Software Development for the Crystallography Software
Suite CrystFEL

Dominik Michels, RWTH Aachen University, Germany

September 6, 2016

Abstract

The following report present the improvements to the crystallography software
suite CrystFEL implemented by the summerstudent Dominik Michels. The im-
provements include a new python geometry parser implemented according to the
definition standards of a CrystFEL geometry file . The parser is able to validate
given geometry files and outputs the geometry information as a hierarchical python
dictionary. Furthermore the functionality to read CrystFEL stream files with the
diffraction pattern viewer cxiview.py has been implemented. cxiview.py is now
able to draw found and predicted peaks as well as to display information about the
crystal structure. Within cxiview.py error management and stability has been
improved.

Contents

I Introductionl 1
2 Implementation of a CrystFEL geometry parser in python| 3
2.1 Parsing the file| 3
[2.1.1 Handling beam characteristic information|. 3

[2.1.2 Handling panel information| 4

[2.1.3 Handling bad region information| 4

[2.1.4 Handling rigid group and rigid group collection information|. . . . 5

[2.2 Storing the information|.o)
[2.3 Usage of the GeometryFileParser class| 6
2.3.1 GeometryFileParser._init_| 6

[2.3.2 GeometryFileParser.check{ 6

[2.3.3 GeometryFileParser.parsel 7

[2.3.4 GeometryFileParser.pixel map_for_cxiview| 7

[2.3.5 GeometryFileParser.dump| 7

[3 Enhancements to the cxiview.py program| 8
[3.1 Description ot the new features 8
[3.2 Description of the code improvements|. 9

4 Summary and Outlook| 11

APP § 12

1 Introduction

In “serial femtosecond crystallography” at free electron lasers, such as the Linac Coherent
Light Source at SLAC, protein crystals are illuminated by strong photon pulses for a
short amount of time. The photons are diffracted by the crystal structure and measured
by a detector located behind the crystal. Due to the the high shot rate of free electron
lasers many images can be recorded in a short amount of time resulting in thousands of
diffraction patterns which need to be analyzed. This analysis process is automated by
the snapshot serial crystallography suite CrystFEL [4].

The software suite CrystFEL provides, besides the functionality to analyze diffraction
patterns, the program hdfsee to display the images recorded by the detector. This is
especially useful in order to check the quality of the recorded diffraction images and to
control and manage the analysis process of CrystFEL. Besides hdfsee in CrystFEL there
is the cxiview.py program in the cheetah software suite [3]. cxiview.py works similar
to hdfsee but is written in the interpreted language python and provides a different
feature set. It has the capability to display both predicted and found peaks and draw
resolution rings.

The first result of this work is the improvement of the code quality and the addition of
new features to the program cxiview.py.

The detectors at free electron lasers usually consist out of many small modules mounted
on a plate. [Figure 1| shows for example a photo of the detector at LCLS at SLAC.
Each panel can be seen as a single camera. The data received from the detector after
a snapshot is the raw pixel data from the single panels. To spatially reconstruct the
diffraction information it is therefore necessary to know the position of the panels on the
plate. Hence, in order to display the images correctly, the information of the geometrical
layout of the detector is needed. This geometry information is saved in a standardized
file format described in [1]. The resulting files are called geometry files. For the programs
using the geometry file it is essential to have a geometry file parser to get the relevant
information out of the geometry file format.

The second goal of this work is the development of a multi-purpose geometry file parser
in python.

In of this report the CrystFEL geometry file format and the implementation
of the geometry parser is described in detail. In the enhancements of the
cxiview.py program are explained and shown in pictures. This report is written as a
technical report providing information about features and implementation details about
the programs. For a more general overview over CrystFEL visit https://www.desy.
de/~twhite/crystfel/.

https://www.desy.de/~twhite/crystfel/
https://www.desy.de/~twhite/crystfel/

Figure 1: This figure = shows a picture from https://portal.slac.
stanford.edu/sites/lcls_public/instruments/cxi/pictures/ |
2013-04-19-CSPAD-DS1-Image-1700.JPG of the detector at the free
electron laser LCLS at SLAC. The detector is subdivided into 32 modules
which are mounted on a logical board. The position of the modules is
measured before the detector is mounted behind the free electron laser.

https://portal.slac.stanford.edu/sites/lcls_public/instruments/cxi/pictures/2013-04-19-CSPAD-DS1-Image-1700.JPG
https://portal.slac.stanford.edu/sites/lcls_public/instruments/cxi/pictures/2013-04-19-CSPAD-DS1-Image-1700.JPG
https://portal.slac.stanford.edu/sites/lcls_public/instruments/cxi/pictures/2013-04-19-CSPAD-DS1-Image-1700.JPG

2 Implementation of a CrystFEL geometry parser in
python

In this section the implementation and usage of the CrystFEL geometry parser in python
is described. The CrystFEL geometry file format is defined and explained in detail on
the webpage [1]. Thus an explanation about the physical meaning of the parameters in
the geometry file is omitted here. The first part of this section focuses on the structural
layout of the information and the design of the parser program. The second part of this
section is concerned with explaining how to use the parser in later applications.

2.1 Parsing the file

The geometry parser starts to parse the geometry file by reading the file into memory
and removing all comments and all resulting empty lines. After that the parser processes
every line sequentially.

The geometry parser was designed to be highly adaptable to changes in the definition
of the geometry file. Therefore every line of the file is parsed with the help of regular
expressions with can easily be extended to include new information without changing the
core implementation of the parser. Depending on the structure and the found keywords,
also called properties, the category of the information in the line is decided.

The information stored in a line of the geometry file can be divided into five categories:
Information about beam characteristics, detector panels, bad regions, rigid groups and
rigid group collections. Each of the categories has a slightly different information layout
which requires a slightly different parsing process.

2.1.1 Handling beam characteristic information

The information about beam characteristics is stored as an assignment of the form:
Property = Value (1)

Property is the name of the beam characteristic information and Value the actual
information. The properties allowed in a geometry file are photon_energy and pho-
ton_energy_scale. The Value can either be of the type string, integer or float.

The beam characteristic information is parsed with the help of the regular expression:

“[\s]x

(?'rigid_group) # must not be a Tigid group
(?!'rigid_group_collection) # must not be a rigid group collection
([A-Za-2z0-9_1+) # property mname

[\s]=*

(.x$) # value

If the matched property name does not match the allowed beam characteristic properties
an error is reported.

2.1.2 Handling panel information

The information about detector panels is stored as an assignment in two different forms:

Panel/Property = Value (2)
Property = Value (3)

Panel is the name of the panel in the detector. For panel names only alphanumeric
characters and {_} are allowed. Property and Value contain the panel properties and the
information about the actual value of the given property. The different representations
and |3| of panel information are referred to as local and global information respectively.
If the information is of the form [3] i.e. global it is not assigned to a specific panel and
therefore considered to be valid for all following panels in the geometry file. If for a
following panel the same property is also defined in the local form, the local information
is preferred.

The local panel information is parsed with the help of the regular expression:

“[\sl=*

(7!bad) # must not be a bad region
([A-Za-2z0-9_1+) # panel name

\/

([A-Za-2z0-9_1+) # property mname

[\s]*

(.*x$) # property walue

The global panel information is, due to the same structure as the beam characteristic
information, parsed with the same regular expression as the beam characteristic informa-
tion. The two categories are distinguished by the allowed properties. The list of allowed
properties is data, dim0, diml1, dim2, dim3, min_fs, min_ss, maz_fs, max_ss, adu_per_eV,
badrow_direction, res, clen, coffset, fs, ss, corner_z, corner_y, max_adu, no_index, mask,
mask_file, saturation_map, saturation_map_file, mask_good, mask_bad, adu_per_photon.

If the found Property does not match a property on the list an error is reported.

2.1.3 Handling bad region information

The information about bad regions is stored as an assignment of the form:
Badregion/Property = Value (4)

The name of the bad region is given by Badregion. It has to begin with the three
characters {bad}. Otherwise the bad region will be detected as a new detector panel.
The bad region and the property of the bad region are allowed to consist out of all
alphanumeric characters and {_}. The geometry parser imposes no restriction on the
allowed properties.

The bad region information is parsed with a regular expression similar to the regular
expression for detector panels:

“[\sl*

(?=bad) # must have bad at the beginning
([A-Za-20-9_1+) # bad region name

\/

([A-Za-z0-9_1+) # property mname

[\s]=*

(.x$) # property wvalue

2.1.4 Handling rigid group and rigid group collection information

The information about rigid groups and rigid group collections is stored as an assignment
in the following form:

Property = Valuel, ..., ValueN (5)

Property is the name of the rigid group or the rigid group collection. It has to start
with rigid_group or rigid_group_collection respectively. Otherwise it is treated as a global
panel information. The list of Values is supposed to contain panel names. The geometry
parser does not check if the Value is a panel name used in the geometry file. For both
the Property and the list of Values alphanumeric characters and {_} are allowed.

The rigid group and rigid group collection information is parsed with the help of the
regular expression:

“[\s]x*

((rigid_group) # rigid_group_collection respectively
(7! _collection) # this line is omtitted for

rigid_group_collections
[A-Za-z0-9_1+) # mame of the rigid_group or

rigid_group_collection
[\sI*
[\sI*

(([A-Za-2z0-9_1+)[\sl*x (,[\s]l*[A-Za-z0-9_J+[\s]l*)*)$

2.2 Storing the information

The information retrieved from the geometry file is stored in a hierarchical python dic-
tionary, called dictionary in the program. The first level of the dictionary has the keys
panels, beam_characteristics, bad_regions, rigid_groups and rigid_group_collections corre-
sponding to the information categories present in the geometry file. The information
storage is explained using the example of the panel information. The panel information
is stored behind the key panels. The keys of the dictionary dictionary[’panels’] are
the panel names and keys of the dictionary dictionary[’panels’] [’panell’] are the
panel properties. The assigned value to the specific panel properties is given by the
value stored in the dictionary.

The information of the other keys is stored analogously in the python dictionary. The ge-
ometry parser tries to store the values in the dictionary as integer or float, if a conversion
is possible. If not the values are stored as string objects.

2.3 Usage of the GeometryFileParser class

The main class implementing the features of the geometry parser is called GeometryFileParser.
The parser can be easily used by the creating a GeometryFileParser object. The parser
only needs the path to the geometry file on disk and has the functionality to parse the
geometry file, print the resulting python dictionary, validate the given geometry file and
generate the information needed for the cxiview.py program. The resulting dictionary
is stored in the global class variable dictionary. In the following the docstrings from
the implementation are given to describe the functionality of the methods in more detail.

2.3.1 GeometryFileParser.__init__
The constructor of the class.

Args:
filename (string): Path to the geometry file

Note:
The filename is optional. If a filename is given it is stored
in self.filename.

2.3.2 GeometryFileParser.check

This method checks if the given geometry file or the geometry
file stored in the self.filename fulfils the definition
standards of a valid CrystFEL geometry file.

Args:
filename (string): Path to the geometry file

Returns:
bool: True if the geometry file fulfills the standards, False
otherwise

Note:
The filename is optional. If no filename is given the filename
stored in self.filename is used.

2.3.3 GeometryFileParser.parse

This methods parses the geometry file and saves the information in
self.dictionary.

Args:
filename (string): Path to the geometry file

Note:
The filename is optional. If no filename is given the filename
stored in self.filename is used.

2.3.4 GeometryFileParser.pixel_map_for_cxiview
This method returns the information needed for the cxiviewer.py

Returns:
dict: Dictionary the cxiviewer.py needs to display the
information correctly. The keys are: x, y, r, dx, coffset,
shape, clen

2.3.5 GeometryFileParser.dump

This methods dumps the contents of the geometry dictionary
self.dictionary.

3 Enhancements to the cxiview.py program

In this section the enhancements to the cxiview.py program are explained. The
cxiview.py program was originally a part of the cheetah software suite |3] and is de-
signed to display diffraction snapshots from free electron lasers. A screenshot of the
program is shown in [Figure 21 The main part of the work on the cxiview.py program
was dedicated to implementing the functionality to display the contents of a CrystFEL
stream file. This functionality is especially useful for scientists using CrystFEL because
they can easily visualize and control the evaluation process of diffraction patterns.

3.1 Description of the new features

The cxiview.py program has to be used via command line. It features many different
options which are accessible by different command line flags. In order to use the new
stream file reading functionality the option -s has been introduced. The usage of the
new feature is as follows.

python cxiview.py -s <path to streamfile>

cxiview.py is dependent on python 3.5 and packages which are distributed with the
cheetah software suite. Hence, before using cxiview.py, please make sure that the
installation instructions on http://www.desy.de/~barty/cheetah/Cheetah/Cheetah_
GUI.html has been executed.

The new -s option parses the CrystFEL stream file. The parser has a similar layout as
the CrystFEL geometry parser described in but implementation details are not
given here because it is not for general purpose use. A CrystFEL stream file contains the
CrystFEL geometry information and many different chunks which themselves contain
the analysis information about one diffraction snapshot. This includes, besides the link
to the snapshot image, information about found peaks, possible crystals and predicted
peaks . With the new parser all this information can be displayed.

The functionality is explained at the example of [Figure 2 When the cxiview.py pro-
gram is started it displays the snapshot from the first chunk in the CrystFEL stream file.
It is possible to navigate between the snapshots with the buttons Previous, Next, Play,
Random, Shuffle or by entering a frame number. If information about a crystal in a
snapshot is present the crystal unit cell information is displayed in the lower left corner.
By activating the tickboxes Found peaks and Predicted peaks found and predicted peaks
are drawn on the image. Found peaks are displayed by red squares and predicted peaks
by blue circles. Example pictures can be found in [Figure 3| and [Figure 4] Information
about a specific predicted peak, including the resolution and hkl indices, is shown in
the lower left corner if the user clicks on it. This is shown in [Figure 5| If the tickbox
Resolution rings is activated and information about the photon energy and the detector
distance is present in the stream file the resolution rings are drawn. An example is
show in [Figure 6| The information about photon energy and detector distance could be
missing in corrupted stream files.

http://www.desy.de/~barty/cheetah/Cheetah/Cheetah_GUI.html
http://www.desy.de/~barty/cheetah/Cheetah/Cheetah_GUI.html

3.2 Description of the code improvements

The major code improvements are explained here in a list style format. The complete
development log of the program can be found in the git log in the branch michelsd under
the url https://stash.desy.de/projects/CCPHASE/repos/cheetah.py/browse.

e The geometry parser of cxiview.py is almost completely replaced by the new
geometry parser described in The new geometry parser is well docu-
mented and failsafe. Furthermore it can parse all the geometry files which fulfill
the geometry files definition standards given on the webpage [1].

e Error checking of the parsed command line options in cxiview.py added.
e User defined exceptions to handle errors in cxiview.py added.

e Bug which did not allow to jump to image number 0 with the frame box while
opening .cxi files fixed.

e Bug displaying the wrong image number in the window title while opening .cxi
files fixed.

e Dependency on numpy.nan changed to float('nan’) to support native python lan-
guage instead of library features.

https://stash.desy.de/projects/CCPHASE/repos/cheetah.py/browse

File

Crystals Particles Analysis View

Refresh files Previous Next Play Random shuifle | Frame (5124

Unit cell: P, a = 80.52 &, b = 80.55 A,c = 39.27 & @ = 90.1°, p = 89.8°, y = 89.9° Found peaks | | Predicted peaks | | Pixel masks | | Resolution rings

Figure 2: Figure displaying a screenshot of the cxiview.py after right after the program
was started.

10

4 Summary and Outlook

A new geometry parser and the functionality to display the contents of CrystFEL stream
files in the cxiview.py program have been implemented successfully. The new features
are well documented and include error handling.

As an outlook there are still things worth working on. The code quality in the untouched
parts of the program is from a software engineering perspective not good. There is
almost no error handling present. If error handling is present by try and except blocks
in most cases generic exceptions are caught. Furthermore PEP style documentation in
the code is missing. Therefore, to improve the stability and usability, improvements and
reimplementation of some parts of the cxiview.py program are recommended.

New features which are worth adding to the program include the implementation of the
functionality of the Pizel masks tickbox and better, high resolution image saving.

11

5 Appendix

Fle ¢

urs Crystals Particles Analysis View

Refresh files Previous Next Play Random Shuffle Frame 5124

<
Unit cell: P, a = 80.52 &, b = 80.55 A,c = 39.27 & @ = 90.1°, p = 89.8°, y = 89.9° | Found peaks | | Predicted peaks | Pixel masks || Resolution rings

Figure 3: Figure displaying a screenshot of the cxiview.py program when the Found
peak tickbox is activated.

12

File

rs Crystals Particles Analysis View

Refresh files Previous Next Play Random shuifle | Frame (5124

Unit cell: P, a = 80.52 &, b = 80.55 A,c = 39.27 & @ = 90.1°, p = 89.8°, y = 89.9° __ Found peaks |v/| Predicted peaks | Pixel masks || Resolution rings

Figure 4: Figure displaying a screenshot of the cxiview.py program when the Predicted
peak tickbox is activated and a crystal was found by CrystFEL in the snapshot

13

File Colours Crystals Particles Analysis View

Refresh files Previous Next Play Random Shuffle Frame 5124

e
R "s—c i ;

e A S i TS - ARk el 0 it <

Last clicked pmel % 65 y 142 value: 46 =2 108.47mm resolution: 10. 23A hk\ 35 32 | Found peaks v Premcted peaks | Pixel masks || Resolution rings

Figure 5: Figure displaying a screenshot of the cxiview.py program when the Predicted
peak tickbox is activated, a crystal was found by CrystFEL in the snapshot
and the user has clicked on a predicted peak. Information about the predicted
peak is displayed in the lower left corner.

14

File Colours Crystals Particles Analysis View

Refresh files Previous Next Play Random Shuffle Frame 5124

<
Unit cell: P, a = 80.52 &, b = 80.55 A,c = 39.27 & @ = 90.1°, p = 89.8°, y = 89.9° _ Found peaks | | Predicted peaks | Pixel masks || Resolution rings

Figure 6: Figure displaying a screenshot of the cxiview.py program when the Resolution
ring tickbox is activated and sufficient information to calculate resolution rings
is present in the stream file.

15

References

1]

2]

CrystFEL geometry specification. http://www.desy.de/~twhite/crystfel/
manual-crystfel_geometry.html. Accessed: 2016-08-24.

LCLS detector image. https://portal.slac.stanford.edu/sites/lcls_public/
instruments/cxi/pictures/2013-04-19-CSPAD-DS1-Image-1700.JPG. Accessed:
2016-08-24.

Anton Barty, Richard A. Kirian, Filipe R. N. C. Maia, Max Hantke, Chun Hong
Yoon, Thomas A. White, and Henry Chapman. Cheetah: software for high-

throughput reduction and analysis of serial femtosecond X-ray diffraction data. Jour-
nal of Applied Crystallography, 47(3):1118-1131, Jun 2014.

Thomas A. White, Richard A. Kirian, Andrew V. Martin, Andrew Aquila, Karol
Nass, Anton Barty, and Henry N. Chapman. CrystFEL: a software suite for snapshot
serial crystallography. Journal of Applied Crystallography, 45(2):335-341, Apr 2012.

16

http://www.desy.de/~twhite/crystfel/manual-crystfel_geometry.html
http://www.desy.de/~twhite/crystfel/manual-crystfel_geometry.html
https://portal.slac.stanford.edu/sites/lcls_public/instruments/cxi/pictures/2013-04-19-CSPAD-DS1-Image-1700.JPG
https://portal.slac.stanford.edu/sites/lcls_public/instruments/cxi/pictures/2013-04-19-CSPAD-DS1-Image-1700.JPG

	Introduction
	Implementation of a CrystFEL geometry parser in python
	Parsing the file
	Handling beam characteristic information
	Handling panel information
	Handling bad region information
	Handling rigid group and rigid group collection information

	Storing the information
	Usage of the GeometryFileParser class
	GeometryFileParser.__init__
	GeometryFileParser.check
	GeometryFileParser.parse
	GeometryFileParser.pixel_map_for_cxiview
	GeometryFileParser.dump

	Enhancements to the cxiview.py program
	Description of the new features
	Description of the code improvements

	Summary and Outlook
	Appendix

