
Arangement of an Optical Spectrometer Setup
at Petra III Beamline P23

Max Stöber, Technische Universität Dresden, Germany

September 6, 2016

Abstract

The Petra III is one of the worlds most brilliant sources for x-ray synchrotron
radiation, located at the DESY (Deutsches Elektronen Synchrotron) na-
tional German research center in Hamburg.
Over the course of my work at DESY Summer Student Programme 2016
I have set up, tested and calibrated an optical spectrometer for the soon
opening beamline P23. Using the software development kit (SDK), deliv-
ered by the hardware manufacturer, a programming interface for python,
named andorpy has been created. This will be used for the control of exper-
iments on x-ray induced photoluminescence of nanostructures. Moreover,
the software includes a command interface for the device and management
of the data via the Sardana server system. Interactive macros have been
prepared, suitable for several experimental setups.

As a result, the optical spectrometer can now be routinely used by scientists
without any further programming necessary.

1

Contents

1 Motivation 3

2 Experimental Technique 3

2.1 The Spectrometer Setup . 3

2.2 Calibration . 3

2.3 Cosmic Particle Events . 4

3 Enabling Device Control via Python 5

3.1 Access to C Libraries . 6

3.2 Andorpy - a new Python Package 7

3.3 Help and Documentation . 8

4 Enabling Remote Control via Sardana 8

4.1 The Sardana/Tango Infrastructure 8

4.2 Sardana Scripting . 8

4.3 Sending and Receiving Data . 10

5 Conclusion 11

References 11

A Alphabetical List of all Andorpy Functions 13

B Code for the Sardana Interface 18

2

1. Motivation

Photo luminescence induced by X-ray synchrotron radiation offers interesting op-
portunities of characterizing electronic properties of new nano materials, and there-
fore revealing information relevant for their potential in future application. As a
relatively young field, this effect is often refered to as XEOL (X-Ray Excited
Optical Luminescence) [4]. The method uses a secondary radiation usually in a
wavelength range 300 nm - 1200 nm, does not interfere with other registration
channels as X-ray scattering, electrophysical, temperature, etc and is also very
good suited for in situ experimental environments.

Due to complex emittance spectra, as well as the relatively low crosssection of
X ray - to - luminescence excitation process, the devices for its detection have to
be very sensitive and specailly designed for this type of measurements.
The aim of this work is to incorporate the specialized equipment necessary for
XEOL experiments into the general beamline control infrastructure of PETRA.

2. Experimental Technique

2.1. The Spectrometer Setup

At the P23 beamline at PETRA, the XEOL measurements will be made by a state
of the art Shamrock 303i Spectrometer, manufactured by Andor. The device uses
blazed gratings in a Litthrow configuration - meaning the diffraction angle and the
incident angle at the grating are identical. The layout is sketched in Figure 2.1.
Three blazed gratings are exchangeable by rotating their holder (”turret”) with a
stepper motor, thus enabling different wavelength intervals.

An iVac 316 CCD from the same manufacturer is attached to the spectrometers
body and both devices are connected to a PC for controlling and data reading.

2.2. Calibration

Transporting the spectrometer, exchanging parts or exposing it to major changes
in temperature will lead to small mechanical displacements of the components,
and therefore to incorrect data.

As a compensation, there are several degrees of freedom for calibrating the spec-
trometer, without opening its hood. An offset value can be set for the detector
and every one of the three gratings, using the spectral lines of a Xe gas discharge

3

sample

entry slit

CCD

optical fibre

mirrors
turret with
3 gratings

X-ray
synchrotron
radiation

PC and Network
Server Connection

Figure 1: Sketch of the spectrometer setup working principle, with a possible ap-
plication scenario demonstrated.

lamp as a reference. Fig. 2 demonstrates a small correction of that offset, as it
was necessary after the delivery. The offset is saved in a nonvolatile memory in-
tegrated to the device, so that those offset values will be the same after power off
or connecting to a different PC.

2.3. Cosmic Particle Events

High energy cosmic particles, like muons, can easily pass the building walls and
the detectors case. When they approach the CCD, there is a chance for them to
produce several thousand photoelectrons, and therefore counts which where not
originated from the experiment. Such events can be observed approximately every
10 seconds, and lead to the risk of being mistaken for actual sharp spectral lines
(see Fig. 3).

4

Figure 2: Spectrum of the test lamp with a slightly incorrect calibration and with
a grating-offset correction (lower frame).

Those events are always limited to 1-4 pixels, and can be removed by compar-
ing two scans and replacing the pixels with weighted data from the previous scan,
if such an event is registered. The Spectrometer has a build in function for that,
which was made accessible in Python via andorpy.ccd.SetFilter().

3. Enabling Device Control via Python

Due to the expanding popularity of python for scientific purpose, one would like
to have a unified software environment for laboratory devices. In this case the
aim is to collect data and control settings of the spectrometer and its CCD in a
simple and well documented way. The python package created to do so was named
andorpy.

5

Figure 3: Spectrum featuring a cosmic particle event and without cosmic particle
event (lower frame). Activating cosmic particle filtering does not discard
whole datasets; the function only replaces a small number of pixels.

3.1. Access to C Libraries

Andor, the manufacturer of CCD cameras, Spectrometer, Microscopes and other
devices offers a SDK package for all of their devices. This package consists of two
parts, one for CCD, cameras and microscopes, the other for their spectrometers.
All of the functions in those packages are written in C++.

The andorpy functions access those two libraries via ctypes. The following mini-
mal example shows how to perform that in case of the CCD library:

load ctypes functions:
import ctypes.util
import ctypes

locate the library files:

6

ccd lib = ctypes.CDLL(ctypes.util.find library("andor"))

Initialize the device:
error = ccd lib.Initialize()

Get Temperature of the ccd sensor:
T = ctypes.c int(0)
error = ccd lib.GetTemperature(ctypes.pointer(T))

print "Temperature: " + str(int(T.value))

Every variable passed to the Andor SDK library has to be defined as a ctype
object of the appropriate type - in this case ctypes.c_int for an integer. It is
important, not to forget the backwards conversion into normal python data types
via your_c_variable.value, as it was done in the last line of the small example.

3.2. Andorpy - a new Python Package

Of course, repeating the steps described in the previous section every single time
a function of the Andor SDK is needed would be not very practical. Using the
andorpy package, which was created over the course of the Desy Summer Student
Programme, the same thing can be done more easily:

import andorpy

T = andorpy.ccd.GetTemperature()

print "Temperature: " + str(T[1]))

Now there is no need to take care of the conversion between ctypes objects and
usual Python variables anymore. Return values of an andorpy function are always
tuples, with an error or status message at the index [0] and data stored at the
other indices.

The package can be obtained via download from the beamline group network
space. In its main directory andorpy_main the installation routine can be started
by entering

>>> python setup.py install --user

, where the --user flag can be left out if the package shall be available for all
computer users (admin rights are required then).

7

3.3. Help and Documentation

A full sized manual for andorpy has been created over the course of the software
development [3]. However, research has shown, that the probability of such a
document to be read is close to zero [6]. If andorpy is already installed one can
access help for each function via andorpy.function?. A quick way to do this is
via ipython.

Example: Getting help on the SetAcquisitionMode function:

>>> import andorpy

>>> andorpy.ccd.SetAcquisitionMode?

This will print a text regarding the usage of the function and its purpose. Also all
possible parameters and return values are described briefly as in the SDK users
guide.

4. Enabling Remote Control via Sardana

While performing experiments with synchrotron radiation it is usually not allowed
to stay in the same room as the measurement devices, for safety reasons. Con-
trolling the spectrometer setup and receiving its data via a computer network is
therefore required.

4.1. The Sardana/Tango Infrastructure

Sardana is an environment for control applications, especially in large installations,
based on the Tango controls system. There where two main features used:

1. Sardana Macros for controlling device parameters, calibration and exper-
imental settings.

2. Tango Device Server for sending, saving and receiving data produced by
the devices

Figure 4 shows a basic outline of the whole system.

4.2. Sardana Scripting

Sardana Macros are written in plain python, with some restrictions that need to
be considered. For instance there is no local reading or writing of files possible

8

User PC

Sardana Macros

Tango Server

Experimental Setup PC

The User The Spectrometer

via Spock

via pyTango
python
application

sets and
checks settings

sends back
data flow
+ status

on macroserver

Figure 4: Overview of the infrastructure, as used for the remote control and data
acquisition with the andor spectrometer setup.

(use write to Tango server instead) and the print command is disabled (use self.

output instead). A collection of 5 Macros was prepared, to be able to handle most
situations of data acquisition:

• andor_init initializes the spectrometer and detector, sets all parameters to
the default value (except calibration parameters).

• andor_settings opens a menu that allows you to show and change the most
common settings of the devices.

• andor_measure starts the masurement and safes all the data on a Sardana
server. Tose data then can be viewed from all beamline PCs

• andor_shutdown closes the system. If the applications are closed without
calling that function a segmentation fault will be caused, that often leaves
the devices not responding (power off reset may be nessecarry)

• andor_status prints status messages from CCD and spectrometer.

All of those macros are contained in the file andor_macros.py, which is listed in
the appendix B. This, of course, can and should be used as a help to create macros
for more specific functions in the future.

9

4.3. Sending and Receiving Data

A Tango device server has been setup specifically for the spectrometer. It offers 3
ways of datastream:

• AndorData sends arrays of integer values - these are used to store the counts
for each pixel of the CCD

• AndorDataCalibration sends an array of float values - these are used to
store the wavelength for each pixel (equal to the x-axis of the plots like in
Figure 2).

• InfoString sends a string of textdata. It can in principle be used to store
any kind of information, like settings or status. it is used this way in the
example code of appendix B.

Writing data to the server is performed in the following way:

import PyTango

andor display = PyTango.DeviceProxy("hasep23dev:10000/p23/
andordisplay/dev.01")

data = andorpy.ccd.GetAcquiredData()
andor display.AndorData = data[1]

Those data now can be accessed by a python script running on any beamline PC,
simply via:

andor display = PyTango.DeviceProxy("hasep23dev:10000/p23/
andordisplay/dev.01")

data = andor display.AndorData

Using these functions, a simple tool for viewing data and saving them was created:
Andor Display . Figure 2 and 3 are actually screenshots of that tool. Morover,
the script saves all the data in textfiles, hdf5 files and also as a row of screenshots
in a pdf file.

10

5. Conclusion

The startup and test procedures taken on the new optical spectrometer setup have
been a success. Comparison of obtained data from a xenon gas discharge lamp
with spectra from literature has proven that all parts work together well, even
though some minor recalibration after transport has been necessary.

As the main part of my work within the DESY Summer Student Program, an
easy to use interface of the devices functions for Python was created. In prepara-
tion of future experimental practice, this enables the development of automated
measurement routines and data aquisition to be much faster than by using C and
much more flexible than by using the manufacturers GUI software, which comes
without any source files. Moreover, remote controlling the apparatus and gath-
ering data via a server was enabled by using Sardana Macros and Tango Server.
This enables the devices to be used without any further programming at all.

Therefore the collection of computer programs and their documentation should
be seen as the overall outcome of that experimental work, more than the rather
small amount of data created.

Acknowledgement

I would like to thank all my dear colleagues, who where never hesitating to answer
questions and in an indispensable manner helped me finding errors and correcting
mistakes. I have learned a lot in those weeks, and it is thanks to you.
Moreover, the DESY Summer Student organizers shall not be forgotten to be
mentioned, together with all the highly motivated lecturers - Enabling me to have
a great and inspiring time here in Hamburg.

References

[1] Andorpy - How it works and how it’s integrated into Sardana Macros (software
documentation) Max Stöber

[2] Shamrock Spectrometer at Petra III Beamline 23 Quick Start Guide (short
documentation) Max Stöber

[3] andorpy (python software package) and utils Max Stöber

[4] A time resolved microfocus facility at the Diamond Light Source J F W Mos-
selmans et. al.

11

[5] Andor SDK User’s Guide andor.com

[6] Why Don’t People Read the Manual? David G. Novick, Karen Ward
- University of Texas at El Paso, Department of Computer Science
http: // digitalcommons. utep. edu/ cgi/ viewcontent. cgi? article=

1010& context= cs_ papers

12

A. Alphabetical List of all Andorpy Functions

The names of these functions have not been changed, even though some of them
are quite long. The reason for this is to avoid confusion when reading the andor
SDK users guide or official examples written in C.

Note:

1. One example of usage for each function is contained in the testsuite test_

all_functions.py.

2. The function descriptions in this table are based on and in parts equal to
those in the SDK manual [5]

Function Description Input Output Tested Note

AbortAcquisition
(ccd)

This function aborts the cur-
rent acquisition if one is active.

none none OK This is especially use-
ful, if acquisition mode
5 (run until abort)
is active. see also:
ccd.SetAcquisitionMode

CoolerOn (ccd) Switches on the cooling. On
some systems the rate of tem-
perature change is controlled
until the temperature is within
3◦C of the set value. Control
is returned immediately to the
calling application.

none none OK see also: Initialize, Set-
Temperature, GetTemper-
ature

CoolerOff (ccd) Switches off the cooling. The
rate of temperature change is
controlled in some models until
the temperature reaches 0◦C.
Control is returned immedi-
ately to the calling application.

none none OK see also: Initialize,
CoolerOn

FreeInternalMemory
(ccd)

This function will deallocate
any memory used internally to
store the previously acquired
data. Note that once this func-
tion has been called, data from
last acquisition cannot be re-
trived.

none none OK —

GetAcquiredData
(ccd)

This function will return the
data from the last acquisi-
tion. The data are returned as
long integers (32-bit signed in-
tegers).

Int:
length

length*int
array:
counts

OK —

13

GetAcquisitionTimings
(ccd)

This function will return the
current ”valid” acquisition
timing information. This func-
tion should be used after all
the acquisitions settings have
been set, e.g. SetExposure-
Time, SetKineticCycleTime
and SetReadMode etc. The
values returned are the actual
times used in subsequent
acquisitions. This function is
required as it is possible to set
the exposure time to 20ms,
accumulate cycle time to 30ms
and then set the readout mode
to full image. As it can take
250ms to read out an image it
is not possible to have a cycle
time of 30ms.

none Float:
exposure
Float: ac-
cumulate
Float:
kinetic

OK exposure = valid exposure
time in seconds; accumu-
late = valid accumulate cy-
cle time in seconds; ki-
netic= valid kinetic cycle
time in seconds

GetDetector (ccd) This function returns the size
of the detector in pixels. The
horizontal axis is taken to be
the axis parallel to the readout
register.

none Int: xpix-
els Int:
ypixels

OK The horizontal number of
pixels is important for
the Spectrometer calibra-
tion (see example test_

all_functions.py

GetFilterMode (ccd) This function returns the cur-
rent state of the cosmic ray fil-
tering mode.

none Int: sta-
tus 0 =
OFF 2 =
ON

OK —

GetPixelSize (ccd) This function returns the di-
mension of the pixels in the de-
tector in microns.

none Float:
xSize:
width
of pixel
Float:
ySize:
height of
pixel

OK The return value xSize is
important for the spec-
trometers calibration.
See also: spectrometer.

ShamrockSetPixelWidth,

ShamrockGetCalibration

GetStatus (ccd) This function will return the
current status of the Andor
SDK system. This function
should be called before an ac-
quisition is started to ensure
that it is IDLE and during an
acquisition to monitor the pro-
cess. mode.

none String:
error

OK Read the SDK user’s
guide or the use
help(ccd.GetStatus)

to view the list of pos-
sible errors and a short
description.

GetStatus (ccd) This function will return the
current status of the Andor
SDK system. This function
should be called before an ac-
quisition is started to ensure
that it is IDLE and during an
acquisition to monitor the pro-
cess. mode.

none String:
error

OK Read the SDK user’s
guide or the use
help(ccd.GetStatus)

to view the list of pos-
sible errors and a short
description.

GetTemperature (ccd) This function returns the tem-
perature of the detector to the
nearest degree. It also gives
the status of cooling process.

none Int: T OK GetTemperatureF may re-
turn a more accurate value,
because it uses float in-
stead of int

14

Initialize (ccd) This function will initialize the
Andor SDK System. As part of
the initialization procedure on
some cameras (i.e. Classic, iS-
tar and earlier iXion) the DLL
will need access to a DETEC-
TOR.INI which contains infor-
mation relating to the detec-
tor head, number pixels, read-
out speeds etc. If your system
has multiple cameras then see
the section Controlling multi-
ple cameras (Andor SDK users
guide)

none none OK No need to call this func-
tion, if ShamrockInitialize
has already been called.
Only use one to decrease
startup time by several sec-
onds!

SetAccumulationCy-
cleTime (ccd)

This function will set the ac-
cumulation cycle time to the
nearest valid value not less
than the given value. The ac-
tual cycle time used is obtained
by GetAcquisitionTimings.

Float:
time
(seconds)

none OK Please refer to andor SDK
user’s guide SECTION 5
- ACQUISITION MODES
for further information.

SetAcquisitionMode
(ccd)

This function will set the ac-
quisition mode to be used on
the next StartAcquisition. Ac-
quisition modes to select: 1 =
Single Scan, 2 = Accumulate, 3
= Kinetics, 4 = Fast Kinetics,
5 = Run till abort.

Int:
mode

none OK In Mode 5 only, the camera
continually acquires data
until the AbortAcquisition
function is called. By using
the ccd.SetDriverEvent

function you will be noti-
fied as each acquisition is
completed.

SetExposureTime
(ccd)

This function will set the ex-
posure time to the nearest
valid value not less than the
given value. The actual expo-
sure time used is obtained by
GetAcquisitionTimings.

Float:
time
(seconds)

none OK Please refer to andor SDK
user’s guide SECTION 5
- ACQUISITION MODES
for further information.

SetFanMode (ccd) Allows the user to control the
mode of the camera fan. If
the system is cooled, the fan
should only be turned off for
short periods of time. Dur-
ing this time the body of the
camera will warm up which
could compromise cooling ca-
pabilities. If the camera body
reaches too high a tempera-
ture, depends on camera, the
buzzer will sound. If this
happens, turn off the exter-
nal power supply and allow the
system to stabilize before con-
tinuing.

Int:
mode 0
= fan
full, 1 =
fan low,
2 = fan
off

none OK Possible reason to use this:
avoiding vibration caused
by fan. USE WITH CAU-
TION!

15

SetFilterMode (ccd) This function will set the state
of the cosmic ray filter mode
for future acquisitions. If the
filter mode is on, consecutive
scans in an accumulation will
be compared and any cosmic
ray-like features that are only
present in one scan will be re-
placed with a scaled version of
the corresponding pixel value
in the correct scan.

Int:
mode 0
= off, 2
= on

none OK Cosmic particle events can
lead to extremely high
counts and therefore are
not erased by choosing
high exposure time. It
is highly recommended us-
ing this function for ev-
ery acquisition. CAU-
TION: does not work in
single scan mode (see ccd.

SetAcquisitionMode) and
if the number of accumula-
tions is set less than 2

SetNumberAccumula-
tions (ccd)

This function will set the num-
ber of scans accumulated in
memory. This will only take
effect if the acquisition mode
is either Accumulate or Kinetic
Series. Parameters int number:
number of scans to accumulate.

Int:
number
of scans

none OK It is recommended to set
this at least to 2, in order
to enable the cosmic parti-
cle filter to work. See also:
SetFilterMode

SetReadMode(ccd) This function will set the read-
out mode to be used on the
subsequent acquisitions. Read-
out modes: 0 = Full Vertical
Binning, 1 = Multi-Track, 2
= Random-Track, 3 = Single-
Track, 4 = Image.

Int:
mode

none see
foot-
note1

Read SDK user’s guide for
information on how those
modes operate.

SetTemperature (ccd) This function will set the de-
sired temperature of the detec-
tor. To turn the cooling ON
and OFF use the CoolerON
and CoolerOFF function re-
spectively.

Int: T none OK Don’t forget CoolerOn!

ShamrockAtZeroOrder
(spectrometer)

Finds if wavelength is at zero
order.

Int: de-
vice

Int: 0 =
at zero
order, 1
= not at
zero order

OK —

ShamrockClose (spec-
trometer)

Closes the Shamrock system
down. That includes spec-
trometer and camera.

none none OK IMPORTANT: If you do
not call this function before
your python code is termi-
nated, it may cause a seg-
mentation fault. After that
in some cases the hard-
ware has to be restarted by
poweroff.

ShamrockEepromGet-
OpticalParams (spec-
trometer)

returns the Focal Length, An-
gular Deviation and Focal Tilt
from the Shamrock device.

none Float: fl
Float: ad
Float: ft

OK —

ShamrockGetAutoSlit-
Width (spectrometer)

Returns the specified slit
width. Which slit is asked can
be specified by slit index: 1 =
input slit side 2 = input slit
direct 3 = output slit side 4 =
output slit direct

Int: de-
vice Int:
slit index

Float:
width

OK —

1Not all readout modes have been tested yet in respect to andorpy.ccd.GetAcquiredData,
since Full Vertical Binning is usually the appropriate choice.

16

ShamrockGetCalibra-
tion (spectrometer)

Obtains the wavelength cali-
bration of each pixel of at-
tached sensor.

Int:
num px2

Int:
device

Float
Array:
wave-
length
(nm)

OK ShamrockSetNumber-

Pixels and
ShamrockSetPixelWidth

must have been called with
the correct parameters.
Otherwise this function
will return only zeros.

ShamrockGetCCD-
Limits (spectrometer)

Gets the upper and lower
accessible wavelength through
the port. That is not equal
to the maximum and mini-
mum wavelength of the spec-
trum! To get this use
ShamrockGetCalibration.

Int: de-
vice Int:
port

Float:
low Float:
high

OK —

ShamrockGetGrating
(spectrometer)

Returns the current grating. Int: de-
vice

Int: grat-
ing

OK —

ShamrockGetGrating-
Info (spectrometer)

Returns the grating informa-
tion.

Int: de-
vice int:
grating

Float:
lines
String:
Blaze Int:
home Int:
offset

in-
com-
plete3

lines = grating lines per
mm blaze = grating blaze
wavelength (nm) home =
grating home (steps) offset
= grating offset (steps)

ShamrockGetPixel-
Width (spectrometer)

Gets the current value of the
pixel width in microns of the
attached sensor.

Int: de-
vice

Float:
width
(micro-
meter)

soon! —

ShamrockGetShutter
(spectrometer)

Returns the current device
shutter mode. Available
modes: 1 = open, 0 = closed,
-1 = shutter not set

Int: de-
vice

Int: mode OK —

ShamrockGetWave-
length (spectrometer)

Returns the current wave-
length.

Int: de-
vice

Float:
wave-
length

OK —

ShamrockGetWave-
lengthLimits (spec-
trometer)

Returns the Grating wave-
length limits.

Int: de-
vice Int:
grating

Float:
low Float:
high

OK Those are not the limits of
the spectrum!

ShamrockGotoZero-
Order (spectrometer)

Sets wavelength to zero order. Int: de-
vice

none OK —

ShamrockInitialize
(spectrometer)

Initializes the Shamrock
driver. Makes ccd.Initialize

redundant.

none none OK Can take up to about
20 seconds. Check ccd.

GetStatus after that4, be-
cause in some cases the
CCDs initialization fails
even though SUCESS is re-
turned.

ShamrockSetAutoSlit-
Width (spectrometer)

Sets the width of the specified
slit.

Int:
device
Int: slit
Float:
width
(microm-
eter)

none OK Setting the slit width to 0.0
will not result in a perfectly
dark sensor.

ShamrockSetGrating
(spectrometer)

Sets the required grating. Int: de-
vice Int:
grating

none OK ShamrockGetCalibration

has to be called again after
changing the grating!

2Number of pixels of the attached sensor.
3The blaze returns only ”SUCCESS” and no value.
4should return DRV_IDLE

17

ShamrockSetNumber-
Pixels (spectrometer)

Sets the number of pixels of the
attached sensor.

Int: de-
vice Int:
pixels

none OK ShamrockGetCalibration

will return only zeros, if
this functions call has been
forgotten.

ShamrockSetPixel-
Width (spectrometer)

Sets the pixel width in microns
of the attached sensor. Impor-
tant for calibration

Int:
device
Float:
width

none OK The correct value for that
width can be obtained
by calling andorpy.ccd.

GetPixelSize

ShamrockSetShutter
(spectrometer)

Sets the device shutter mode. Int: de-
vice Int:
mode

none OK Only works with Shamrock
303 series.

ShamrockSetWave-
length (spectrometer)

Set the required wavelength. Int:
device
Float: wl

none OK This sets the wavelength,
that is then the centre
of the spectrum. Mini-
mum and maximum wave-
length can be obtained by
ShamrockGetCalibration

ShutDown (ccd) This function will close the An-
dor MCD system down.

none none OK This is not nessecarry, if
ShamrockClose has already
been called.

B. Code for the Sardana Interface

"""
Macros to set up and perform measurements using Andor CCD and

Shamrock spectrometer.
IMPORTANT FOR TESTING/CHANGING MACROS:
to restart macroserver: [%SardanaRestartMacroserver.py −x]
to reload macros: [%relmac andor init] for one macro or [%relmaclib

andor macros.py] for
a whole file
"""

from future import print function

all = ["andor init", "andor shutdown", "andor settings", "
andor measure", "andor status"]

docformat = ’restructuredtext’

from sardana.macroserver.macro import Type, Macro, macro, ParamRepeat
, iMacro

import PyTango
import json
import andorpy
import time
import os

def send info(out server):
T = andorpy.ccd.GetTemperature()

18

g = andorpy.spectrometer.ShamrockGetGrating(0)

settings = json.dumps({"ccd temp":T[1],
"grating":g[1]})

out server.InfoString = settings

def set defaults(cl):
"""

This function sets all the settings of spectrometer and ccd
back to default.

"""
andorpy.spectrometer.ShamrockSetAutoSlitWidth(0,1,10.0)
andorpy.ccd.SetTemperature(−80)
andorpy.ccd.CoolerOn()
andorpy.ccd.SetFanMode(0)
andorpy.ccd.SetReadMode(0)
andorpy.ccd.SetAcquisitionMode(2)
andorpy.ccd.SetNumberAccumulations(2)
andorpy.ccd.SetAccumulationCycleTime(0.7)
andorpy.spectrometer.ShamrockSetShutter(0,1)
andorpy.spectrometer.ShamrockSetGrating(0,2)
andorpy.spectrometer.ShamrockSetWavelength(0, 485.0)
andorpy.ccd.SetExposureTime(1.)
andorpy.ccd.SetFilterMode(2)

global endless
endless = 0

global triggermode
triggermode = 0

andorpy.ccd.SetTriggerMode(triggermode)

gather information for spectrometer calibration:
num pixels = andorpy.ccd.GetDetector() # width of the detector (

number of pixels)
px dim = andorpy.ccd.GetPixelSize() # width of a pixel (

micrometers)

hand over those data for spectrometer calibration:
tmp1 = andorpy.spectrometer.ShamrockSetPixelWidth(0,px dim[1])
tmp1 = andorpy.spectrometer.ShamrockSetNumberPixels(0,num pixels

[1])

cl.output("all settings set to defualt")

class andor init(Macro):
"""

19

andor init Macro:
− Starts CCD and spectrometer
− checks if CCD and spectrometer are in idle

−−> pushes error (please power off − restart) if this is
not the case

− starts cooler, sets temperature to −80 and fan to maximum
"""
def run(self):

self.output("−− starting ccd and spectrometer")
spec status = andorpy.spectrometer.ShamrockInitialize()
ccd status = andorpy.ccd.GetStatus()

check, if both devices are responding:

if (spec status[0] == "SUCCESS" and ccd status[1] == "code
20073 DRV IDLE"):
self.output("−− decices started. setting all parameters

to default ")
set defaults(self)
self.output("ready")

else:
time.sleep(3) # wait, then check again if

responding
ccd status = andorpy.ccd.GetStatus()
spec status = andorpy.spectrometer.ShamrockGetGrating()

if (spec status[0] == "SUCCESS" and ccd status[1] == "
code 20073 DRV IDLE"):
tmp1 = andorpy.ccd.SetTemperature(−80)
tmp1 = andorpy.ccd.CoolerOn()
tmp1 = andorpy.ccd.SetFanMode(0) # ... maximum

cooling
self.output("ready")

else:
self.output("initialisation fault − check connections

and restart devices")
self.output("spectrometer responding: " + spec status

[0])
self.output("ccd status: " + ccd status[1])

class andor shutdown(Macro):

def run(self):
self.output("−− shutting down the ccd and spectrometer")
andorpy.ccd.AbortAcquisition()
andorpy.spectrometer.ShamrockClose()
self.output("sucess")

20

class andor settings(iMacro):
"""

andor settings Macro:
− prints out all status data from spectrometer and ccd
− gives interactive menu to chance settings (exposure

time, grating, slit width ...)
"""

interactive = True

def run(self):

ask for current status:
ccd status = andorpy.ccd.GetStatus()
grating = andorpy.spectrometer.ShamrockGetGrating()

global endless
global triggermode

if not(grating[0] == "SUCCESS" and ccd status[0] == "code
20002 DRV SUCCESS"):
self.output("error: Spectrometer and/or CCD not

initialized or malfunctioning.")
self.output(" −−> Run andor init ")
self.output(" −−> Poweroff+check+restart hardware,

if andor init also fails.")

elif (ccd status[1] == "code 20073 DRV IDLE"):
slit = andorpy.spectrometer.ShamrockGetAutoSlitWidth(0,1)
shutter = andorpy.spectrometer.ShamrockGetShutter()
wl = andorpy.spectrometer.ShamrockGetWavelength(0)
T = andorpy.ccd.GetTemperature()
timings = andorpy.ccd.GetAcquisitionTimings()
fm = andorpy.ccd.GetFilterMode()
os d = andorpy.spectrometer.ShamrockGetDetectorOffset(0)
os g1 = andorpy.spectrometer.ShamrockGetGratingOffset

(0,1)
os g2 = andorpy.spectrometer.ShamrockGetGratingOffset

(0,2)
os g3 = andorpy.spectrometer.ShamrockGetGratingOffset

(0,3)

num pixels = andorpy.ccd.GetDetector() # width of the
detector (number of pixels)

tmp1 = andorpy.spectrometer.ShamrockGetCalibration(0,
num pixels[1])

calib = tmp1[1]

self.output("")

21

self.output("########## CURRENT SETTINGS ##########")
self.output("")
self.output("MEASUREMENT: ")
self.output("(a) Spectrometer grating selected: " + str(

grating[1]) + " (present: 1,2,3)")
self.output("(b) Spectrometer slit width: " + str(slit

[1]) + " micrometer")
self.output("(c) Spectrometer shutter status: " + str(

shutter[1]) + " (0=closed, 1=open)")
self.output("(d) Spectrometer central wavelength: " + str

(wl[1]) + "nm")
self.output(" −−> min = " + str(calib[0])+"nm, max = "

+ str(calib[len(calib)−1])+ " nm")
self.output("(e) CCD temperature: " + str(T[1]) + "C,

status = " + str(T[0]))
self.output("(f) CCD exposure time: " + str(timings[1]) +

"s")
self.output("(g) CCD cosmic particle filter: " + str(fm

[1]) + " (0=off, 2=on)")
self.output("(h) Endless measurement enabled: " + str(

endless)+ " (0=off, 1=on)")
self.output("(i) Trigger mode: " + str(endless)+ " (0=

internal, 1=external)")
self.output("")
self.output("CALIBRATION:")
self.output("(j) Detector offset: " +str(os d[1]))
self.output("(k) Offset grating 1: " + str(os g1[1]))
self.output("(l) Offset grating 2: " + str(os g2[1]))
self.output("(m) Offset grating 3: " + str(os g3[1]))
self.output("")
self.output("(y) Set everything back to default")
self.output("(z) Quit")
self.output("")

choice = self.input("Enter letter of setting to change:")
if not(choice == "y" or choice == "z"):

value = self.input("Enter new value:")

if choice == "a":
tmp1 = andorpy.spectrometer.ShamrockSetGrating(0,int(

value))
self.output(tmp1[0])

elif choice == "b":
tmp1 = andorpy.spectrometer.ShamrockSetAutoSlitWidth

(0,1,float(value))
self.output(tmp1[0])

elif choice == "c":
tmp1 = andorpy.spectrometer.ShamrockSetShutter(0,int(

value))

22

self.output(tmp1[0])
elif choice == "d":

tmp1 = andorpy.spectrometer.ShamrockSetWavelength(0,
float(value))

self.output(tmp1[0])
elif choice == "e":

tmp1 = andorpy.ccd.SetTemperature(int(value))
self.output(tmp1[0])

elif choice == "f":
tmp1 = andorpy.ccd.SetExposureTime(float(value))
self.output(tmp1[0])

elif choice == "g":
tmp1 = andorpy.ccd.SetFilterMode(int(value))
self.output(tmp1[0])

elif choice == "h":
val = int(value)
if val == 0:

endless = val
self.output("endless mesurement disabled")

elif val == 1:
endless = val
self.output("endless measurement enabled")

else:
self.output("invalid choice")

elif choice == "i":
val = int(value)
if val == 0:

triggermode = val
andorpy.ccd.SetTriggerMode(triggermode)
self.output("internal trigger enabled")

elif val == 1:
triggermode = val
self.output("external trigger enabled")
andorpy.ccd.SetTriggerMode(triggermode)

else:
self.output("invalid choice")

elif choice == "j":
tmp1 = andorpy.spectrometer.ShamrockSetDetectorOffset

(0,int(value))
self.output(tmp1[0])

elif choice == "k":
tmp1 = andorpy.spectrometer.ShamrockSetGratingOffset

(0,1,int(value))
self.output(tmp1[0])

elif choice == "l":
tmp1 = andorpy.spectrometer.ShamrockSetGratingOffset

(0,2,int(value))
self.output(tmp1[0])

elif choice == "m":

23

tmp1 = andorpy.spectrometer.ShamrockSetGratingOffset
(0,3,int(value))

self.output(tmp1[0])
elif choice == "y":

set defaults(self)
elif choice == "z":

self.output(" ")
else:

self.putput("invalid choice")

else:
self.output("error: CCD is busy. Probably some

measurement is still running.")

class andor measure(Macro):
"""
andor measure Macro:

− starts measurement
− loads data from device to PC
− !!! stores data as htf5 format file
− sends data to Tango server
− !!! clears device memory after data are saved
− prints out path of data files in console

"""
def run(self):

global endless
global triggermode

andor display = PyTango.DeviceProxy("hasep23dev:10000/p23/
andordisplay/dev.01")

ask for status of devices:
grating = andorpy.spectrometer.ShamrockGetGrating(0)
ccd status = andorpy.ccd.GetStatus()
detector = andorpy.ccd.GetDetector()
width = detector[1] # this is the number of pixels

if not(grating[0] == "SUCCESS" and ccd status[0] == "code
20002 DRV SUCCESS"):
self.output("error: Spectrometer and/or CCD not

initialized or malfunctioning.")
self.output(" −−> Run andor init ")
self.output(" −−> Poweroff+check+restart hardware,

if andor init also fails.")

elif (ccd status[1] == "code 20073 DRV IDLE"):

load the array for every wavelength axis tick (nm):

24

tmp1 = andorpy.spectrometer.ShamrockGetCalibration(0,
width)

calib = tmp1[1]
calib = calib[::−1] # reverse the axis calibration

−−> otherwise spectrum is shown mirrored to
middle wavelength

tmp1 = andorpy.ccd.GetAcquisitionTimings()
t abs = tmp1[2]

if endless == 0:
self.output("−− starting measurement. This one will

take " + str(t abs) + "s")
if triggermode == 1: self.output("−− waiting for

external trigger ")

now start measuring:
andorpy.ccd.StartAcquisition()
status = andorpy.ccd.GetStatus()

while (status[1].startswith(’code 20072’)):
status = andorpy.ccd.GetStatus() #this loops

until acquisition is over

get data from device and load them to sardana:
tmp1 = andorpy.ccd.GetAcquiredData(width)
data = tmp1[1]
andor display.AndorData = data
andor display.AndorDataCalib = calib
send info(andor display)

self.output("Success.")
self.output("Data stored to Sardana server hasep23dev

:10000/p23/andordisplay/dev.01")
andorpy.ccd.FreeInternalMemory()

else:
self.output("−− starting endless measurements. Each

one will take " + str(t abs) + "s")
self.output("NOTE: Ctrl + C to stop measurement!")

if triggermode == 1: self.output("−− waiting for
external trigger ")

while True:
now start measuring:
andorpy.ccd.StartAcquisition()
status = andorpy.ccd.GetStatus()

25

while (status[1].startswith(’code 20072’)):
status = andorpy.ccd.GetStatus() #this

loops until acquisition is over

get data from device and load them to sardana:
data = andorpy.ccd.GetAcquiredData(width)
andor display.AndorData = data[1]
andor display.AndorDataCalib = calib
send info(andor display)
andorpy.ccd.FreeInternalMemory()
self.checkPoint() # for not confusing the

MacroServer by Ctrl+C
self.output("Data stored to Sardana server

hasep23dev:10000/p23/andordisplay/dev.01")
else:

self.output("error: CCD is busy. Probably some other
measurement is still running.")

class andor status(Macro):
"""

This only communicates with devices and gives back the
response.

Useful for debugging.
"""
def run(self):

ccd status = andorpy.ccd.GetStatus()
grating = andorpy.spectrometer.ShamrockGetGrating()
self.output("CCD responding: " + ccd status[0] + ccd status

[1])
self.output("Spectrometer responding: " + grating[0])

26

