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Abstract

The International Linear Collider is a future lepton collider, with one of its physics
goals being detailed studies of the properties of the Higgs boson and related particles.
For precision measurements, good reconstruction algorithms are essential. This pro-
ject focuses on the hadronic decay of tau leptons. Studies of the Higgs self-coupling
is one of the cases for which hadronic tau decay is relevant. In order to do more
precise studies of the Higgs self-coupling, an algorithm to reconstruct these hadronic
tau decays is needed, as so far reconstruction methods are optimised only for elec-
trons and muons. This study describes a first attempt at the development of such a
hadronic tau reconstruction algorithm, using the tau decay lifetime and the impact
parameter. It is shown that the philosophy behind the algorithm seems promising.
However, there is no accurate way to determine the actual tau lifetime as of now, and
hence the algorithm is not yet applicable to more realistic situations. It is found that
being able to accurately estimate the tau lifetime is essential for this reconstruction
algorithm.
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1 Introduction

1.1 The International Linear Collider

The International Linear Collider (ILC) is a future electron-positron (lepton) collider, of 200-500
GeV (extendable to 1 TeV) centre-of-mass energy. The ILC has been designed as a ‘precision
machine’; to carry out more detailed studies of the Higgs boson and particles related to it, and
thus give insight in various properties of the Higgs field as postulated in the Standard Model. A
schematic overview of the ILC is shown in figure 1. [1]

Figure 1: A schematic overview of the ILC [2].

1.2 Motivation for Tau Reconstruction

The tau lepton is, with a mass of 1776.86 MeV, the heaviest lepton, and the only lepton that can
decay hadronically. Overall, the tau lepton decays are complicated. The tau has a mean lifetime
of 2.9× 10−13s. [3]

In previous studies, the tau reconstruction was treated in an inclusive manner [4] [5]. Fur-
thermore, Higgs self-coupling at ILC has been studied, and in e+e− → Zhh where Z → l+l−,
an isolated lepton finder has been optimised for electrons and muons, but not for (hadronic) tau
decays [6]. Hence, an algorithm to find hadronic tau decays can improve selection and the physics
results. In this study, a tau reconstruction method using its lifetime and impact parameter is
tried.
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2 Method

2.1 Calculation

In order to be able to calculate anything at all, a formula for pτ in terms of only known quantities is
needed. Though this method is more generally applicable, for the purpose of this project only the
hadronic tau decay is considered (τ → Xν, X denoting any hadron), more specifically τ → πν.
Using simple conservation of four-momentum, E2

τ = M2
τ − | ~pτ |2 = (EX + Eν)2 − (| ~pX + ~pν |)2

holds. Rearranging this gives M2
τ = 2p2⊥ + 2EX

√
p2ν,L + p2⊥ − 2pX,Lpν,L, where ⊥ and L denote

the directions perpendicular and parallel to the tau momentum direction respectively, and |~p| = p
for brevity.

This expression contains only known things and pν,L, which is hence determined. Now in-
troducing the decay length of the tau l and the impact parameter x, which is the distance of
closest approach of the interaction point (primary vertex) and the trajectory of X. Expressing
pX,⊥ and pX,L in terms of these quantities gives pX,⊥ = p⊥ = EX

x
l and pX,L = EX

√
1− (xl )

2.
Using this, pν,L can be expressed as a function of the decay length l and known quantities. Also,
since pτ = pν,L + pX,L, it follows that pτ is a function of l and known quantities.

The decay length l is related to the tau decay time in the laboratory frame, which is l = vt′,
where v = βc, and the decay time t’ is related to the proper decay time t by t′ = γt, from
which follows that l = γβct. Using that γβ = pτ/Mτ , the expression for the decay length can be

rewritten as l =
tcpτ

Mτ
. The lifetime of tau, t, is a known exponential distribution with an average

lifetime tav = 2.9 × 10−19s. Hence, an expression for pτ in terms of only known quantities can
be found. The full calculation is omitted here, as it is rather lengthy. The resulting expression is

pτ = ±

√√√√(EXx2
t2c2

+
M2
τ

4EX

)2

+ E2
X + 2

(
EXx

2

t2c2
−

M2
τ

4EX

)
EX .

The verification of this formula is done by starting from the rest frame of the tau. In the
rest frame, the neutrino and the hadron (X) are emitted back-to-back. Since the tau is at rest,
its energy is simply Eτ = Mτ , and conservation of linear momentum implies that ~pX + ~pν = 0,
or |~px| = |~pν | Using a simple planar coordinate system, the momentum ~pX can be decomposed
into lontigudinal and perpendicular components, pX,L = pX cos θ and pX,⊥ = pX sin θ, θ being
the angle between the track of X and the L direction.

Now, under the assumption that the mass of X is negligibly small compared to the tau mass
(this is of course already valid for the neutrino mass), it can be said that pX = EX and pν = Eν .

Energy conservation then implies that EX = Eν =
Mτ

2
, and the components of the hadron

momentum become pX,L = Mτ
2 cos θ and pX,⊥ = Mτ

2 sin θ.

Then, the entire system is boosted into the lab frame, in which tau is moving. Using super-
script asterix to denote the value in the lab frame, the Lorentz factors are found to be γ = E∗

τ
Mτ

and

γβ = p∗τ
Mτ

. Hence, the hadron energy transforms as E∗X =
E∗τ
2

+
p∗τ
2

cos θ. Using the geometrical

3



property of the similarity of triangles, the ratio x
ct is found to be

x

ct
=
p∗τ · pX,⊥
Mτ · E∗X

. Using these

expressions, the calculated tau momentum corresponding to any ‘true’ tau momentum and angle
can be found. This is done for both constant angle, varied true tau momentum (illustrated in
figure 2) as well as a fixed true momentum and varied angle (shown in figure 3).
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Figure 2: True versus calculated momentum for an input angle of 54 degrees.
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Figure 3: Calculated tau momentum, from a true tau momentum of 150 GeV.
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2.2 Processor

After the formula is verified in the simple theoretical case, it is implemented in code. More specific-
ally, a Marlin processor is developed to reconstruct the tau momentum from known (generator-
level) information [7]. Monte Carlo (MC) samples simulation e+e− collisions with a centre-of-mass
energy of 250 GeV are used, and only the τ → πν process is considered. Information about the
tracks of the particles is readily available, and using the available track parameters, the impact
parameter x is calculated. In the framework, various track parameters are available, three of
which are used in this studies. In the xy-plane, d0 denotes the shortest distance between the
reference point (see figure 4). Track parameter φ0 is the angle between the x-direction and the
direction of the momentum of the particle. In a coordinate system where the track of the particle
is a straight line, and the track is parametrised by the s direction (distance along the track)
and the z direction, the track parameter z0 denotes the distance of closest approach between the
reference point and the track (as shown in figure 5). The other track parameters are used to
denote the curvature and slope of the track, all together determining the direction and curvature
of the track.

Figure 4: The projection of the track in the x-y plane. The track parameter d0 denotes
the distance of closest approach between the track and the reference point. [8]

5



Figure 5: The projection of the track in the coordinate frame where the track is a straight
line. The track parameter z0 denotes the distance of closest approach between the track
and the reference point in this projection. [8]

Track parameter d0 is decomposed into x and y directions using the angle φ0 as ~d0 =
−d0 sinφ0~̂x + d0 cosφ0~̂y. In three dimensions, the vector pointing to the point on the track
of the pion denoted by d0 and z0 in the xy-plane and sz-plane respectively is ~w = −d0 sinφ0~̂x+
d0 cosφ0~̂y + z0~̂z. To find the shortest distance to the track of the pion in three dimensions (i.e.
the impact parameter x), the vector ~w, which is known to be on the pion track, is dotted into

the normalised momentum vector of the pion;
~w · ~p
|~p|

, which is the projection of the w-vector onto

the direction of the track (calling this ~v), thus reducing the problem to a two-dimensional one.
The impact parameter x is then trivially calculated using Pythagoras; x =

√
~w · ~w − ~v · ~v. [8]

The tau mass and constant c are well-known, and the energy of the pion is readily obtained
from the input data. The remaining unknown is the tau lifetime, which is known to be an
exponential distribution. In this project various values are taken for this tau lifetime, in order to
study its effect on the accuracy of the reconstruction. As a simple start the average tau lifetime of

2.9×10−13s is taken, and as a second step the actual lifetime is calculated using t =
lMτ

cpτ
, which is

a more accurate estimation, but unfortunately using information about the tau momentum, which
is known in this case but not under realistic conditions. As a final step, the lifetime calculated
using tau momentum information is plotted against the impact parameter x, and a simple linear
fit is done to obtain a rough relationship between the lifetime and impact parameter. This linear
function is implemented in the processor, to calculate the lifetime corresponding to any given
value of the impact parameter.

3 Results

As a first step, a plot is made using the approximation that the tau lifetime is constant and
always takes on its average value of 2.9 × 10−13s. As mentioned in section 2.2, 250 GeV MC
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samples are used in this analysis. In figure 6, it is shown that while the reconstruction is not
hugely inaccurate for low momentum, it is seen to be very poor for momenta around 125 GeV;
where a sharp peak in the true momentum values is observed, whereas the calculated values are
monotonically decreasing.

Figure 6: The calculated tau momentum (blue line), true tau momentum (red line) and
the energy of the pion (green line) for the assumption that the tau lifetime is constant
using 2.9× 10−13s.

In order to verify the main idea of this reconstruction algorithm, in the next step the true

lifetime of the tau is calculated, following the formula mentioned in section 2.2, t =
lMτ

cpτ
. The

results of this analysis are displayed in figure 7, in which a clear overlap of the true and calculated
tau momentum histograms is visible. The similarity in shape of the two histograms indicates
possible correctness of the main philosophy of this type of reconstruction.
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Figure 7: The calculated tau momentum (blue line), true tau momentum (red line) and
pion energy (green line) for the tau lifetime calculated using the true tau momentum.

Next, a logarithmic plot of the impact parameter x against the lifetime calculated using the
true tau momentum is made (shown in figure 8). A simple linear fit is done using ROOT [9],
which yields the equation log10 t = 0.65514 · log10 x − 12.0136, inverting the logarithm gives an
expression to calculate a rough estimate of the lifetime corresponding to a particular value of the
impact parameter, t = 100.65514·log10 x−12.0136.
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Figure 8: Logarithmic plot of impact parameter x against calculated lifetime of the tau.

Using this rough estimation to reconstruct the tau momentum, the results as shown in figure 9.
This method of reconstruction shows a slightly more accurate reconstruction for low momentum
compared with 6, but again gives very poor results for the momentum around 125 GeV.

Figure 9: Calculated tau momentum (blue line), true tau momentum (red line) and pion
energy (green) for a tau lifetime obtained from a linear fit on the impact parameter-lifetime
plot.
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4 Conclusion

4.1 Conclusion

From the analyses performed in this project, it seems that the main idea of reconstructing the
tau momentum using this method is promising, since the results when using the true value for
the lifetime are good. However, so far, no accurate way of determining a value for the tau lifetime
has been found, and hence the reconstruction algorithm is not yet applicable to realistic cases.
This study only dealt with a simplified case of reality, in which there is assumed to be no effect
of a magnetic field, meaning the particles all move in straight lines.

4.2 Future Studies

Given the current endpoint of the project, further studies are needed before this algorithm can
be implemented and used for reconstruction in realistic cases. As mentioned in section 4.1,
improvement could be made should an accurate way of determining the lifetime of the tau be
developed. Furthermore, taking into account the curvature of the tracks could lead to a higher
level of precision.
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