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Abstract

In this report, e+e− → quark and gluon jets are studied. The framework used for
this is SCET, an EFT suited for jet physics. The event shape thrust of the quark
and gluon jets are calculated and investigated. The thrust shapes of the quark
and gluon jets are plotted for the singular part of NLO, LL and NLL level.
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1 Introduction

In collider experiments high energetic collimated hadrons (jets) are commonly observed.
The distribution and shape of jets can be used to gain information about the high energy
processes and analysis of jet cross sections provides testing of quantumchromodynamics
(QCD) [1]. In this report we look into jet physics, using an EFT approach called SCET,
and study the event shape thrust of e+e− → quark and gluon jets.

In LHC the signals for example New Physics are in general from quark jets and the
background signal from gluon jets. It is thus of importance to be able to distinguish
quark and gluon jets. In this report we look into e+e− → quark and gluon jets, because
this provides a clean environment for theoretically high-order perturbative computations
[1]. We consider the process e+e− → quarks via an s-channel with a photon or Z-boson.
The e+e− → gluons process considered is via a Higgs with a topquark loop. This process
has a very small amplitude because of the small interaction of the Higgs with the low
mass electrons and positrons. It is thus not a relevant process to study it for the process
itself, but it can still be used to study how the thrust distribution of gluon jets compare
with quark jets.

2 SCET

Soft-Collinear Effective Theory (SCET) is an effective theory suitable to describe jet
physics with interactions of soft and collinear particles in the presence of a hard inter-
action. SCET is thus studied and used in this project. SCET will eventually allow us
to factorize cross sections and resum Sudakov logarithms [2].

In SCET, particles are not necessarily integrated out, but modes are separated according
to how their momentum components scale. In collider processes, we call the the mo-
mentum scale corresponding to the hard interaction the hard scale, Q. Collinear degrees
of freedom are particles which move in or near a preferred direction (jet axes). Soft
degrees of freedom are particles which have no preferred direction and have momenta
much lower than Q. We will have different momentum regions and separate particles
accordingly. In SCET we can thus have different fields which would represent one field
in the full QCD theorem. For example, we could have collinear quarks, soft quarks,
collinear gluons and soft gluons.

We use coordinates which make the different scalings in momentum components more
transparent. These will be the lightcone coordinates, defined by the vectors nµ = (1, ~n)
and n̄µ = (1,−~n), which satisfy n2 = 0 = n̄2 and n · n̄ = 2. Any vector pµ can be
decomposed in the lightcone basis:

pµ =
nµ

2
n̄ · p+

n̄µ

2
n · p+ pµ⊥ ≡ (p+, p−, p⊥), (1)
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where p+ = n · p and p− = n̄ · p. Hard momenta then scale as pµ ∼ Q(1, 1, 1). Collinear
momenta scale as pµ ∼ Q(λ2, 1, λ), where λ << 1 is a small dimensionless parameter.
Soft momenta scale as pµ ∼ Q(λ, λ, λ). It is also possible to have ultrasoft degrees of
freedom which scale as pµ ∼ Q(λ2, λ2, λ2). These are SCET II theories [3], but in this
report we only consider SCET I theories with soft momenta.

3 Thrust

In this report we look into the process e+e− → jets. Kinematically dominant is the
production of two jets, but it is also possible that more jets are produced. The event
shape variable thrust can be used to distinguish dijet events from events with more than
two jets. Thrust is defined as [4]:

T = max ~nT

∑
i|~p|i · ~nT∑

i|~pi|
, (2)

where i runs over all the final state particles and ~nT is the thrust axis. Collinear (or
anti-collinear) particles have a large projection onto the thrust axis, giving T near 1.
Events with T near 1 are thus 2-jet like, while T going away from 1 means more than
two jets production. It is more convenient to use the thrust variable τ = 1 − T , which
will be used from now on. This now means that in the situation τ → 0 we have dijets.
In this project we will look into the thrust distributions of quark and gluon jets and
compare them.

4 Factorization

Using the factorization theorem, the thrust distribution can be factorized in a hard
function part, jet functions part and soft function part [4]:

dσ

dτ
= σBH(Q, µ)

∫
dτndτn̄dτsδ(τ − τn − τn̄ − τs)Jn(τn, µ)Jn̄(τn̄, µ)S(τs, µ), (3)

where σB is the Born cross section.

The hard function is obtained by taking the absolute square of the Wilson coefficient
[4]:

H(Q, µ) =
∣∣C(Q, µ)

∣∣2 = 1 +
αsCF

2π

(
−4 log2 Q

µ
+ 6 log

Q

µ
− 8 +

7π2

6

)
. (4)

The quark jet and soft functions can be calculated as the vacuum matrix element of a

4



2-point collinear function. The jet function is given by [4]:

J(τ, µ) = δ(τ)+

αsCF
4π

[(
2 log2 Qξ

µ2
− 3 log

Qξ

µ2
+ 7− π2

)
δ(τ) +

(
4 log

Qξ

µ2
− 3

)
1

ξ
L0

(
τ

ξ

)
+ 4

1

ξ
L1

(
τ

ξ

)]
(5)

and the quark soft function by [4]:

S(τ, µ) = δ(τ)+

αsCF
4π

(−8 log2 ξ

µ
+
π2

3

)
δ(τ)− 16 log

ξ

µ

1

ξ
L0

(
τ

ξ

)
− 16

1

ξ
L1

(
τ

ξ

) (6)

Here ξ is a dimensionful dummy variable and the Li are the plus distributions [5].

The hard, jet and soft functions each contain logarithms, which may grow large and be
problematic. But because each of these functions depend on a single scale, we can evalu-
ate the hard, jet and soft functions at respectively the scales µH ∼ Q, µJ ∼

√
Qτ, µS ∼ τ ,

so that the large logarithms in the functions disappear. Then we use the renormalization
group evolution to evolve each function to a common scale µ.

5 Renormalization Group Evolution

In QCD hadron jet production in e+e− collisions happen via an s-channel exchange of
a photon or Z-boson. We will first look into e+e− to quarks. In SCET the current
then involves collinear quarks and we have: (ξ̄n̄Wn̄)Γi(W

†
nξn), where Wn are Wilson

lines needed to make the quark fields collinearly gauge-invariant. χn ≡ W †
nξn is thus

the quark jet field [4]. Calculating the matrix elements and matching the renormalized
matrix elements from SCET to QCD then gives the Wilson coefficient of the effective
SCET operator:

C(Q, µ) = 1 +
CFαs(µ)

4π

− log2

(
−Q2 − i0

µ2

)
+ 3 log

(
−Q2 − i0

µ2

)
− 8 +

π2

6

 (7)

We demand the usual renormalization scale independence equation; the bare coefficient
should not depend on the renormalization scale:

0 = µ
d

dµ
Cbare = µ

d

dµ
[ZC(µ)C(µ)] = µC

d

dµ
ZC + µZC

d

dµ
C (8)

allowing us to calculate the anomalous dimension of the Wilson coefficient:

µ
d

dµ
C = − 1

ZC
µ
dZC
dµ

C ≡ γCC (9)
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We find:

γC = −αs
4π

4CF log

(
µ2

−Q2 − i0

)
+ 6CF

 (10)

In this process the anomalous dimension can always be written in the following form [4]:

γC(µ, ω) = −aCΓcusp[αs(µ)] log

(
µ

ωC

)
− γC [αs(µ)], (11)

where the anomalous dimension is now separated in a cusp Γcusp and non-cusp γC part,
and the constant aC and dimensionful variable ωC depend on the current. This formula
holds to all orders in αs:

Γi(αs) =
∞∑
n=0

Γin

(
αs
4π

)n+1

, γi(αs) =
∞∑
n=0

γin

(
αs
4π

)n+1

, (12)

where the subscript i = q, g for quarks and gluons respectively. We need to solve Eq.
(9) and for later convenience we want to write the solution (for the hard function, which
is the absolute square of the Wilson coefficient) as:

H(Q, µ) = H(Q, µ0)UH(µ, µ0), (13)

where UH(µ, µ0) is the evolution factor that runs the hard function from µ0 to any
arbitrary scale µ. Eq. (9) can be solved by integrating it from µ0 to µ using a change
of variables to αs: d log µ = dαs

β[αs]
. The running of αs also needs to be accounted for:

µ d
dµ
αs(µ) = β(αs), where we use the expansion of the β-function in powers of αs:

β(αs) = −2αs

∞∑
n=0

βn

(
αs
4π

)n+1

(14)

We then find:

log

[
H(Q, µ)

H(Q, µ0)

]
= −ω log

(
µ0

Q

)
−KΓ +Kγ, (15)

where ω, KΓ and Kγ are defined as [4]:

ω(µ, µ0) =

∫ αs(µ)

αs(µ0)

dα

β[α]
Γcusp[α]

KΓ(µ, µ0) =

∫ αs(µ)

αs(µ0)

dα

β[α]
Γcusp[α]

∫ α

αs(µ0)

dα′

β[α′]

Kγ(µ, µ0) =

∫ αs(µ)

αs(µ0)

dα

β[α]
γ[α]

(16)

Exponentiating Eq. (15) now gives the solution is the desired form with the evolution
factor of the hard function:

UHi(Q, µ, µ0) =

∣∣∣∣∣∣∣e−KΓi
(µ,µ0)+Kγi (µ,µ0)

(
µ2

0

Q2

)− 1
2
ωi(µ,µ0)

∣∣∣∣∣∣∣
2

(17)
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For the jet functions and soft function the equations are similar. Instead of a multiplica-
tive renormalization group equation we now have one with a convolution.

µ
d

dµ
F (t, µ) =

∫
dt′γF (t− t′)F (t′, µ), (18)

where F = J, J̄ , S. This equation can be solved by going to Fourier space, and the
solution of this equation is [8]:

F (t, µ) =

∫
dt′F (t− t′, µF )UF (s′, µ, µF ), (19)

where UF (t′, µ, µF ) is the evolution kernel evolving the jet or soft function from µF to µ.

The evolution kernel of the jet function is given by [4]:

UJi(t, µ, µ0) =
eγEωi(µ,µ0)e2KΓi

(µ,µ0)+Kγi (µ,µ0)

Γ(−ωi(µ, µ0))

[
1

µ2
0

L−ωi(µ,µ0)

(
t

µ2
0

)
− 1

ωi(µ, µ0)
δ(t)

]
,

(20)
where La is the plus distribution defined as in [5].

The solutions of the integrals in Eq. (16) up to orders needed for NLL are [6]:

ωi(Γi) = −Γi0
β0

(
log(r) +

αs(µ0)

4π

(
Γi1
Γi0

)
(r − 1)

)
(21)

KΓ,i(Γi) = − Γi0
2β2

0

 4π

αs(µ0)

(
1− 1

r
− log(r)

)
+

((
Γi1
Γi0
− β1

β0

)
(1− r + log(r)) +

β1

2β0

log2(r)

)
(22)

Kγ,i(γi) = − γi0
2β0

log(r), (23)

where r = αs(µ)
αs(µ0)

.

6 Gluon jets

We also look into the process of e+e− → gluon jets. This happens through a Higgs with
a topquark loop as said before. As before, the gluon hard function is obtained by taking
the absolute square of the Wilson coefficient, which is obtained by matching the SCET
matrix element to the QCD one.

The gluon hard function is given by [6]:

Hg(Q, µ) = α2
s

1 +
αs
4π

[
−6 log2 Q

2

µ2
+ 22 + π2

] . (24)
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The gluon jet function is given by [7]:

Jg(s, µJ) = δ(s)+

αs
2π


(2

3
− π2

2

)
CA +

5

6
β0

 δ(s)− β0

2µ2
L0

(
s

µ2

)
+

2CA
µ2
L1

(
s

µ2

) , (25)

and the gluon soft function is the same as the quark one, but with CF → CA:

S(τ, µ) = δ(τ)+

αsCA
4π

(−8 log2 ξ

µ
+
π2

3

)
δ(τ)− 16 log

ξ

µ

1

ξ
L0

(
τ

ξ

)
− 16

1

ξ
L1

(
τ

ξ

) . (26)

7 Results

The needed loop order corrections for LL, NLL, NLL’ and NNLL analyses are shown
in Table 1. Cusp and non-cusp refer to the anomalous dimensions, and αs up to three
loops is given by [7]:

1

αs(µ)
=

X

αs(MZ)
+

β1

4πβ0

log(X) +
αs(MZ)

16π2X

(β2
1

β2
0

− β2

β0

)
(1−X) +

β2
1

β2
0

log(X)

 (27)

where X = 1 + αs(MZ) log
(

µ
MZ

)
β0

2π
. The needed coefficients of the β-function and the

quark and gluon anomalous dimensions are given in the appendix.

Table 1: Loop order corrections [1]

Cusp Non-cusp β(αs) matching αs
LL 1 - 1 tree 1
NLL 2 1 2 tree 2
NLL’ 2 1 2 1 2
NNLL 3 2 3 1 3

The results of the calculation of the thrust distribution for quark jets and gluon jets are
shown in this section. We divide Eq. (3) by the Born cross section, so that the hard
functions of both the quark and gluons are ‘normalized’ to: 1 + O(αs). We also use a
dimensionful thrust variable τ .
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7.1 NLO

For the NLO singular part of the calculations for quark and gluons (Figure 1 and Figure
2) we use a Q = 125 GeV. There is no RGE happening here, and the hard, jet and soft
functions are also just evaluated at this momentum value.

Figure 1: Thrust distribution of quark jets
at NLO.

Figure 2: Thrust distribution of gluon jets
at NLO.

7.2 RGE improved analysis

For the LL (Figure 3) and NLL (Figure 4) calculations , we use Q = 125 GeV. Now,
the hard, jet and soft functions are evaluated at their canonical scales µH = Q, µJ =√
Qτ, µs = τ , and then all functions are evolved to µS, using the evolution kernels Eq.

(17) and Eq. (20).

In Figure 5 and Figure 6 the quarks and gluons are compared with each other at LL
and NLL.

Varying the hard scale Q at the values 150, 200 and 250 GeV, we also plot the thrust
distribution at NLL for quarks (Figure 7) and gluons (Figure 8).

Figure 3: Thrust distribution of quark jets at LL
and NLL. Here Q = 125 GeV.

Figure 4: Thrust distribution of gluon jets at LL
and NLL. Here Q = 125 GeV.
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Figure 5: Thrust distribution of quark jets versus
gluon jets at Q = 125 GeV and at LL.

Figure 6: Thrust distribution of quark jets versus
gluon jets at Q = 125 GeV and at NLL.

Figure 7: Thrust distribution of quark jets at NLL
with Q = 150, 200, 250 GeV.

Figure 8: Thrust distribution of gluon jets at NLL
with Q = 150, 200, 250 GeV.

8 Discussion

At NLO the thrust spectrum diverges at τ near to 0 for both quark and gluon jets.
When we do renormalization group evolution, the divergences at small τ disappear. For
quark jets at LL the peak is around 0.8 GeV. At NLL, the peak shifts to 1.2 GeV. For
gluons we see that the peak is around 5 GeV and shifts to 5.5 GeV. Comparing the
quarks with the gluons, we see that at both LL and NLL the peak for the quarks is
located at smaller τ compared to the gluons. We also see in all the figures the expected
qualitative difference between quark and gluon jets: the thrust shape is narrower for the
quark jets and broader for the gluon jets.

In Figure 7 and Figure 8 the Q-values are varied from 150, 200 and 250 GeV. The
qualitative behaviour and comparisons of the quark and gluon jets are the same. The
peak shifts slightly to higher τ .
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9 Conclusion

In this project we have studied SCET and e+e− → quark and gluon jets. We have
calculated and plotted the thrust distributions at NLO, LL and NLL. We have also
looked at NLL’ calculations and have the ingredients to continue the calculations to
NNLL, but did not manage to finish these.
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11 Appendix: coefficients β-function and anomalous
dimensions

All the used coefficients for the β-function and all anomalous dimensions used in this
report are given in this section [4], [6].

The used coefficients for the β-function are:

β0 =
11

3
CA −

4

3
TFnf

β1 =
34

3
C2
A −

(
20

3
CA + 4CF

)
TFnf

β2 =
2857

54
C3
A + 2TFnf

(
C2
F −

205

18
CACF −

1415

54
C2
A

)
+ 4T 2

Fn
2
f

(
11

9
CF +

79

54
CA

)
Here, nf = 5, since the top quark has been integrated out in our theory. The used cusp
anomalous dimensions coefficients for quarks are:

Γq0 = 4CF

Γq1 = 4CF

(67

9
− π2

3

)
CA −

20

9
TFnf

 (28)

and for gluons:
Γg0 = 4CA

Γg1 = 4CA

(67

9
− π2

3

)
CA −

20

9
TFnf

 (29)
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The non-cusp anomalous dimensions for the quark hard function are:

γqH0 = −6CF

γqH1 = −CF

((
82

9
− 52ζ3

)
CA +

(
3− 4π2 + 48ζ3

)
CF +

(
65

9
+ π2

)
β0

)
(30)

and for the gluon hard function:

γgH0 = −2β0

γgH1 =

(
−118

9
+ 4ζ3

)
C2
A +

(
−38

9
+
π2

3

)
CAβ0 − 2β1

(31)

The quark jet function non-cusp anomalous dimensions are:

γqJ0 = 6CF

γqJ1 = CF

(146

9
− 80ζ3

)
CA +

(
3− 4π2 + 48ζ3

)
CF +

(
121

9
+

2π2

3

)
β0

 (32)

and for the gluon jet function:

γgJ0 = 2β0

γgJ1 =

(
182

9
− 32ζ3

)
C2
A +

(
94

9
− 2π2

3

)
CAβ0 + 2β1

(33)
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