

Development of the online simulation tool

ASTREG

Grigory Pomogaybo, National Research Nuclear University MEPhI, Russia

August, 2016

Supervisor: Klaus Floettmann

Advisors: Benno Zeitler,

Stephanie Manz

Abstract

This report presents my work during the DESY Summer Student Programme 2016 in the MPY

group. My primary task was to setup an online model for the REGAE accelerator – program

ASTREG, which could read machine parameters from the control system and transfers them to

the ASTRA. The report contains a description of this program, work of its components and

results obtained when ASTREG was used.

1

Contents

1. Introduction ... 2

1.1 REGAE accelerator ... 2

1.2 A Space Charge Tracking Algorithm (ASTRA) .. 4

2. ASTREG Manual.. 6

2.1 Basic concept ... 6

2.2 INPUT and global parameters .. 7

2.3 RUN/STATUS .. 12

2.4 DISPLAY .. 14

2.5 Additional information about ASTREG ... 18

3. Experimental part ... 20

4. Conclusion .. 21

5. References.. 22

2

1. Introduction

1.1 REGAE accelerator

REGAE the Relativistic Electron Gun for Atomic Exploration is a small electron accelerator

build and operated within the framework of the Center for Free-Electron Laser Science CFEL,

i.e. in a collaboration of the Max Planck Society, the University of Hamburg and DESY.

REGAE provides high quality electron bunches for time resolved diffraction experiments and

serves as test bed for accelerator R&D.

Figure 1.1 Overview of the REGAE accelerator

REGAE employs a photo cathode RF

gun operated at 3 GHz (S-Band) for

the production of electrons. The 1½

cell gun cavity, a scaled version of the

cavity in operation at the FLASH FEL,

accelerates the electrons to energies of

up to 5 MeV. A second RF cavity is

operated in bunching mode, i.e. the

electrons pass the cavity at the zero

crossing of the field, such that a

correlated energy spread is introduced.

In the following drift section the bunch length decreases due to the different velocities and

reaches a minimum about 4 m downstream of the bunching cavity where the target chamber is

located. Extraordinary emittance requirements in the nm range (normalized) and pulse lengths

down to a level of ~10 fs require operation at low bunch charges on the sub-pC scale.[1]

Figure 1.2 REGAE components

3

On Figure 1.3 we can see the position of all REGAE elements. Subsequently, these positions

will be needed to create the input file for ASTRA’s calculations. (Basically, ASTREG creates

the input file without steerers and dipole magnet, but if it will be nessesary, it can be simply

modified.)

Figure 1.3 Position of REGAE components

Component Position, mm

Gun, start flange -62,20

Cathode 0,00

Gun, center 40,53

Gun, end flange 143,26

Laser mirror edge 286,90

Laser mirror port, center 290,90

Steerer 1 352,00

Solenoid 1, center 550,00

DDC 1, port 1, center 693,00

DDC 1, port 2, center 773,00

Solenoid 2, center 929,50

Steerer 2 1192,00

Buncher, start flange 1200,80

Buncher, start of first cell (inner wall) 1270,00

Buncher center 1360,16

Buncher, center of first cell 1290,00

Buncher, end flange 1519,51

Steerer 3 1654,00

DDC 2, port 1, center 1899,00

DDC 2, port 2, center 1979,00

Solenoid 3, center 5024,90

Target chamber, center 5505,80

Steerer 4 5861,90

(optional Solenoid 4, center) 5986,70

Detector port 1, center 7505,80

Detector port 2, center 9505,80

Detector port 3, center 11505,80

4

1.2 A Space Charge Tracking Algorithm (ASTRA)

The Astra (A Space Charge Tracking Algorithm) program package consists of the five parts:

Figure 1.4 Astra’s components

Astra is written in Fortran 90 and runs on different platforms. The main development platforms

are LINUX and Windows. Executables for other platforms are updated less frequently. The

menu controlled graphic programs are based on the subroutine package PGPLOT. The input files

for the programs generator and Astra are organized in form of Fortran 90 namelists. Each

namelist starts with an ampersand (&) followed by the name of the namelist and ends with a

slash [2].

Input namelist for generator

 INPUT - contains basic

instructions for the particle

distribution;

Input namelists for Astra

 NEWRUN - contains basic

instructions for the tracking;

 OUTPUT – contains

specifications for the generation

of output;

 APERTURE - allows to include apertures and to

define material properties for secondary electron

emission;

 WAKE - contains the parameters for the wake

fields;

5

 SCAN – contains the

parameters for the scanning

procedure;

 MODULES - allows to

combine elements from other

namelists to modules;

 ERROR - allows adding

randomly generated errors to

element and bunch parameters;

 CHARGE – contains the

parameters for the space charge

calculation

 CAVITY - allows the user to include, and to some

extent to modify arbitrary RF, static electric and

magnetic fields;

 SOLENOID - allows to include arbitrary solenoid

fields by means of tables, which may be generated

by analytical calculations, measurements or

numerical codes;

 QUADRUPOLE - allows to include quadrupole

fields based on analytical expressions and field

profile data;

 DIPOLE - allows to include dipole fields based on

analytical expressions

After the input files are created,the user starts the generator and Astra programs. By the end of

calculation,the user gets .ref .Xemit .Yemit .Zemit files with data columns. Table 1.1 shows the

structure of these files.

Table 1.1 Results of ASTRA calculation

 1 2 3 4 5 6 7 8 9

ref z, m t, ns pz,

MeV/c

dE/dz,

MeV/m

Larmor

angle, rad

xoff, mm yoff, mm px,

eV/c

py,

eV/c

Xemit

z, m

t, ns

xavr, mm

xrms, mm

x’rms, mrad

εx,norm,

π mrad

mm

x·x’avr,

mrad

Yemit

z, m

t, ns

yavr, mm

yrms, mm

y’rms, mrad

εy,norm,

π mrad

mm

y·y’avr,

mrad

Zemit

z, m

t, ns

Ekin,

MeV

zrms, mm

∆Erms, keV

εz,norm,

π keV

mm

z·E’avr,

keV

6

2. ASTREG Manual

2.1 Basic concept

The plan for the summer internship was to create a MatLab program which could read machine

parameters (magnet currents, rf amplitudes and phases) from the control system and transfers

them to ASTRA. After that, Astra should run automatically and the results should be displayed

on the control screen. The purpose of the online model is to guide the operator during

experiments, help to understand measurements, errors, alignment etc.

Figure 2.1 ASTREG application

For better understanding, ASTREG can be divided into 3 basic parts:

 INPUT – part, which controls incoming data (from REGAE or user) and keeps it in the

memory for the next steps.

 RUN/STATUS – part, which controls the creation of .in files for ASTRA. Also, this part

starts the ASTRA calculation.

 DISPLAY – part, which contains the graphical interface for ASTRA’s results.

7

2.2 INPUT and global parameters

Figure 2.2 shows the interface of the INPUT part. It contains one tab panel with REGAE

parameters and one panel for ASTRA. The tab panel consists of 4 panels: Solenoids, RF par,

Collimators, Scaling. All of these panels are filled with graphical elements, which can be

controlled by the user. Before describing the functions, related to these elements, have a look

at the global parameters and their purpose:

Table 2.1 Global parameters

Name Description

global

ASTREGDATA

.solenoid

.sol1cur Contains the

information about

current in

solenoids.

.sol23cur

.sol45cur

.sol67cur

.sol1mag Contains the

information about

the max. of the

magnetic field.

.sol23mag

.sol45mag

.sol67mag

.rf_par

.gun_ampl These globals

contains GUN’s

parameters.
.gun_phase

.buncher_ampl Same for buncher

.buncher_phase

.gun_scale Scaling parameters

for buncher and GUN. .buncher_scale

.collimators .col1 Contains the

information about

collimator’s holes.
.col2

.scaling

.sol1_scal Contains the

information about

solenoids scaling

parameters.

.sol23_scal

.sol45_scal

.sol67_scal

Figure 2.2 Interface of INPUT part

8

.astrapar

.space_charge ‘boolean’ if false,

space charge fields

are not taken into

account.

.number_of_particles Contains number of

particles to be

generated.

.transverse rms bunch size in

the transverse

direction

.longitudinal rms bunch size in

the longitudinal

direction
.track_all ‘boolean’ if false,

only the reference

particle will be

tracked

.track_on_axis ‘boolean’ if true,

the reference

particle will be

tracked only on axis

global

ASTREGSERVICE

.astreg_folder Contains correct path to folder with ASTREG

program.
.results_name Contains correct path to folder with results

of ASTRA calculation (or previous results,

loaded with button_load_results).
.ampl_or_phase Indicator, which controls type of incoming

value in RF par section (set manually).

.ampl_or_phase_source Indicator, which controls type of incoming

value in RF par section (got from REGAE).
.magnet_id Indicator, which controls currently

operating solenoid, in Solenoid section.
.rf_id Indicator, which controls currently

operating RF component (GUN or Buncher) , in

RF par section.
.run_id Indicator, which controls Astra calculation.

If it’s equal 0, ASTRA makes a full

calculation. Else, it starts the calculation

from the place, selected by choose_start

element.
.refresh_graf_id Indicator controls actual type of result,

which must be refreshed (actual, when ASTRA

is running).
.grid_id Indicator, which controls grid display.
.collimators_use Indicator, which controls use collimators or

not.
.phase_scan_use Indicator, which controls use Phase scan or

not.

global

SERVERDATA

.sol1.Strom_Soll Solenoids actual current, received from tiny

server. .sol23.Strom_Soll
.sol45.Strom_Soll
.sol67.Strom_Soll

.sol1.stat.PS_EIN Solenoid status, received from tiny server.

.sol23.stat.PS_EIN

.sol45.stat.PS_EIN

.sol67.stat.PS_EIN

.modulator.stat.

SysStateRead.value

Modulator status, received from tiny server.

.gun_ampl GUN’s parameters, received from tiny server.

.gun_phase

.buncher_ampl Buncher parameters, received from tiny

server. .buncher_phase

9

Table 2.2 Tab panel elements

№ Type Tag

1 Pop-up menu choose_magnet

Callback

Description

Loads current and magnetic field from

global ASTREGDATA. Also, through

ASTREGSERVICE.magnet_id program

controls solenoid selection.

2 Text mag_status

Callback

Description

Doesn’t have callback func. It shows

status of selected magnet (on/off)

IMPORTANT – it works only when we get

result from the REGAE control system.

3 Radiobutton set_manually

Callback
Description

When it’s on, it makes unavailable all

interface elements connected with

REGAE.

4 Edit text current_value

Callback

Description

User sets current, it will be saved in

ASTREGDATA and recalculated into

magnetic field (scale parameters from

ASTREGDATA also included).After

calculation it will be saved in

ASTREGDATA.solenoid.sol1mag and sent

into magnet_value.

5 Edit text magnet_value

Callback
Description

Reverse to (4)

6 Radiobutton get_magnet_source

Callback

Description

When it’s on, it makes unavailable all

interface elements connected with

manual parameters setup. After that, it

connect to matlab tiny server and

returns information about selected

solenoid (status, current,

automatically recalculates current into

magnetic field).All parameters will be

saved in ASTREGDATA.

7 Edit text current_value_source

Callback

Description

Not usable, but if someone try to

change value, it automatically updates

it from global parameters.

8 Edit text magnet_value_source

Callback

Description

Same as (7)

9 Pop-up menu mset_source

Callback

Description

(in progress) choose source for ASTREG

connection (archive data for example)

10

№ Type Tag

1 Pop-up menu choose_rf

Callback

Description

Callback function loads amplitude and

phase for selected component Also,

through ASTREGSERVICE.ampl_or_phase
program controls which parameter will

be shown in rf_value.

2 Text rf_status

Callback

Description

Doesn’t have callback func. It shows

status of selected rf component

(on/off) IMPORTANT – it works only when

we get result from the REGAE control

system.

3 Radiobutton set_manually_rf

Callback

Description

When it’s on, it makes unavailable all

interface elements connected with

REGAE.

4 Pop-up menu type_rf

Callback
Description

Loads amplitude or phase of selected

REGAE component. Also changes text (

“MV/m” or “deg”)

5 Edit text rf_value

Callback

Description

By the ASTREGSERVICE.rf_id and

ASTREGSERVICE.ampl_or_phase program

controls type of incoming value and

save it in ASTREGDATA.

6 Radiobutton get_rf_source

Callback

Description

When it’s on, it makes unavailable all

interface’s elements connected with

manual parameters setup. After that,

it’s connect to matlab tiny server and

returns information about selected rf

component (status, amplitude, phase).

7 Pop-up menu type_rf_source

Callback

Description

Same as (4)

8 Edit text rf_value_source

Callback

Description

Not usable, but if someone try to

change value, it automatically updates

it from global parameters.

9 Edit text rf_scale

Callback

Description

Contains scaling parameter for RF

10 Pop-up menu rfset_source

Callback

Description

(in progress) choose source for ASTREG

connection (archive data for example)

11

№ Type Tag

1 Radiobutton use_collimators

Callback

Description

When it’s on, it makes available

Collimator 1 and Collimator 2. When

it’s off, ASTRA doesn’t include

APERTURE part in calculation.

2 Edit text col1_value

Callback

Description

User sets radius of collimator’s hole,

it will be saved in ASTREGDATA.

3 Edit text col2_value

Callback

Description

Same as (2)

№ Type Tag

1 Edit text sol1_scal

2 Edit text sol23_scal

3 Edit text sol45_scal

4 Edit text sol67_scal

Callback Description

User sets scaling parameter for magnet, it will

be saved in ASTREGDATA. It needs to recalculate

magnetic field from current:

𝑩𝒎𝒂𝒙 = (𝒔𝒐𝒍𝒔𝒄𝒂𝒍 ∗ 𝑰 + 𝟎. 𝟑)𝒎𝑻

To compare all these panels, ASTREG use Tap_creator function. (It’s location ~

\ASTREG\Components\Tab_creator)

Also, INPUT part contains parameters, which need to setup ASTRA:

12

Table 2.3 ASTRA PARAMETERS elements

№ Type Tag

1 Button space_charge

Callback

Description

It controls

ASTREGDATA.astrapar.space_charge

2 Edit text number_of_particles

Callback

Description

User sets number of particles, it will

be saved in ASTREGDATA.

3 Radiobutton track_all

Callback

Description

It controls

ASTREGDATA.astrapar.track_all

4 Radiobutton track_all_on_axis

Callback
Description

It controls

ASTREGDATA.astrapar.track_on_axis

5 Edit text transverse

Callback

Description

User sets transverse beam size at the

cathode, it will be saved in

ASTREGDATA.

6 Edit text longitudinal

Callback

Description

User sets longitudinal beam size at the

cathode, it will be saved in

ASTREGDATA.

7 Button load_all

Callback

Description

Saves all RF and solenoid parameters in

global ASTREGDATA.

2.3 RUN/STATUS

Figure 2.3 Interface of RUN/STATUS part

Figure 2.8 shows the interface of RUN/STATUS part. This part controls all manipulations

for the ASTRA simulation. From here, user can start a full calculation, or, if a full calculation

was done previously, recalculate it, starting with from any REGAE component. Let’s have a

look at the algorithm of this part:

13

14

2.4 DISPLAY

Figure 2.4 Interface of DISPLAY part

Figure 2.9 shows the interface of DISPLAY part. This part controls all manipulations with

results of ASTRA simulation. Interface contains:

Table 2.4 Interface description

№ Type Tag

1 Axes astra_graf

Callback

Description

Doesn’t have callback func. It shows the results, which can be

chosen by result_choose.

2 Pop-up menu result_choose

Callback

Description

Callback function execute list of subroutines. When user chooses

type of the result, he actually chooses which subroutine must be

executed.

List of subroutines:

 alfa_function

 average_energy

 beta_function

 coherence_length

 delta_phase_advance

 larmor_angle

 long_emittance

 particle_velocity

 phase_advance

 ref_particle_trajectory

 reference_particle_momentum

 rms_beam_divergence

 rms_beam_size

 rms_bunch_length

 rms_energy_spread

 trans_emittance

15

3 Button refresh_graf

Callback

Description

(actual, when ASTRA’s calculation is running) Updates astra_graf,

considering which type of result is set in result_choose.

4 Radiobutton grid_graf

Callback

Description

astra_graf opens with grid

5 Radiobutton zoom

Callback

Description

astra_graf opens with zoom mode

6 Radiobutton current_run

Callback

Description

When it’s on, it makes unavailable to load the results from

previous run.

7 Radiobutton results_from_previous_runs

Callback

Description

When it’s on, it makes available to load the results from

previous run.

8 Button button_load_results

Callback

Description

Loads results from previous run. (Important! Callback function

doesn´t open results, it just takes filename to set the right

path to the results, so user must select ASTRA’s input file).

9 Radiobutton use_phase_scan

Callback

Description

Makes available to use phase scan (Important! It should be active

before ASTRA calculation)

10 Edit text phase_scan_start

Callback

Description

User sets start point of phase scanning, it will be saved in

ASTREGDATA.

11 Edit text phase_scan_end

Callback

Description

User sets end point of phase scanning, it will be saved in

ASTREGDATA.

12 Edit text phase_scan_numb

Callback

Description

User sets number of points for simulation, it will be saved in

ASTREGDATA.

13 Button phase_scan_result

Callback

Description

Opens phase_scan subroutine. Makes a plot in astra_graf.

As we can see, DISPLAY part (particularly part with choosing of the result) is divided into

modules (subroutines), so it is very simple to add new modules with result calculation, if it will

be needed in future. For now, ASTREG has 16 (+1 phase scanning) subroutines, which take the

result of calculation (Table 1.1) and calculates final result for user:

16

Table 2.5 Result subroutines description

№ Subroutine Description Example

1

Trans.

Emittance

Using .Xemit.001:

1 column – z, m

6 column - εx,norm, π mrad mm

Using .Yemit.001:

6 column – εy,norm,π mrad mm

2

rms Beam size

Using .Xemit.001:

1 column – z, m

4 column - xrms, mm

Using .Yemit.001:

6 column – yrms, mm

3

rms Beam

Divergence

Using .Xemit.001:

1 column – z, m

5 column - x’rms, mrad

Using .Yemit.001:

5 column – y’rms, mrad

4

Long. Emittance

Using .Zemit.001:

1 column – z, m

6 column - εz,norm, π keV mm

5

rms Bunch

length

Using .Zemit.001:

1 column – z, m

3 column - Ekin, MeV

4 column - zrms, mm

𝑊 = 𝐸𝑘𝑖𝑛 + 𝑊𝑟𝑒𝑠𝑡

𝑝 = √(𝑊 𝑐⁄)2 −𝑚2𝑐2

𝑣 = (𝑐𝑝) √𝑐2𝑚2 + 𝑝2⁄

𝑎𝑧 = 𝑧𝑟𝑚𝑠 𝑣⁄

17

6

rms Energy

Spread

Using .Zemit.001:

1 column – z, m

5 column - ∆Erms, keV

7

average Energy

Using .Zemit.001:

1 column – z, m

3 column - Ekin, MeV

8

Particle velocity

Using .Zemit.001:

1 column – z, m

3 column - Ekin, MeV

𝑊 = 𝐸𝑘𝑖𝑛 × 𝑞 +𝑊𝑟𝑒𝑠𝑡

𝑝 = √(𝑊 𝑐⁄)2 −𝑚2𝑐2

𝛽 = (𝑝) √𝑐2𝑚2+ 𝑝2⁄

9

Reference

particle

momentum

Using .ref.001:

1 column – z, m

3 column - pz, MeV/c

10

Ref. particle

trajectory

Using .ref.001:

1 column – z, m

6 column - xoff, mm

7 column - yoff, mm

11

Larmor angle

Using .ref.001:

1 column – z, m

5 column - Larmor angle, rad

18

12

Beta - function

From (8) we know β factor.

Using .Xemit.001:

1 column – z, m

4 column - xrms, mm

6 column - εx,norm, π mrad mm

Using .Yemit.001:

4 column – yrms, mm

6 column – εy,norm,π mrad mm

𝛽𝑥 = 𝑥𝑟𝑚𝑠
2 𝜀𝑥⁄ × 𝛾𝛽

𝛽𝑦 = 𝑦𝑟𝑚𝑠
2 𝜀𝑦⁄ × 𝛾𝛽

13

Phase advance

From (12) we know βx, βy.

Using .Xemit.001:

1 column – z, m

𝜑𝑥 = ∫
1

𝛽𝑥

𝜑𝑦 = ∫
1

𝛽𝑦

14

Alfa - function

From (12) we know βx, βy.

Using .Xemit.001:

1 column – z, m

4 column - xrms, mm

7 column - x·x’avr, mrad

Using .Yemit.001:

4 column – yrms, mm

7 column – y·y’avr, mrad

𝛼𝑥 = −(x𝑥𝑎𝑣𝑟
, 𝑥𝑟𝑚𝑠) × 𝛽𝑥⁄

𝛼𝑦 = −(y𝑦𝑎𝑣𝑟
, 𝑦𝑟𝑚𝑠) × 𝛽𝑦⁄

15

Coherence

length

Using .Xemit.001:

1 column – z, m

4 column - xrms, mm

6 column - εx,norm, π mrad mm

Using .Yemit.001:

4 column – yrms, mm

6 column – εy,norm,π mrad mm

𝑙𝑐𝑜ℎ𝑥 = 3.8 × 10−4 x𝑟𝑚𝑠 ε𝑥⁄

𝑙𝑐𝑜ℎ𝑦 = 3.8 × 10−4 y𝑟𝑚𝑠 ε𝑦⁄

2.5 Additional information about ASTREG

ASTREG has got many components, which located in different directions. Figure 2.10 shows

full map of the program and its components.

19

Fig
u

re 2
.5

 A
STR

A
’s m

a
p

20

Figure 3.2 Gun’s phase scan. Red - data from REGAE; blue - result of
calculation.

ab
s(

q
)

Phase, deg

Figure 3.2 Buncher’s phase scan. Red - data from REGAE; blue - result of
calculation.

En
e

rg
y,

 M
e

V

Phase, deg

3. Experimental part

Astra offers different

options to perform

parameter scans and

optimizations. A simple,

predefined scan based on

a single particle tracking

(the reference particle) is

performed by setting

‘PHASE_SCAN = True’

in NEWRUN. The energy

gain as function of the

cavity phase is stored as

well as the bunch

compression factor, i.e. the ratio of the bunch length at the exit of the cavity to the bunch length

at the entrance of the cavity. From the derivative of the energy gain w.r.t. the cavity phase a

quantity is derived which is proportional to the RF induced energy spread. When the scan for one

cavity is finished, the reference particle will be tracked through the cavity on the user-defined

phase up to the

entrance of the next

cavity. Thus, for low

energy beams (β < 1),

the result of the scan

for downstream

cavities depends on the

user-defined phase.

User defined scans can

be performed with the

scanning procedure

defined in the namelist

SCAN.[2]

21

4. Conclusion

By the end of the summer student program, full-operational program ASTREG, was developed.

At this moment, the program is able to perform the whole range of tasks, which were set at the

beginning of work. Also, a detailed description of how the individual components and the entire

program work has been issued. Modular approach to writing the program leaves ample

opportunities for a variety of modifications and transformations in the future.

The completion of this work will not be possible without the kind and patient help of my

supervisor Klaus, and my advisors Benno and Stephanie. With their help, I’ve improved my

skills at program development and learned so much about basic techniques of accelerator

controlling systems. I also want to express my gratitude to all organizers and lecturers of this

summer program. Thanks to you, I have learned a lot about modern technologies, which are used

in nuclear physics, and consolidated my knowledge of the theory.

22

5. References

[1]. http://regae.desy.de/

[2]. http://www.desy.de/~mpyflo/

[3]. http://adweb.desy.de/mcs/tine/tineMatLabAPI.html

[4]. Klaus Floettmann., ‘’Rf-induced beam dynamics in rf guns and

accelerating cavities’’., American Physical Society, 2015

[5]. http://de.mathworks.com/help/matlab/

[6]. http://ttfinfo.desy.de/REGAEelog/index.jsp

http://regae.desy.de/
http://www.desy.de/~mpyflo/
http://adweb.desy.de/mcs/tine/tineMatLabAPI.html
http://de.mathworks.com/help/matlab/
http://ttfinfo.desy.de/REGAEelog/index.jsp

