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Abstract

Various methods of atom position characterization in in bulk and surface regions
of crystals, using x-ray standing wave (XSW), have emerged during development
of x-ray experimental techniques in 20-th century. The XSW approach can be also
applied to non-periodic objects, deposited on a crystal surface, with the standing
wave generated inside a bulk used to probe the atomic arrangements above the
surface. Alternatively, the standing waves can be produced by Bragg diffraction
on long period artificial multilayer structures (ML). Various attempts were made
to apply the ML-generated XSW for biomembranes characterization. Recently,
in was demonstrated that the method can be directly applied to biomembranes
in native surrounding. Here we present a Python software, developed for fitting
of XSWF data from such objects. The new software was successfully tested on
both model and experimental datasets and has proved to be fast and user-friendly.
Noticeably, the program allows the user to introduce his own models, to put con-
straints in an existing model and simultaneously fit multiple data sets. This allows
one to involve a priori information, which is often necessary in biological objects
investigation.
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1 Introduction

The discovery of X rays by Wilhelm Conrad Roentgen in 1895 was followed by ex-
tensive development of experimental techniques of matter characterization, based on
high permeability and wavelengths range of x-rays. In 1960-s, concept of x-ray standing
waves as a interference pattern between incident and Bragg reflected x-ray waves from
a crystal (that was later expanded to several ordered structures) was proposed by P. W.
Batterman [1]. Since then, several techniques, requiring high monochromaticity of x-rays
(usually, from synchrotron sources) were developed and successfully applied to surface
and interface characterization with high spatial resolution and chemical selectivity.

As an important biological objects, lipid layers and bilayers (usually referred to as
biomembranes) are currently an object of interest of both fundamental science and in-
dustry. First, biomembranes separate inner part of the cell from outer space and serve
as a substrate for membrane proteins. They are the targets for more then a half of mod-
ern drugs, and biomembranes properties play a key role in both in vitro and in silica
fundamental studies of these proteins. Second, chemical properties of lipid molecules
allow them to spontaneously form differentstructures such as bilayers, cubic phases, mi-
celles, etc. in a solution, allowing one to use them for various research and drug-delivery
purposes.

X-ray standing wave, with a period matching to the typical thickness of an membrane,
can be generated within a Bragg peak from an artificial multilayer structure. The
fluorescence yield from specific membrane atoms, which is measured as a function of
angle close to Bragg peak, can be used to locate the position of atoms above the surface.

In 1990-s, first attempt to investigate single-layer Zn-labeled biomembranes using x-
ray standing wave fluorescence (XSWF) was made [2]. However, plausible quantitative
description of native light atoms (such as P, S) within membranes had become available
only recently [3, 4]. Here we present a tool for evaluation of XSWF yield data from
membrane objects. The software was tested on both model and experimental data. For
tested objects, description employing simple one- or two-gaussian models of light atoms
distribution was applied.

2 Methods

2.1 X-ray standing wave fluorescence

X-ray standing wave is a pattern of interference between incident and reflected x-
ray waves from a multilayer structure. Since the high contrast of XSW requires the
intensities of both waves to be comparable, they can be only observed within Bragg
peaks, which appear only at very small angles (typically ≈ 1◦) due to the high energy
of x-rays.

Standing wave shows periodicity that equals to that in a multilayer structure, divided
by the order of the Bragg peak (e.g. if we go from first to second Bragg reflection, one
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Figure 1: Typical reflectivity (logarithmic scale) from a 48 Åperiod multilayer, λ =
1.5 Å (left), and magnified first Bragg peak (right).

additional wave node will appear, doubling the number of nodes and reducing the period
by half).

Phase of the standing wave can be precisely tuned by the incident angle variation in
a small range within a Bragg peak (see Figure 2). For more detailed description of a
standing wave, one can see e.g. ref. [5].

Figure 2: Angular variation of the reflectivity (solid) and reflected beam phase (dotted)
for a multilayer structure. Courtesy from ref. [6]

For x-ray standing wave calculation we use the ”X-ray server” [7], that delivers re-
flectivity and standing wave intensity above the surface of a ML structure with given
parameters, such as chemical composition, thickness and various imperfection parame-
ters.
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Figure 3: Standing wave profile above the surface (from 0 to 100 Å ), calculated by ”X-
ray server”. Vertical and horizontal axes are the gracing angle θ and distance
above the surface z, respectively. The pattern on the left corresponds to the
reflectivity curve as shown at the Figure 1 (left). Three standing waves ap-
pearing around θ ≈ 0.1◦, θ ≈ 2◦ θ ≈ 3◦ correspond to total reflection and
first and third Bragg peaks, respectively. Magnified wave at a first Bragg peak
(shown on the right). One might clearly see that the period of the wave is
≈ 48 Å, same as the one of ML structure

.

2.2 Light atoms distribution

Fluorescence from light atoms, present in a molecule, can be in principle detected
from almost any chemical component (such as O, N, C, P). In reality, long wavelength
components from atoms as N, C and O get strongly absorbed by the water layer and
atmospheric gases on the way to fluorescence detector.

However, P atoms look especially promising for detection, since they are natural labels
of the hydrophilic head in phospholipids (1 atom per molecule) allowing one to precisely
locate it via XSWF.

In the software we implemented two possible fitting regimes, assuming that lipids
on the surface have native configuration (such as mono- or bilayer). For monolayer,
distribution of P atoms can be described as a gaussian distribution with a mean value
around a natural lipid length and standard deviation σ describes the level of disorder
within the layer.

We also use an additional linear parameter k, taking into account the geometrical
conditions of experimental setup, as described [8].

ρ (z, θ) = c · exp

(
−(z − z0)2

2σ2

)
+ kθ (1)

where k, c, z0 and σ are the fitting parameters.
The two-gaussian model allows to control the ratio between total amount of fluorescing

atoms in two peaks, thus, enabling the processing of non-symmetrical distributions.
Taking into account that the area under a gaussian is proportional to σc, we use the
following model:
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ρ (z, θ) = c1 · exp

(
−(z − z01)2

2σ2
1

)
+ c2 · exp

(
−(z − z02)2

2σ2
2

)
+ kθ (2)

where

c2 =
c1σ1
σ2N

(3)

with fitting parameters z01,2, σ1,2, k and N (the ratio).
Implemented restraints allow one to set limits for each parameter (minimum and

maximum, also including infinite borders), or to fix any set of parameters to allow more
precise refinement. This is also helpful during the search of initial parameters.

2.3 Fitting procedure

From the fitting of reflectivity measurements (such as Figure 1), one can extract the
parameters of the ML structure and calculate SW from this structure, using the ”X-
server”, as a tabulated function of A (z, θ) – intensity of the wave at each point and each
angle.

Experimental data is usually available as dependence I (θ), with the fluorescence yield
at certain wavelengths (corresponding to the certain chemical components of the sam-
ple) at a mesh around chosen Bragg peak. Since we have ρ (z, θ) from Equation 1 or
Equation 2 and the intensity A (z, θ) of the SW, one can obtain the model curve as:

Imodel (θ) =
zmax∑
zmin

ρ (z, θ) · A (z, θ) (4)

As a target function for minimization, we employ widely used among physicists chi-
square parameter, that is, in our case:

χ2 =
1

L− p

θmax∑
θmin

(
Imodel − Iobs

∆obs

)
(5)

where ∆obs = ∆obs (θ) is the experimental error at each angle. L and p are the number
of experimental points and number of parameters, respectively.

As an independent goodness-of-fit parameters, we also use crystallographic r-factor-
like value as a measure of consistency between data and model:

R =
θmax∑
θmin

|Iobs − Imodel|
|Iobs|

(6)

Fitting routine uses lmfit package [9], available for both Python 2 and Python 3
programming languages. Notably, out implementation allows one to run the script with
both versions of Python.
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3 Results and discussion

3.1 Fitting workflow

On a reasonably big lattice (81× 200 = 16200 points) fitting of single gaussian model
is not time consuming (from almost any reasonable parameters set it converges to the
minimum, if there exists one, in less then 20 seconds on 1 core of IntelCore i5-4200M CPU
with 2.50GHz). However, fitting of two-gaussian model is much more sophisticated and
requires reasonable initial conditions and restraints for most of parameters. We usually
run single-gaussian mode first, to estimate the initial amplitude, and then try to locate
optimal values for gaussian centers and half-widths. It was noticed that use of reasonable
restraints for both σ and z0 parameters could be very helpful.

Specifically, one could set the ”window” for z0 parameter with ≈ Λ (ML period) width,
e.g. min=30, max=80, and control the distance between to the surface by putting
constraints on σ1 (e.g. σ1 = 10, min=0, max=10, to keep 3σ-width of the distribution
above the surface). Control of the distance between two different distributions is also
possible, but one should always remember that the distance larger then the period of a
SW is useless due to summation along z-coordinate and Λ-periodicity of the SW.

It should be also noted that the software allows one to observe the fitting parameters
in real time, significantly reducing the amount of wasted time in case of fitting is stuck
in a local minimum.

Since the software allows only command-line mode without any graphical interface,
one may find the semi-graphical mode with one input file, inspired by [10], rather con-
venient.

3.2 Model datasets

To estimate the functionality of the algorithm, we implemented 3 separate datasets
and attempted to fit them in different regimes (see Table 1). Artificial zero-mean normal-
distributed noise of 4% was added to each dataset.

Dataset z0, model z0, fit σmodel, σfit χ2 R
1-peak-1-fit 50 95 5 5 54 0.026
2Λ-2-fit 30, 120 –, – 5, 5 –, – – –
2Λ-1-fit 30, 120 120 5, 5 4.9 10 0.019
3Λ/2-2-fit 30, 96 29.8, 95.9 5, 5 4.9, 4.9 1.1 0.021
3Λ/2-1-fit 30, 96 43 5, 5 16 5.3 0.023

Table 1: Summary for model datasets: simple single-gaussian distribution, fitted with
single-gaussian curve, and two bi-modal distributions, shifted by 2Λ and 3Λ/2
with attempts to fit them with single-gaussian and two-gaussian distributions
both.
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3.2.1 Single-gaussian convergence

Dataset ”1-peak-1-fit”, simple single-gaussian distribution, has shown great consis-
tency with the model distribution, as one can clearly find from the table.

Moreover, we recorded the model parameters during fitting in order to visually esti-
mate the characteristics of found minimum. One can clearly see steps-like improvement
of χ2 at the (Figure 4).

Figure 4: Convergence of 1-peak-1-fit dataset fitting.

The width of each step equals to the number of parameters in the model (4, in our
case). In contrast, at the convergence stage one can rarely notice any changes in both χ2

and R-factor. Also parameters of the model change slightly after approximately half of
steps. One can use this estimation for manual interruption of algorithm during the search
of plausible initial parameters. It should be noticed that the algorithm shows similar
behavior during two-gaussian fitting, which rarely converges without pre-alignment of
initial conditions, thus allowing one a powerful tool for the initials search.

3.2.2 Two-gaussian distributions

We have created two bi-modal datasets with 2Λ and 3Λ/2 distances between maxima.
The distance in the former distribution was deliberately set a multiple of the SW period
in order to illustrate the inefficiency of bi-modal distribution in such a case.

Figure 5: Model atom distribution above the surface. 2Λ dataset shown in solid, 3Λ/2
is dashed. Red dashed lines show the nodes of the SW at the Bragg angle
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As one can clearly see from Table 1, 2Λ model can be fitted perfectly with single-
gaussian distribution. Moreover, it did not fit any of two-gaussian distributions with
reasonably different z0 or similar σ (during fitting procedure ratio N between areas
under gaussians was kept constant, so one could expect σ1 = σ2 after fitting, which
was not observed). It also should be noted that the amplitude of single-gaussian and
two-gaussian fits (now shown), relate as 2:1, proving the fact that single-gaussian curve
equals to two similar curves with half amplitude.

Figure 6: 3Λ/2 1- and 2-fit modes imposed. They could be hardly distinguished by the
naked eye, however, numerical indicators clearly show the difference

However, the fitting procedure can clearly distinguish two different gaussian peaks
(χ2 = 1.1 vs. χ2=5.3) with 3Λ/2 distance, even it is seen nor by the naked eye at
(Figure 6) neither by R-factor (2.4% vs. 2.7%).

3.3 Real data fitting

For real-world testing of the program, we took two experimental datasets [11] from a
very recent experiment at the ESRF ID10 beamline. Fitted curves show good consistency
with the data, both at the qualitative (see Figure 7) and the quantitative level (see
Table 2). The obtained results correspond extremely well to the values expected for the
objects under investigation.

Dataset z0,fit σfit χ2 R
SGC highhum K 36 8.0 0.026 0.046
PEG highhum P, 2-fit 23, 96 8.7, 9.4 0.028 0.043
PEG highhum P, 1-fit 60 13.0 0.030 0.046

Table 2: Two experimental datasets from yet unpublished work. Knowledge of the na-
ture of studied membranes allows us to know that these are mono- and bilayers
in SGC and PEG cases, respectively. Better consistency of the data in case of
PEG-2-fit mode is clearly seen.
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Figure 7: Fluorescence yield curves for both experimental datasets. For values, see Ta-
ble 2

4 Conclusion and future plans

In conclusion, I have implemented a Python-based software for x-ray standing wave
data evaluation. The software was tested on both model and experimental data and
has shown its high efficiency and reliability. As a future development of the software,
I would suggest making the software public domain and, if demanded, supply it with a
graphical user interface.
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waves. Nature, 354(6352):377–380, 1991.
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