOn!
sired temperature of the detec-
tor. To turn the cooling ON
and OFF use the CoolerON
and CoolerOFF function re-
spectively.

ShamrockAtZeroOrder || Finds if wavelength is at zero | Int: de- | Int: 0 = | OK —

(spectrometer) order. vice at zero

order, 1
= not at
zero order

ShamrockClose (spec- Closes the Shamrock system | none none OK IMPORTANT: If you do

trometer) down. That includes spec- not call this function before
trometer and camera. your python code is termi-

nated, it may cause a seg-
mentation fault. After that
in some cases the hard-
ware has to be restarted by
poweroff.

ShamrockEepromGet- returns the Focal Length, An- | none Float: fl | OK —

OpticalParams (spec- gular Deviation and Focal Tilt Float: ad

trometer) from the Shamrock device. Float: ft

ShamrockGetAutoSlit- || Returns the specified slit | Int: de- | Float: OK —

Width (spectrometer) width. Which slit is asked can | vice Int: | width
be specified by slit_index: 1 = | slit_index

input slit side 2 = input slit
direct 3 = output slit side 4 =
output slit direct

INot all readout modes have been tested yet in respect to andorpy.ccd.GetAcquiredData,
since Full Vertical Binning is usually the appropriate choice.

16

ShamrockGetCalibra-~ Obtains the wavelength cali- | Int: Float OK ShamrockSetNumber-
tion (spectrometer) bration of each pixel of at- | num_px? Array: Pixels and
tached sensor. Int: wave- ShamrockSetPixelWidth
device length must have been called with
(nm) the correct parameters.
Otherwise this function
will return only zeros.
ShamrockGetCCD- Gets the upper and lower | Int: de- | Float: OK —
Limits (spectrometer) accessible wavelength through | vice Int: | low Float:
the port. That is not equal | port high
to the maximum and mini-
mum wavelength of the spec-
trum! To get this wuse
ShamrockGetCalibration.
ShamrockGetGrating Returns the current grating. Int: de- | Int: grat- | OK —
(spectrometer) vice ing
ShamrockGetGrating- Returns the grating informa- | Int: de- | Float: in- lines = grating lines per
Info (spectrometer) tion. vice int: | lines com- mm blaze = grating blaze
grating String: plete? | wavelength (nm) home =
Blaze Int: grating home (steps) offset
home Int: = grating offset (steps)
offset
ShamrockGetPixel- Gets the current value of the | Int: de- | Float: soon! —
Width (spectrometer) pixel width in microns of the | vice width
attached sensor. (micro-
meter)
ShamrockGetShutter Returns the current device | Int: de- | Int: mode | OK —
(spectrometer) shutter mode. Available | vice
modes: 1 = open, 0 = closed,
-1 = shutter not set
ShamrockGetWave- Returns the current wave- | Int: de- | Float: OK —
length (spectrometer) length. vice wave-
length
ShamrockGet Wave- Returns the Grating wave- | Int: de- | Float: OK Those are not the limits of
lengthLimits (spec- length limits. vice Int: | low Float: the spectrum!
trometer) grating high
ShamrockGotoZero- Sets wavelength to zero order. Int: de- | none OK —
Order (spectrometer) vice
ShamrockInitialize Initializes the Shamrock | none none OK Can take up to about
(spectrometer) driver. Makes ccd.Initialize 20 seconds. Check ccd.
redundant. GetStatus after that?, be-
cause in some cases the
CCDs initialization fails
even though SUCESS is re-
turned.
ShamrockSet AutoSlit- Sets the width of the specified | Int: none OK Setting the slit width to 0.0
Width (spectrometer) slit. device will not result in a perfectly
Int: slit dark sensor.
Float:
width
(microm-
eter)
ShamrockSetGrating Sets the required grating. Int: de- | none OK ShamrockGetCalibration
(spectrometer) vice Int: has to be called again after
grating changing the grating!

2Number of pixels of the attached sensor.
3The blaze returns only ”SUCCESS” and no value.
4should return DRV_IDLE

17

ShamrockSetNumber- Sets the number of pixels of the | Int: de- | none OK ShamrockGetCalibration
Pixels (spectrometer) attached sensor. vice Int: will return only zeros, if
pixels this functions call has been
forgotten.
ShamrockSetPixel- Sets the pixel width in microns | Int: none OK The correct value for that
Width (spectrometer) of the attached sensor. Impor- | device width can be obtained
tant for calibration Float: by calling andorpy.ccd.
width GetPixelSize
ShamrockSetShutter Sets the device shutter mode. Int: de- | none OK Only works with Shamrock
(spectrometer) vice Int: 303 series.
mode
ShamrockSet Wave- Set the required wavelength. Int: none OK This sets the wavelength,
length (spectrometer) device that is then the centre
Float: wl of the spectrum. Mini-
mum and maximum wave-
length can be obtained by
ShamrockGetCalibration
ShutDown (ccd) This function will close the An- | none none OK This is not nessecarry, if

dor MCD system down.

ShamrockClose has already
been called.

B. Code for the Sardana Interface

nmmn

Macros to set up and perform measurements using Andor CCD and

Shamrock spectrometer.

IMPORTANT FOR TESTING/CHANGING MACROS:
to restart macroserver:
to reload macros:

[$relmac andor_init]

andor_macros.py] for

a whole file

wnw

from __future__ import print_function

__,all__ = ["andor_init™",

andor_measure", "andor_status"]

__docformat__ =

"restructuredtext’

"andor_shutdown",

[$SardanaRestartMacroserver.py —x]

for one macro or

from sardana.macroserver.macro import Type,

, 1Macro
import PyTango
import json
import andorpy
import time
import os

def send_info (out_server) :
T = andorpy.ccd.GetTemperature ()

18

Macro,

"andor_settings",

macro,

relmaclib

ParamRepeat

n

g = andorpy.spectrometer.ShamrockGetGrating (0)

settings = json.dumps ({"ccd.-temp":T[1],
"grating":g[1l]1})

out_server.InfoString = settings

def set_defaults(cl):
mmnn
This function sets all the settings of spectrometer and ccd
back to default.
mnmnn
andorpy.spectrometer.ShamrockSetAutoSlitWidth(0,1,10.0)
andorpy.ccd.SetTemperature (—80)
andorpy.ccd.CoolerOn ()
andorpy.ccd.SetFanMode (0)
andorpy.ccd.SetReadMode (0)
andorpy.ccd.SetAcquisitionMode (2)
andorpy.ccd.SetNumberAccumulations (2)
andorpy.ccd.SetAccumulationCycleTime (0.7)
andorpy.spectrometer.ShamrockSetShutter (0, 1)
andorpy.spectrometer.ShamrockSetGrating (0, 2)
andorpy.spectrometer.ShamrockSetWavelength (0, 485.0)
andorpy.ccd.SetExposureTime (1.)
andorpy.ccd.SetFilterMode (2)

global endless
endless = 0

global triggermode
triggermode = 0

andorpy.ccd.SetTriggerMode (triggermode)

gather information for spectrometer calibration:

num_pixels = andorpy.ccd.GetDetector() # width of the detector (
number of pixels)

px.dim = andorpy.ccd.GetPixelSize () # width of a pixel (
micrometers)

hand over those data for spectrometer calibration:

tmpl = andorpy.spectrometer.ShamrockSetPixelWidth (0, px_dim[1])

tmpl = andorpy.spectrometer.ShamrockSetNumberPixels (0, num_pixels
[(11)

cl.output ("all settings set to defualt")

class andor_init (Macro) :

mnmn

19

andor_init Macro:
— Starts CCD and spectrometer
— checks if CCD and spectrometer are in idle
—> pushes error (please power off — restart) if this is
not the case
— starts cooler, sets temperature to —80 and fan to maximum

def run(self):
self.output ("— starting ccd and spectrometer")
spec_status = andorpy.spectrometer.ShamrockInitialize ()

ccd.status = andorpy.ccd.GetStatus ()

check, if both devices are responding:

if (spec.status[0] == "SUCCESS" and ccd_status[l] == "code
20073 DRV_IDLE") :
self.output ("— decices started. setting all parameters

to default ")
set_defaults(self)
self.output ("ready")

else:
time.sleep (3) # wait, then check again if
responding
ccd_status = andorpy.ccd.GetStatus ()
spec_status = andorpy.spectrometer.ShamrockGetGrating ()
if (spec_-status[0] == "SUCCESS" and ccd.status[l] == "
code 20073 DRV_IDLE") :
tmpl = andorpy.ccd.SetTemperature (—80)
tmpl = andorpy.ccd.CoolerOn ()
tmpl = andorpy.ccd.SetFanMode (0) # ... maximum
cooling
self.output ("ready")
else:
self.output ("initialisation fault — check connections
and restart devices")
self.output ("spectrometer responding: " + spec_status
[01)
self.output ("ccd status: " + ccd_status([1l])

class andor_shutdown (Macro) :

def run(self):
self.output ("— shutting down the ccd and spectrometer")
andorpy.ccd.AbortAcquisition ()
andorpy.spectrometer.ShamrockClose ()
self.output ("sucess")

20

class andor_settings (iMacro) :
nmmon
andor_settings Macro:
— prints out all status data from spectrometer and ccd
— gives interactive menu to chance settings (exposure
time, grating, slit width ...)

interactive = True
def run(self):

ask for current status:
ccd_status = andorpy.ccd.GetStatus ()
grating = andorpy.spectrometer.ShamrockGetGrating ()

global endless
global triggermode

if not (grating[0] == "SUCCESS" and ccd._status[0] == "code
20002 DRV_SUCCESS"):
self.output ("error: Spectrometer and/or CCD not
initialized or malfunctioning.")
self.output (" —> Run andor_init ")

self.output (" —> Poweroff+check+restart hardware,

if andor_init also fails.")

elif (ccd_status[l] == "code 20073 DRV_IDLE") :

slit = andorpy.spectrometer.ShamrockGetAutoSlitWidth (0, 1)

shutter = andorpy.spectrometer.ShamrockGetShutter ()

wl = andorpy.spectrometer.ShamrockGetWavelength (0)
T = andorpy.ccd.GetTemperature ()
timings = andorpy.ccd.GetAcquisitionTimings ()

fm = andorpy.ccd.GetFilterMode ()

os_d = andorpy.spectrometer.ShamrockGetDetectorOffset (0)

os_gl = andorpy.spectrometer.ShamrockGetGratingOffset

(0,1)

0s_g2 = andorpy.spectrometer.ShamrockGetGratingOffset
(0,2)

0s-g3 = andorpy.spectrometer.ShamrockGetGratingOffset
(0,3)

num_pixels = andorpy.ccd.GetDetector () # width of the
detector (number of pixels)

tmpl = andorpy.spectrometer.ShamrockGetCalibration (0,

num_pixels[1])
calib = tmpl[1]

self.output ("")

21

self.output ("########## CURRENT SETTINGS ##########")

self.output

" ")

(
(

self.output ("MEASUREMENT: ")

self.output (" (a) Spectrometer grating selected: " + str(
grating[l]) + " (present: 1,2,3)")

self.output (" (b) Spectrometer slit width: " + str(slit
[1]1) + " micrometer")

self.output (" (c) Spectrometer shutter status: " + str(
shutter[1]) + " (0O=closed, l=open)")

self.output (" (d) Spectrometer central wavelength: " + str
(wl[1]) + "nm")

self.output (" —> min = " + str(calib[0])+"nm, max = "
+ str(calib[len(calib)—1])+ " nm")

self.output (" (e) CCD temperature: " + str(T[1l]) + "C,
status = " + str(TI[0]))

self.output (" (f) CCD exposure time: " + str(timings[l]) +
"S")

self.output (" (g) CCD cosmic particle filter: " + str(fm
[1]) + " (0=o0ff, 2=on)")

self.output (" (h) Endless measurement enabled: " + str(
endless)+ " (0=o0ff, 1l=on)")

self.output (" (i) Trigger mode: " + str(endless)+ " (0=

internal, l=external)")
self.output

" ")

self.output ("CALIBRATION:")

self.output (" (j) Detector offset: " +str(os_d[1l]))
self.output (" (k) Offset grating 1l: " + str(os_gl[l]))
self.output (" (1) Offset grating 2: " + str(os_g2[1l]))
self.output (m) Offset grating 3: " + str(os_g3[1l]))

self.output
self.output
self.output
self.output

)
y) Set everything back to default")
z) Quit")

)

choice = self.input ("Enter letter of setting to change:")
if not (choice == "y" or choice == "z"):
value = self.input ("Enter new value:")
if choice == "a":
tmpl = andorpy.spectrometer.ShamrockSetGrating (0, int (
value))
self.output (tmpl[0])
elif choice == "b":

tmpl = andorpy.spectrometer.ShamrockSetAutoSlitWidth
(0,1, float (value))
self.output (tmpl[0])

elif choice == "c":
tmpl = andorpy.spectrometer.ShamrockSetShutter (0, int (
value))

22

self.output (tmpl[0])
elif choice == "d":
tmpl = andorpy.spectrometer.ShamrockSetWavelength (0,
float (value))
self.output (tmpl[0])
elif choice == "e":
tmpl = andorpy.ccd.SetTemperature (int (value))
self.output (tmpl[0])
elif choice == "f":
tmpl = andorpy.ccd.SetExposureTime (float (value))
self.output (tmpl[0])
elif choice == "g":
tmpl = andorpy.ccd.SetFilterMode (int (value))
self.output (tmpl[0])
elif choice == "h":
val = int (value)
if val ==
endless = val
self.output ("endless mesurement disabled")
elif val ==
endless = val
self.output ("endless measurement enabled")

else:
self.output ("invalid choice")
elif choice == "i":
val = int (value)
if val ==
triggermode = val

andorpy.ccd.SetTriggerMode (triggermode)
self.output ("internal trigger enabled")
elif val ==
triggermode = val
self.output ("external trigger enabled")
andorpy.ccd.SetTriggerMode (triggermode)
else:
self.output ("invalid choice")
elif choice == "j":
tmpl = andorpy.spectrometer.ShamrockSetDetectorOffset
(0, int (value))
self.output (tmpl[0])
elif choice == "k":
tmpl = andorpy.spectrometer.ShamrockSetGratingOffset
(0,1, int (value))
self.output (tmpl[0])
elif choice == "1":
tmpl = andorpy.spectrometer.ShamrockSetGratingOffset
(0,2,int (value))
self.output (tmpl[0])
elif choice == "m":

23

tmpl = andorpy.spectrometer.ShamrockSetGratingOffset
(0,3,int (value))
self.output (tmpl[0])
elif choice == "y":
set_defaults (self)
elif choice == "z":
self.output (" ")
else:
self.putput ("invalid choice")

else:
self.output ("error: CCD is busy. Probably some
measurement is still running.")

class andor_measure (Macro) :

mmn

andor_measure Macro:
— starts measurement
— loads data from device to PC
— !'l'l stores data as htf5 format file
— sends data to Tango server
— 'l clears device memory after data are saved
— prints out path of data files in console

def run(self):

global endless
global triggermode

andor_display = PyTango.DeviceProxy ("hasep23dev:10000/p23/
andordisplay/dev.01l")

ask for status of devices:

grating = andorpy.spectrometer.ShamrockGetGrating (0)
ccd_status = andorpy.ccd.GetStatus ()

detector = andorpy.ccd.GetDetector ()

width = detector[1] # this is the number of pixels

if not (grating[0] == "SUCCESS" and ccd.status[0] == "code
20002 DRV_SUCCESS"):
self.output ("error: Spectrometer and/or CCD not
initialized or malfunctioning.")
self.output (" —> Run andor_init ")
self.output (" —> Poweroff+check+restart hardware,
if andor_init also fails.")

elif (ccd_status[l] == "code 20073 DRV_IDLE") :

load the array for every wavelength axis tick (nm):

24

tmpl = andorpy.spectrometer.ShamrockGetCalibration (0,

width)
calib = tmpl[1]
calib = calib[::—1] # reverse the axis calibration

—> otherwise spectrum is shown mirrored to
middle wavelength

tmpl = andorpy.ccd.GetAcquisitionTimings ()
t_abs = tmpl[2]

if endless ==

self.output ("— starting measurement. This one will
take " + str(t_abs) + "s")
if triggermode == 1: self.output ("— waiting for

external trigger ")

now start measuring:
andorpy.ccd.StartAcquisition ()
status = andorpy.ccd.GetStatus ()

while (status[l].startswith(’code 20072")):
status = andorpy.ccd.GetStatus () #this loops
until acquisition is over

get data from device and load them to sardana:
tmpl = andorpy.ccd.GetAcquiredData (width)

data = tmpl[1]

andor_display.AndorData = data
andor_display.AndorDataCalib = calib

send_info (andor_display)

self.output ("Success.")

self.output ("Data stored to Sardana server hasep23dev
:10000/p23/andordisplay/dev.01")

andorpy.ccd.FreeInternalMemory ()

else:
self.output ("— starting endless measurements. Each
one will take " + str(t_abs) + "s")
self.output ("NOTE: Ctrl + C to stop measurement!")

if triggermode == 1: self.output ("— waiting for
external trigger ")

while True:
now start measuring:
andorpy.ccd.StartAcquisition ()
status = andorpy.ccd.GetStatus ()

25

while (status[l].startswith(’code 200727)):
status = andorpy.ccd.GetStatus () #this
loops until acquisition is over

get data from device and load them to sardana:

data = andorpy.ccd.GetAcquiredData (width)

andor_display.AndorData = datall]

andor_display.AndorDataCalib = calib

send_info (andor_display)

andorpy.ccd.FreelInternalMemory ()

self.checkPoint () # for not confusing the
MacroServer by Ctrl+C

self.output ("Data stored to Sardana server
hasep23dev:10000/p23/andordisplay/dev.01")

else:
self.output ("error: CCD is busy. Probably some other
measurement is still running.")

class andor_status (Macro) :

def

This only communicates with devices and gives back the
response.
Useful for debugging.

run (self) :

ccd_status = andorpy.ccd.GetStatus ()

grating = andorpy.spectrometer.ShamrockGetGrating()

self.output ("CCD responding: " + ccd_status[0] + ccd_.status
[(11)

self.output ("Spectrometer responding: " + grating[0])

26

