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Abstract 

Two-dimensional difference pair distribution function of single crystal 

Na0.25Ba0.75Fe2As2 was studied by analysing the diffuse scattering profiles 

extracted from the total scattering data. Diffuse scattering intensities were 

obtained from two-dimensional diffraction map by subtracting a background fit 

with a two-dimensional Lorentzian function and by using an inward 

interpolation method.  
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1. Introduction 

Superconductors transport electricity without dissipation and have an important role in various 

applications. Materials with higher transition temperatures are urgently needed in order to make 

superconductors practical and beneficial. Consequently, high temperature superconductors such as 

BaFe2As2-based materials have been developed and modified [1]. The properties of materials are 

normally influenced by their crystal structures. If they are grown as a well-ordered single crystal, we 

can determine the structures by conventional crystallographic methods based on Bragg scattering. In 

reality, most crystals are not perfectly ordered or disordered.  To understand structure-property 

relations in deep detail, considering only Bragg crystallography is not enough since it provides merely 

the average structure of crystals. On the other hand, real crystals contain information beyond the 

average structure. By the diffuse scattering analysis, subtle details of the real crystals can be 

extracted; for example, vibration in the crystals due to thermal excitation and disorders [2].  

2. Theory 

X-ray scattering of materials is caused by the electron density ρ. The scattering amplitude is the 

summation of a scattering wave from each electron and the intensity is proportional to the square of 

the amplitude.  

Difference pair distribution function 

In kinematic theory, multiple scattering is neglected. The scattering from a single crystallite is written 

as the Fourier transform of its electron density:  

𝐹(𝐡) = 𝐹𝑇[ρ(𝐫)] 

The scattering intensity is captured by the x-ray detector: 

𝐼(𝐡) = 𝐹𝑇[< ρ(𝐫) ∗ ρ(𝐫) >] 

The bracket < > denotes averaging over exposure time and scattering mosaic blocks.                           

The term ρ(𝐫) ∗ ρ(𝐫) is the autocorrelation function of the electron density. The structure factor of 

the Bragg peaks can be calculated as the Fourier transform of the average structure: 

 

𝐹𝐵𝑟𝑎𝑔𝑔(hkl) = 𝐹𝑇[< ρ(𝐫) >] 

Diffuse scattering is all scattering from a single crystal apart from Bragg scattering. Therefore, the 

diffuse scattering is the difference between total and Bragg scattering: 

𝐼𝑑𝑖𝑓𝑓𝑢𝑠𝑒(𝐡) = 𝐼(𝐡) − 𝐼𝐵𝑟𝑎𝑔𝑔(𝐡)  

Similarly, 

                                                             𝐼𝑑𝑖𝑓𝑓𝑢𝑠𝑒(𝐡) = 𝐹𝑇[< ρ(𝐫) ∗ ρ(𝐫) >] 

                                                                                        −𝐹𝑇[<< ρ(𝐫) >∗< ρ(𝐫) >>] 

                                                                                    = 𝐹𝑇[𝑃∆(𝐫)] 
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The function 𝑃∆(𝐫) is called Difference Pair Distribution Function. Applying Fourier transform to both 

sides of the equation, we get a spatially reversed version of the function: 

𝐹𝑇[𝐼𝑑𝑖𝑓𝑓𝑢𝑠𝑒(𝐡)] = 𝑃∆(−𝐫) 

As the positions of the reflections on the reciprocal lattice are related by a center of symmetry 

through the reciprocal lattice origin, the Difference Pair Distribution Function is therefore 

centrosymmetric: 

𝑃∆(−𝐫) = 𝑃∆(𝐫) 

Fourier transform of the diffuse intensity provides the autocorrelation discarding phase information. 

Only the power is returned. It is therefore an irreversible operation. However, it allows us to measure 

the relative positions of atoms or disorders in crystals and to make a distance map of finding two 

atoms or disorders separated by distance values in real space [3]. 

3. Methods and analysis 

3.1 Data collection 

 

Fig. 1: Experimental scattering geometry 

The scattering geometry for the diffraction experiments is illustrated in Fig. 1. The crystal sample is 

placed far from the detector in length d. The wave vectors of the incident beam and the scattered 

beam are k and k' respectively where 2θ is the angle between the beams.  
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3.2 Image scaling 

𝐐 measures the change in wave vector and is called the scattering vector which can be expressed in 

terms of the 2-dimensional experimental parameters as follows:  

|𝐐𝒙| =
kx

√x2 + y2 + d2
 

|𝐐𝒚| =
ky

√x2 + y2 + d2
 

k =
2π

𝜆
  

k and 𝜆 are the magnitudes of wave number and wave length of X-ray. In elastic scattering, the 

photon energy is conserved. Thus, the magnitude satisfies |k|=|k'|. The set of reciprocal lattice 

vectors 𝐆 determines the possible X-ray reflections. When 𝐐 is equal to a particular reciprocal lattice 

vector: 

𝐐 = 𝐆      

Or, 

𝐤 + 𝐆 = 𝐤' 

With taking the square of both sides of the previous equation, the diffraction condition is written as:  

2𝐤 ∙ 𝐆 + 𝐆2 =0 

This particular expression is often used as the condition for diffraction which is another statement of 

the Bragg condition: 

2𝑙𝑠𝑖𝑛θ =  𝜆 

Where 𝑙 is the spacing between adjacent parallel planes. 𝜆 is the wave length of X-ray. θ is the Bragg 

angle. The result of diffraction theory, namely that 𝐐 = 𝐆 is possibly expressed in another way to 

give the Laue equations: 

𝒂𝟏 • 𝐐 = 2𝜋h 

𝒂𝟐 • 𝐐 = 2𝜋k 

𝒂𝟑 • 𝐐 = 2𝜋l 

𝒂𝟏, 𝒂𝟐 and 𝒂𝟑 are real lattice vectors. h, k and l are the Miller indices denoting planes orthogonal to 

the reciprocal lattice vector. If h, k and l have rational ratios, then the planes can be written in terms 

of integer indices (hkl) by scaling 𝒂𝟏, 𝒂𝟐 and 𝒂𝟑 appropriately. In this work, a suitable fit of the unit 

cell parameters was found, they were used as a starting point for indexing the planes of Bragg 

reflections [4]. 
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3.3 Image processing 

Separation of Bragg and diffuse data 

 

Fig. 2 The original image  

The original image which shows total scattering profiles is shown in Fig.2 Separation of Bragg and 

diffuse scattering is straightforward, because the signal of diffuse scattering is by far broader than 

the Bragg profiles and interpolation of the diffuse intensities beneath the Bragg scattering provides a 

reasonable approximation to the real diffuse intensities. In this work, the intensities of many pixels in 

the image center region are higher than some Bragg scattering intensities far from the center, they 

make the difficulty to separate the bright spots from diffuse profiles. As can be seen from the one-

dimensional curves at the origin along vertical (Fig.3) and horizontal axes (Fig. 4), the curve shapes 

distribute like a Lorentzian function although the highest intensity in the center could not be seen 

due to the fact that the center intensity peak is blocked by the beam stop in the experimental setup. 
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Fig. 3: One dimensional intensity distribution along the horizontal axis at x= 0 

 

Fig. 4: One dimensional intensity distribution along the vertical axis at y= 0 

A two dimensional Lorentzian function fit of the intensities is made (Fig.5). Then, it is subtracted from 

the real image to remove background (Fig.6). The negative values from the subtraction are set to 

zero. 
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Fig. 5 Two-dimensional intensity distribution generated by Lorentzian function fitting 

 

 

Fig. 6: The subtracted image 

Now, the bright spots, Bragg scattering profiles, are clearly visualized. From this stage, we can rescale 

the image from pixel axes to h and k axes by considering Bragg profiles. After, the inward 

interpolation technique, which computes the discrete Laplacian over the bright Bragg scattering 

regions and solves the Dirichlet boundary value problem, is applied, the original spot intensities are 

substituted by the reasonable diffuse scattering intensities shown in Fig. 7.  
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Fig. 7: The image with inward interpolation treatment     

The spots are not completely disappeared yet but their intensities are in the level of their pixels 

around which is reasonable enough to use as approximate intensities of real diffuse scattering as 

inspection by subtracting Fig.7 from Fig. 1 resulting clear Bragg scattering (Fig. 8). 

 

Fig. 8: The clear image of Bragg scattering     
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3.4 Difference pair distribution function  

To illustrate the relation between a reciprocal space data and a number of pixels in real space in a 

simple way, the function f(x)=1+cos(x) where -5π< x< 5π, is generated as seen in Fig.9 showing there 

are 5 periods of the oscillation with no values along y axis lower than zero. The curve characteristic is 

periodic and positive which seems similar to one-dimensional intensities of X-ray diffraction patterns. 

As seen from Fig. 9, there are five peaks which can be compared that there are five Bragg peaks in 

one dimension. We use Fourier transform to find the frequency components of the signal and shift 

them to a center (Fig. 10) to easily consider. The calculation result is as follows: 

                                                      𝐹𝑇(f(x)) = 𝛿𝑐 +
1

2
{𝛿(𝑐 − 𝑐0) + 𝛿(𝑐 + 𝑐0)}                                         (eq. i). 

Where 𝐹𝑇(f(x)) is Fourier transform of f(x), 𝛿 is a Dirac delta function, 𝑐 and 𝑐0 are constant. 

 

Fig. 9: The plot of f(x)=1+cos(x) where -5π< x< 5π   

By considering the number of pixels counted from the center peak to each side peak in Fig.10, we can 

see that it is equal to the number of peaks in Fig. 9 which is supposed to be the value of 𝑐0 and the 

position of the center peak for 𝑐 (eq. i). Consequently, we can similarly apply this relation using the 

real space distances of the average structure, which is strongly confined at reciprocal lattice points, 

as constraints to scale the approximate distances of diffuse scattering profiles. The two-dimensional 

Fourier transform of the diffuse scattering image is performed by using the MATLAB fft2 function. It 

returns the two-dimensional discrete Fourier transform computed with a fast Fourier transform 

algorithm as shown in Fig. 11. The Fourier transform map of the Bragg profiles (Fig. 12) is also 

created to make a comparison about relative distances of finding atoms or disorders along a and b 

directions. 
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Fig. 10: The plot of Fourier transform of f(x)   

 

Fig. 11: Fourier transform of diffuse scattering   
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Fig. 12: Fourier transform of Bragg scattering   

Fig. 11 depicts the difference distribution function map of diffuse scattering. The yellow dots show 

the high possibility of finding atoms or disorders in a distance value related to the other atoms or 

disorders. Along b direction the yellow dots are considerably sharp. The nearest dot distance from 

the center on the horizontal axis is approximately equal to the length between the planes of Bragg 

profiles on a direction in Fig. 12. Conversely, on b direction in Fig. 11, the yellow dots are not sharp 

but diffuse from the center to the distance about the distance between planes in b direction of Bragg 

scattering (Fig.12). Interestingly, the second nearest yellow dots form the center on b direction in Fig. 

11 are sharp at the similar distance of the second nearest yellow dots on b direction in Fig.12. 

Moreover, There are yellow dots between a and b directions. The difference pair distribution 

function result is able to be further discussed. In this case, the diffuse scattering is likely to be from 

Na-doping making distortion in the crystal. As considering the lengths of the spots along a and c axes 

from the center spot, the distance in real space of diffuse scattering profiles is relevant to the 

distance of Bragg scattering profiles (Fig. 12). However, this is not confirmed and diffuse scattering 

profiles are possibly from various factors. 

4.  Conclusions 

The diffuse scattering data can be extracted from total scattering data captured in experiments by 

image processing methods. The difference pair distribution function map can be generated from the 

data which have been scaled by Q-range obtained from Bragg profiles.   
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