
Software Development for a common DAQ at test
beams

Darya Shirokova, Novosibirsk State University, Russia

Supervisor: Jan Dreyling-Eschweiler, Deutsches Elektronen-Synchrotron

September 2, 2016

Abstract

EUDAQ is a modular data acquisition framework written in C++. It implements
a finite state machine so that the software can only be in one of a finite number
of states. Previously the initial state of the machine was the unconfigured state.
However in some cases it is feasible to separate hardware configuration from an
initial hardware setup which is more time demanding. The first part of this work
describes the extension of the EUDAQ FSM. The second part is concentrated on
the integration of a new type of producers — a slow producer. It allows one to
use devices that are not synchronized with the others and produce data at their
own rate.

1

Contents

1 Introduction 3
1.1 EUDAQ architecture . 3

2 EUDAQ FSM 4
2.1 Description . 4
2.2 FSM modifications . 5
2.3 Implementation . 6
2.4 Use of the FSM . 7

3 Slow producer 8
3.1 DataCollector working principle . 8
3.2 Slow control devices . 8
3.3 Slow producer . 9
3.4 Integration of user DAQs . 10

4 Summary 10

2

1 Introduction

EUDAQ is a modular, operating system independent data acquisition framework written
in C++ and focused on an easy and flexible integration of the user’s detector DAQs
(EUDAQ Producers). It was designed for the EUDET Pixel Telescopes (see [1]), but it
can be also used in other systems [3]. It provides logging, data storing, online monitoring
functions and also GUI and console interfaces for interaction between a user and the
software.

1.1 EUDAQ architecture

The EUDAQ software consists of different components communicating via TCP/IP pro-
tocol that allows different components to run on different machines.
The EUDAQ architecture is shown in figure 1. The central part of the software is the
RunControl and all the other components (LogCollector, DataCollector, OnlineMoni-
tor and Producers) are connected to it. It has the RunControlGUI interface through
which a user can interact with the software. The RunControl sends commands to the
components which extend from the CommandReceiver class (see 2.3). It allows one to
perform configuration, start a run, etc. Besides, it distributes IP addresses and ports
for the connection establishment between other components (e.g. LogCollector and
Producer, DataCollector and Producer).

Figure 1: EUDAQ architecture [2].

The LogCollector collects debugging, error or information messages from other com-
ponents and shows them to a user.

3

The DataCollector combines data streams from all producers into a one stream and
writes the data to a binary file. The working principle of the DataCollector is described
in more details in the section 3.1.
The OnlineMonotor is used to generate plots for online-monitoring (hitmaps, correla-
tions plots, etc). ROOT is used for generating histograms.
The Producer is a device that produces any data, e.g. telescope sensors, the TLU,
the DUT (device under test), etc. Every user device must extend from the Producer

class or the SlowProducer class, which was newly developed within this work (see
3.3). User can send commands to a producer (OnInit, OnConfigure, OnStartRun,
etc) using the RunControl interface. Data from different producers are collected by the
DataCollector.

2 EUDAQ FSM

2.1 Description

A finite state machine (FSM) is a computational model when a machine can only be in
one of a finite number of states. The two basic principles are that it can only be in a
one state at a certain time and changing the current state is implemented via predefined
transitions.
Since all the states and transitions between them are well-defined, the using of the
FSM prevents the occurrence of unpredictable situations such as deadlocks, running the
system before configuration, etc.
Each component connected to the RunControl can always be characterized by the cur-
rent state. The previous version of the EUDAQ FSM [4] implemented the following
connection states:

• UNCONFIGURED: the initial state of every connection. Configuration parame-
ters have not been set yet. Available transitions are OnConfigure and OnTerminate.

• CONFIGURED: configuration parameters have already been set. Available tran-
sitions are OnStartRun, OnConfigure and OnTerminate.

• RUNNING: the state of the operating connections. For producers it means produc-
ing data, the OnlineMonitor are providing plots, the LogCollector is continuing
to collect log messages and the DataCollector combines data streams from pro-
ducers. The only available transition is OnStopRun.

• ERROR: this state can be used by users in case of errors during configuration,
running process, etc. The only available transition is OnTerminate.

The state of the machine is determined by the lowest state of the connected components
(LogCollector, DataCollector, OnlineMonotor, Producers) in the following priority:
ERROR, UNCONFIGURED, CONFIGURED, RUNNING. It means, for example, that
even if only one connection is in the ERROR state, the whole machine will also be in

4

Figure 2: The previous version of the EUDAQ FSM.

that state. This prevents such mistakes as running the system before every component
has finished the configuration. The states of the previous version of the EUDAQ FSM
and transitions between them are shown in figure 2.
One should take into account that ERROR state of the FSM is not properly defined.
There are no well-determined rules how the machine can go into this state and what
should be done to fix the error since it highly depends on the reason of the error. Because
of that the only action that is allowed in the ERROR state is the termination of the
program.

2.2 FSM modifications

Some detectors require not only setting up different parameters, but also the first ini-
tialisation of the hardware. Previously both these steps were carried out during the
configuration. However, setting up the hardware is only necessary during the start and
can be time demanding, so reinitialisation of the hardware can take additional time when
reconfiguration is needed.
For these reasons it turns out to be feasible to separate initialisation and configuration
processes. In order to do that one has to introduce a new UNINITIALISED state and an
initialisation transition. The UNINITIALISE state is defined as an initial state of every
connection and the transit to the UNCONFIGURED state can be done by initialisation.
In comparison with the previous implementation of the FSM described in section 2.1 it
introduces the following changes:

• UNINITIALISED: the initial state of every connection. Initialisation has not not
been conducted yet. Available transitions are OnInitialise and OnTerminate.

• UNCONFIGURED: initialisation has already been conducted, but configuration
parameters have not been set yet. Available transitions are OnConfigure and
OnTerminate.

The new version of the FSM is schematically shown in figure 3.

5

Figure 3: The new version of the EUDAQ FSM.

2.3 Implementation

The more detailed description of the FSM implementation can be found in [4]. The
state of the connections are defined in the ConnectionState class that extends from the
Serializable interface to convey the information via TCP/IP. States of the FSM are
listed in the enumerator:

enum State {

STATE_UNINIT ,

STATE_UNCONF ,

STATE_CONF ,

STATE_RUNNING ,

STATE_ERROR

};

The MachineState class is responsible for keeping track of the state of the whole system.
It has a map of all connections and their states and using this information it defines the
current state of the whole machine:

std::map <ConnectionInfo , ConnectionState > connection_status_info;

In order to change the state, the RunControl sends a command to the CommandReceiver,
which is the base class for those who needs to receive commands. The common set of the
CommandReceiver functions (transitions) that can be used to change the current state
of the connection is the following:

virtual void OnInitialise(const Configuration ¶m) {

SetConnectionState(eudaq :: ConnectionState :: STATE_UNCONF);}

virtual void OnConfigure(const Configuration ¶m);

virtual void OnStartRun(unsigned /* runnumber */) {

SetConnectionState(eudaq :: ConnectionState :: STATE_CONF);}

virtual void OnStopRun () {}

One should note that OnInitialise function that is used to set the connection into the
CONFIGURED state has default implementation in the base CommandReceiver class,
so users who do not need an initialisation step can simply skip it. In addition, this
ensures backward compatibility for existing producers.

6

The interaction between a user and the machine is implemented via RunControlGUI. An
example of the interface is shown in figure 4. In the bottom of the window connected
components and their current state are displayed. A current state of the whole machine
is depicted on the top. A user can initiate an allowed transition by pressing one of the
buttons of the interface: Init, Config, Start, Stop, Terminate.

Figure 4: RunConrolGUI.

One of the issues that should be taken into account is that currently all the restrictions
on the FSM are imposed by GUI via disabling transition buttons. It means that in
principle one can set any new state independently of the previous state, the machine
does not check if it is allowed or not.
The new version of the FSM was successfully tested and merged with the latest version
of the software (v1.7) [5].

2.4 Use of the FSM

In order to add a new device to the system one has to extend either from the Producer

class or from the SlowProducer class (see 3.3) and implement the transition functions.
A good simple example can be found in ExampleProducer.cxx file. To change the state
of the connection the following function should be used:

SetConnectionState(eudaq :: ConnectionState ::NEW_STATE , "Message");

whereas NEW STATE is a connection state from the enumerator, see above.

7

3 Slow producer

3.1 DataCollector working principle

Every producer has to be connected to the DataCollector in order to send data. The
DataCollector combines data streams from all producers into one stream and writes
the data to a binary file. Before writing data to a file the DataCollector waits for
events from all connected producers.
If there is any busy hardware that can not send data at the moment, the trigger is not
sent. Thus, the event rate is limited to the slowest device.
The working principle of the DataCollector is schematically shown in figure 5. At
the beginning of the run every producer has to send the Begin of Run Event (BORE).
The DataCollector stores an event in the OnCompleteEvent function only when it has
received an event from all connected producers. As the event is completed a new cycle
of data receiving is started. At the end of the run the End of Run Event (EORE) must
be sent.

Figure 5: DataCollector working principle.

This way of data collecting ensures the data synchronization, but it turned out that in
some cases it is not flexible enough.

3.2 Slow control devices

Sometimes it could be helpful to use so called slow control devices that, for example,
perform the monitoring of temperature, pressure, etc. But this kind of devices has
a lower event rate in comparison with the telescope rate about 2 kHz. For example,
monitoring data could be provided one time per second.
However, due to the fact that trigger is only sent if every hardware is not busy, there is
an obvious problem with integration of the slow control devices: it can slow down the
whole system.
One of the possible solutions is proposed in the following section.

8

3.3 Slow producer

A slow producer is a special type of producers which interacts with the DataCollector

in a different way using the hardware conception of the triggerless data taking. Instead
of sending busy signals it can simply provide data at its own rate. The DataCollector

distinguishes the slow producer from the usual one, it waits only for events from simple
producers and ignores the absence of those from slow producers. Schematically this new
working principle is shown in figure 6.

Figure 6: DataCollector interaction with slow producers.

Programmatically the concept of the slow producer is implemented as a new SlowProducer

class. So in order to integrate a slow device one has to simply extend it from the
SlowProducer class instead of the Producer class, but having then the same function-
ality.
The DataCollector now stores a map where the key is the producer number in the
buffer array and the second argument is a producer type (either slow or not):

std::map <size_t , std::string > m_ireceived;

At any time the DataCollector knows how many slow producers are connected to it:

void DataCollector :: OnConnect(const ConnectionInfo &id) {

...

if (id.GetType () == "SlowProducer") {

m_slow ++;

}

}

void DataCollector :: OnDisconnect(const ConnectionInfo &id) {

...

if (id.GetType () == "SlowProducer") {

m_slow --;

}

}

In the OnReceive function the DataCollector only checks if all not slow producers have
sent an event and then goes to the OnComplete function

void DataCollector :: OnReceive(const ConnectionInfo &id ,

std:: shared_ptr <Event > ev) {

9

...

bool tmp = false;

// Add the producer that has sent data.

m_ireceived[GetInfo(id)] = id.GetType ();

// Compute the number of "fast producers" that have sent data.

int fastwaiting = 0;

for (std::map <size_t , std::string >:: iterator it =

m_ireceived.begin (); it != m_ireceived.end(); ++it) {

if (it->second != "SlowProducer")

fastwaiting ++;

}

// If all fast producers are ready , complete the event.

if (fastwaiting == m_buffer.size() - m_slow)

tmp = true;

if (tmp)

OnCompleteEvent ();

}

Since all the producers that have sent an event including the slow one are stored in
the map, in the OnComplete function the DataCollector reads out and stores only non
empty data buffers, or in other words it ignores slow producers that have not sent any
data.
This approach has been tested with the TLU and the ExampleSlowProducer extended
from the SlowProducer class. The ExampleSlowProducer sends one event per second
while the frequency of the TLU is 1000 Hz. The rate of the system has not been limited
by the slow producer and all events from both producers have been written in the raw
data file (the events from the ExampleSlowProducer occur with a period of one thousand
TLU events).

3.4 Integration of user DAQs

A brief summary of two possible types of user devices and difference between them is
presented in table 1.

TLU common No TLU common
Data event based data monitoring data
Hardware receives trigger, sends busy triggerless device
EUDAQ Producer Slow Control

Table 1: User DAQ types.

4 Summary

This work has introduced the following contributions:

• The modification of the EUDAQ FSM: a new state was integrated to the existing
system.

10

• Testing and merging the EUDAQ FSM with latest version of the software (v1.7).

• Development of the new approach of data collecting which considers the existence
of the slow control devices.

11

References

[1] https://telescopes.desy.de/Main_Page

[2] Test Beam Measurements for the Upgrade of the CMS Pixel Detector and Mea-
surement of the Top Quark Mass from Differential Cross Sections Simon Spannagel

[3] EUDAQ Software User Manual EUDAQ Development Team

[4] Establishment of a Finite State Machine for the EUDAQ framework Beryl Bell

[5] https://github.com/eudaq/eudaq/tree/v1.7-dev

12

