
My Adventures at DESY Hamburg

Arne Zantop, Georg-August Universität Göttingen, Germany

20th September 2016





We study the local translational order and the bond orientational order of
a system of charge stabilized colloidal suspensions via Monte Carlo sim-
ulations. Specifically, we use a potential model that simulates hard-core
non-overlapping colloids with a screened Coulomb repulsion. We show that
structure factors obtained from simulations are in very good accordance with
the experimentally measured structure factors of charge stabilized suspen-
sions of poly-acrylate spheres, and also match the analytically derived struc-
ture factors from the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory.
Charge stabilized suspensions exhibit clustering - amorphous and short-
range crystallinity – behaviour at higher concentrations. In this study, our
goal is to investigate how the typical real-space structural order parameters
behave for different concentrations of the colloids and salt concentrations.
Finally, we present corresponding radial distribution functions, bond ori-
entational order maps and structure factors of different systems that would
be useful in X-ray scattering measurements for these charge stabilized sus-
pensions.
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1 Introduction

1 Introduction

Mesoscopic colloids of different types, suspended in a solvent, are ubiquitous
in our everyday live. Examples range from large molecules or proteins in our
bodies to micelles in soaps, paints and other industrial products. Hence,
research is of interest for both fundamental sciences and applied science.
Using X-rays one can directly measure the local distance correlations (on
an average) between any two colloid particles in a system. The relation-
ship between the measured intensity data in reciprocal space and real-space
structural metrics is well understood. However, the exact effect of local
orientational order or symmetry on the structure factor is not clear. In this
work we shall shed some light on these effects.

1.1 Interaction between colloids

The solvent molecules are typically much smaller than the colloids, so that
colloids exhibit brownian motion. As they have been described so far, col-
loids would only interact via Van der Waals attractive forces arising from
fluctuating dipole moments. Since the thermal energy kBT is typically
smaller than this interaction energy, one has to employ some stabilisation
strategy to prevent irreversible aggregation of the solvate. There are gen-
erally two types stabilisation strategies of colloids, both of which introduce
repulsions between any two colloids, namely those being charge stabilised
and those stabilised by steric effects. In the case of charge stabilisation, the
surface of colloids is covered by ionisable chemical groups which ionise when
dissolved in a polar liquid.
The colloids then possess a net surface charge of several hundred, up to
105, unit charges. A schematic drawing of such a colloid is presented in
figure 1. This net surface leads to a coulomb repulsion of colloids. Even
without the counterions the polarisable liquid will screen the potential due
to polarisation.
In the solvent around a colloid an atmosphere of counterions forms, which
also screens the potential. This so called double layer, drawn in red and
green in fig. 1, has a thickness of the Debye screening length λD. The
interpenetration of those layers leads to a repulsion between colloids which
has a Coulomb part multiplied with exponential decay.
Following the other strategy, the colloids surfaces are covered by a layer of
polymer chains. When these overlap when particles are close, the polymer’s
entropy gets reduced, which also results in a repulsive force that stabilises
the system.
Both these interactions can be tuned by adding salt ions in the first case or
polymers or smaller colloids in the other case. This renders the interaction
more short ranged, which is also called a screening. In the case of charge
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1.2 DLVO Theory and interaction potential
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Figure 1: Schematic of a charged colloid in a polar solvent with ions.

stabilisations the ions shield the colloid’s charge and the interaction decays
faster.

1.2 DLVO Theory and interaction potential

The DLVO theory yields a pair potential for the interaction of colloidal sus-
pensions of charge stabilised particles having a double layer of counterions,
using a mean-field approximation in the limit of low surface potentials. The
result is a hard-core Yukawa, i.e. screened coulomb, potential;

u(rij) =


∞, |rij| < 1

u0

β

e−κ|rij |

|rij|
, else,

(1)

where the surface potential or coupling strength

u0 =
λB
σ

(
eκ/2

1 + κ/2

)2

Z2

and the screening parameter

κ2 =
λB/σ

1− φ(24φ|Z|+ 8πnsσ
3),

with the Bjerrum length λB = βe2/(εε0), the solvent’s relative dielectri-
city ε, unit charge e, number of charges Z and the reciprocal temperature
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2 Methods

β = (kBT )−1 [1]. The volume fraction is given by φ = π/6nσ3 with the
number density n. As we can see, the volume fraction φ also influences the
screening. This is simply due to the fact that the more space the colloids
take, the less space is left for the ions. This can be though of as leading to
a higher effective salt concentration.
Due to the nature of the interaction, involving an atmosphere of counterions,
we have to consider contributions of many body interactions to the pair po-
tential. A way to account for the shielding is the use of a small cutoff radius
of ca. the gap after the first liquid’s neighbour shell, after which the interac-
tion is not considered any more. To make the resulting potential continuos,
a shift subtracting the potential’s value at cutoff can be done. Though,
in the case of a colloidal particle lying between two others, between which
the potential is considered, this might not be physical. The investigation of
wether this is the case or not is also part of this work.

For the simulations we will show later we used the parametrisation as in
table 1.

Quantity Value

particles N 3375
temperature 293 oK
configurations 1000
size σ 223.4 nm
cutoff 2.5 σ
charge Z 400
ε 80

Table 1: Simulations’ parameters

We simulated various volume fractions between φmin = 0.16 and φmax =
0.5011 at two salt concentrations ns = 0.1 mM and ns = 0.01 mM.

2 Methods

2.1 Statistical physics and it’s simulation

As we will see, the DLVO theory provides a very good analytical prediction
of shape of the structure factor. It doesn’t provide the structural informa-
tion in which we are interested, though, with an analytical approach. We
can overcome this limitation with numerical simulations using the Monte-
Carlo technique. With Monte-Carlo integration of the phase space distri-
bution function, we don’t have to consider velocities of particles, but this
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2.1 Statistical physics and it’s simulation
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Figure 2: Plot of the interaction potentials used in this work. The red/yel-
low curves are for the lower salt concentration ns = 0.01. The blue/green
curves are for the higher salt concentration ns = 0.1, the two colour codes
give the volume fraction at each salt concentration. We see the lower screen-
ing as the red/yellow decay more slowly than the blue/green ones.

also means that there is no possibility to calculate any dynamical properties
with the sampled configurations.
Physical systems consist of huge numbers, typically several 6× 1023 (Mols),
of particles. To simulate such large numbers of particles is even with todays
computers not feasible. In order to obtain reliable results for the materi-
als properties in bulk anyway, it is common practice to circumvented this
complication with the use of periodic boundary conditions. The interaction
between each pair of colloids is calculated according to the nearest periodic
image convention.
As mentioned before, our goal is now to obtain the ensemble average value
of an observable. Using the familiar calculus of statistical mechanics this
means calculating the mean value of that observable 〈O(Γ)〉 under the phase
space distribution function ρ(Γ) of interest for all possible configurations Γ.
This means evaluating the integral

〈O〉 =

∫
ρ(Γ)O(Γ)dΓ. (2)

The number possible states is infinite, so that one needs an efficient way
to sample in order to make the integral converge with a finite number of
sample configurations Γi. This is done via the Metropolis scheme. One gen-
erates a Markov chain of particle configurations Γi following the transition
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2.1 Statistical physics and it’s simulation

probability for a configuration Γi to a configuration with a small random
modification Γi+1, given by the distribution function. This has the great ad-
vantage, that the partition sum doesn’t have to be calculated. The solvent
can be considered to be a incompressible, so having a constant volume
fraction of the solute, we have an isothermal isochoric ensemble and the
transition probability is given by Boltzmann factor

ptransition(Γi,Γi+1) =
ρ(Γi+1)

ρ(Γi)
= e−β∆E,

The first configuration in this Markov chain is either generated randomly
or as a crystal lattice. This method needs to equilibrate, so in order to get
a good estimate of the Integral 2, a sufficiently large number of the first
generated configurations are not considered.
Another possibility to evaluate the phase space distribution function might
generally be the direct simulation of molecular dynamics in the classical
approximation, in the present case of mixed hard and soft body interactions
this is difficult though. The treatment of hard bodies’ collisions requires
the exact collision time to compute the momentum transfer. An improved
estimate, compared to collision tracing in during velocity integration, can
be obtained with a variable step width integration. Further, also multi body
collisions have to be considered. With regards to this huge necessary efforts,
following a Monte-Carlo scheme is much more convenient [2].
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2.2 Structural properties

2.2 Structural properties

For the investigation of the liquid structure, we numerically calculate the
radial distribution function (RDF), the static structure factor, and a set of
bond orientational order parameters (BOOs). In the following, we give a
brief introduction of those measures for the properties of liquids.

2.2.1 Radial Distribution Function and Structure Factor

Fluids, in contrast to ideal gases, posses short range spatial correlations.
Those can be expressed with the two particle density, additional to the one
particle density function. This density function describes the probability of
finding a particle at r′ if there is a particle at r;

ρ
(2)
N (r, r′) =

〈∑
i 6=j

δ(r− ri)δ(r
′ − rj)

〉
, (3)

where the sum goes over all pairs of particles. In other words, it gives the
average density distribution a particle of the system would see around itself
[3].

Figure 3: The radial distribution function (eq. 4) gives the probability of
finding another particle (green) in the volume element 4πr2dr at distance
r (red circle) from a particle i (red), in the case of an homogeneous and
isotropic liquid. We can see that inside the red region, there is naturally a
distance of increased probability for other particles. This results in a peak
in ρ

(2)
N (r), called the first neighbour shell, a typical feature of liquids.

If the system is both homogeneous and isotropic, this function only depends
on the scalar distance between particles

ρ
(2)
N (r) =

〈∑
i 6=j

δ( r − |ri − rj| )
〉

= g
(2)
N (r)ρ, (4)
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2.2 Structural properties

with the density ρ and the pair distribution function g
(2)
N (r), which is, in

the present case of homogeneity and isotropy of the liquid, called radial
distribution function.
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Figure 4: The radial distribution function for the hard-core Yukawa model
given by eq. 1 parametrized as in table 1. Between 1 and 2, we see the
increase caused by the first neighbour shell. As we go to larger separation,
we also see the typical decay to unity, which means the density the particle
i sees is just the average density for large distances.

Like for crystals, this correlations can be observe via diffraction patterns
with the difference that, since there is no regular lattice in fluids, the dif-
fraction patterns do not exhibit sharp peaks. X-ray and neutron diffraction
experiments therefore can be performed in order to yield equilibrium static
structure properties. The way incident light is spatially scattered into a
pattern by a material is mathematically described by the static structure
factor, which can be defined as the Fourier density correlation

S(k) =
1

N

〈
N∑
i=1

eikri
N∑
j=1

eikrj

〉
= 1 +

1

N

〈
N∑
i 6=j

eik(ri−rj)

〉
,

with the number of particles N and the momentum transfer k.

Conveniently expressed for the computation from simulation’s structural
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2.2 Structural properties

Figure 5: The structure factor describes the scattering of a wave due to the
inter particles’ distance correlations, which results in a path difference.

data[4] is the form

S(k) =
1

N

〈∣∣∣∣∣
N∑
i=1

cos(k · ri)
∣∣∣∣∣
2

+

∣∣∣∣∣
N∑
i=1

sin(k · ri)
∣∣∣∣∣
2〉

. (5)

The wave vector k’s components need to be multiples of 2π/Li, where Li
is the respective box side length of the finite simulation box. The structure
factor as in eq. 5 can be visualised radially averaged as S(|k|).

Another way to compute the structure factor is to directly calculate it from
the radial distribution function as

S(k) = 1 + 4πρ

∞∫
0

sin(kr)

kr
(g(r)− 1) r2dr, (k 6= 0).

where g(r) is the RDF. While the density describes the probability of find-
ing a particle in a region of space, the radial distribution function describes
the probability of finding a second particle at the separation r of a reference
particle.
Compared to the structure factor, the radial distribution has the advantage
of its clear physical meaning and and simplicity of visualising it.

2.2.2 Bond orientational order parameters

So far we have dealt with distance correlation between pairs of particles.The
advantage here is that one can arrive at these results from both experi-
ments and simulations of particles with pairwise interaction, which provides
a method to model the actual interaction of particles. From configurations
produced with simulations, we can though calculate some more quantit-
ies. We are interested in the local symmetry in the first neighbour shell of
particles, which can easily be understood in a 2D plane like in figure 7. If a
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2.2 Structural properties
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Figure 6: Structure factor for the same state φ = 0.16 as in fig. 4, calculated
according to eq. 5, thus a typical liquid’s structure factor. The peak slightly
above 0.02 nm−1 is produce by the high distance correlation of the first
neighbour shell.

particle has six neighbours (green colour) and between the connecting lines
to the centre particle (red colour) the angle θ is 60◦ each, one observes a
perfect 6-fold symmetry. In 3 dimensions, the l-fold order of particle i with
nearest neighbours j ∈ NN(i), is defined with l-order spherical harmonics
Ylm(θij, ϕij) so that [5]

ql(i) =

[
4π

2l + 1

l∑
m=−l

∣∣∣∣∣ 1

|NN(i)|
∑

j∈NN(i)

Ylm(θij, ϕij)︸ ︷︷ ︸
qlm(i)

∣∣∣∣∣
2 ]1/2

.

These parameters vary between zero and unity for none and perfect sym-
metry, respectively. What should be emphasised at this point is, that these
order parameters contain no information of how far particles are from each
other. Since the volume fraction changes, the code that calculates this
quantities always calculates the minimum after the first peak in the RDF
and considers all particles within this distance of a particle as its next neigh-
bours. In a liquid, these symmetries can be present, even if the system is
not a crystal. To see crystal structures and local crystal-like arrangements,
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2.2 Structural properties

one can compare particles’ ql(i) to the values of a perfect crystal. To have
a measure of how much crystalline a sample is, we can calculate the correl-
ation between the the l-fold bond order of different particles i and j via

cl(ij) =

l∑
m=−l

qlm(i) qlm(j)[ l∑
m=−l

|qlm(i)|2
]1/2[ l∑

m=−l
|qlm(j)|2

]1/2
.

This quantity varies between -1 for perfect anticorrelation and 1 meaning
perfect correlation [5].

Figure 7: Schema of how the bond order parameters work in 2 dimensions.
Here we don’t have a perfect 6-fold symmetry in the first neighbour shell
(green particles), but an increased one.

From the experimental side, related information can be acquired with X-ray
cross correlation analysis (XCCA). For the scattering Intensity I(q, ϕ) this
is

c(q,∆) =
〈I(q, ϕ)I(q, ϕ+ ∆)〉ϕ − 〈I(q, ϕ)〉2ϕ

〈I(q, ϕ)〉2ϕ
.

The exact connection between the bond orientational order parameters and
XCCA is though not known, but is of interest because of the bond orienta-
tional order parameter’s clear meaning.
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3 Results

3 Results

3.1 Comparing to experimental data

We can compare our simulations’ results with experimental scattering data[6],
that was kindly provided by F. Westermeier. For this comparison we used
the fitting parameters of the analytical treatment provided by Westermeier
and his coauthors in [6]. The plots for different salt concentrations at the
two volume fractions φ = 0.16 and φ = 0.32 are shown in fig. 8 and fig. 9,
respectively.
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Figure 8: Structure factors at volume fraction φnom = 0.16.

We can see that the two differently obtained curves are overlapping well. For
this lower volume fraction we get a maximum root mean square deviation
of 3%.

Salt concentration ns RMS

0.1 0.027
0.5 0.024
2.0 0.023

Table 2: RMS at volume fraction φnom = 0.16.

For the higher volume fraction in fig. 9 we see a good overlap, although
the maximum root mean square deviation is now around 5% here. In the
results for this volume fraction, we can see the effect of increased screening
as salt concentration increases. The leftmost panel in fig. 9 shows the least
salt concentration. As we look at the other two panels, form left to right,
we see the local correlation between particles increase, since the first peak
- produced by the first neighbour shells - increases. We can also see that
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3.2 Further investigation of local correlation

the correlations, and with it the interaction, become more long ranged.
This feature is also demonstrated by the structure factors, where greater
oscillations are also present at high values of the momentum transfer (q).
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Figure 9: Structure factors at volume fraction φnom = 0.32.

If the density at a some distance to a particle is just the average, the struc-
ture factor will also be 1 since all interference that may come from some
local alignments average out over the illuminated sample.

Salt concentration ns RMS

0.10 0.043
0.35 0.052
5.00 0.048

Table 3: RMS at volume fraction φnom = 0.32.

Following this comparison, we proceed with investigating the dataset we’ve
obtained for a similarly parametrized potential according to table 1.

3.2 Further investigation of local correlation

3.2.1 Radial distribution function

If we look at the radial distribution functions for different packing frac-
tions, we can easily get an idea if the structure of the system is more than
a simple liquid phase or not. For the volume fractions presented in figure
10 we see that there are 2, almost 3 neighbour shells and as the volume
fraction increases, these shells move further in towards the particle because
there is simply less space. The peak heights of the neighbour shells grow
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3.2 Further investigation of local correlation

for increasing volume fraction, suggesting a bigger inter particle correlation.
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Figure 10: Structure factors at volume fraction φnom = 0.32.

While the lowest volume fraction φ = 0.31 drawn in blue shows a simple
oscillation, the higher volume fractions occur to have a more complex struc-
ture. For the next higher volume fraction φ = 0.39 there is a smaller peak
in between the first to shells at a distance around 1.75 σ. Also a shoulder
on the second shell’s peak appears at ca. 2.4 σ and another one at ca.
2.8 σ. This indicates more complex local alignments. We will discuss these
cases in the next section, where we have additional information from the
measurements of the bond orientational order.
At the largest shown volume fraction of φ = 0.44 for this salt concentration
in green colour, the correlation has increased again in the first neighbour
shell but decreased in the second and third one, indicating that the correla-
tion length decreased. Also the structure that was present at lower packing
shown in black fraction disappeared to some extend, at least the first addi-
tional peak. This is somehow surprising since one might think that correla-
tion between particles will always increase with increasing volume fraction.
But, one should note that, increasing the volume fraction is not similar to
increasing the density. We have seen (e.g. fig. 2) that for increasing the
volume fraction also the screening is increased.
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3.2 Further investigation of local correlation

For the lower salt concentration, we expect to get longer ranging correlation
since the screening is less. Since the coupling is also stronger as can be seen
in fig. 2 we can also expect an increased correlation and more complex
behaviour at lower volume fractions. Both can be seen in fig. 11. Again, we
show a low volume fraction sample’s RDF with less correlation, a sample’s
RDF at intermediate volume fraction that shows high correlation and a
high volume fraction that shows less correlation as before. Compared to the
higher screening the modulation of the RDF is much stronger and ranges
more outward.
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Figure 11: Structure factors at volume fraction φnom = 0.32.

The fact that RDF still decays to unity for larger inter particle distances,
tells us that we don’t have any fully crystalline system.

3.2.2 Bond orientational order

As mentioned before, we can compare the symmetries possessed by a particle’s
first neighbour shell with table values for perfect crystals as given in tab. 4.

For determining the local crystal structure according to the symmetry a
particle’s first neighbour shell has, a 2D scatter histogram with combined
q4 and q6 information is necessary. Out of each generated configuration file
for a state point we randomly select 200 particles. Dense scatting around
a lattice’s symmetry value combination indicates local crystal structures.
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3.2 Further investigation of local correlation

Crystal lattice q4 q6

bcc 0.036 0.511
fcc 0.190 0.575
hcp 0.097 0.484

Table 4: q4 and q6 symmetry values for occurring ideal lattices [5].

Positive feedback in the cl(ij) correlation measure indicates clustering. To
investigate the correlation between particles, we draw a histogram of the
cl(ij) values. The q4 and q6 scattering plot and the histograms for its cor-
relation cl(ij) can be seen in fig. 12 and fig. 13, respectively. All the states
are at higher screening of ns = 0.1 mM and correspond to the RDFs shown
in fig. 10.
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Figure 12: Scattering plot of q6/q4 for different volume fractions φ at salt
concentration nnom

s = 0.1. The scattering intensity is shown in colourcode.

For the lowest volume fraction, the RDF suggested a simple liquid phase.
The symmetry shows a really broad scattering around a value that does
not lie in the region of any crystal lattice’s symmetry. Together with the
histogram of cl(ij) which does’t show a sign of correlation, this tells that
the system is liquid at φ = 0.31.
The present systems have not shown an evidence of crystallinity in the RDF.
So, one has to expects the bond order symmetries to deviate from the ideal
ones in tab. 4. One should note that in [5], the nearest neighbours were
calculated in a different manner than we do. We believe that should make
very little difference in our results.
At φ = 0.39 shown in the middle panel in both plots we see scattering of
the symmetry around two points that lie close to hcp and fcc symmetry.
Also the cl(ij)-histogram indicates that a large fraction is in a crystal-like
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3.2 Further investigation of local correlation
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Figure 13: Plot of cl(ij) for both symmetries, for different volume fractions
φ at salt concentration nnom

s = 0.1. Blue: q3. Green: q4. Red: q6

state. There are two peaks appearing in the c6(ij)-histogram which might
belong to the to of the scattering centres.
At φ = 0.44 the scattering is now much broader and still around the hcp
symmetry point, while there still is a faint scattering at the fcc symmetry.
The c6(ij)-histogram has a extremely weakly shift to positive correlation,
which is most presumably not meaningful. Since we have seen the second
neighbour shell having a shoulder in the RDF, this altogether indicates local
structure in a liquid phase. The hcp symmetry possibly arises from the high
volume fraction.

For the lower screening system a few more features appear. Now already in
at the lowest packing fraction φ = 0.18 we see scattering around hcp and
faintly fcc symmetries.
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Figure 14: Scattering plot of q6/q4 for different volume fractions φ at salt
concentration nnom

s = 0.01.

As the volume fraction increases to φ = 0.25 we see a similar state as
before at φ = 0.39 at screening ns = 0.1 mM, with a high correlation
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and scattering around both hcp and fcc symmetries. At the highest shown
φ = 0.33 in figure 14, there is a new symmetry of bcc occurring, being the
strongest point that’s scattered to. The c6(ij)-histogram indicates positive
correlation but very smeared out and does not exhibit a distinct peak.
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Figure 15: Plot of cl(ij) for both symmetries, for different volume fractions
φ at salt concentration nnom

s = 0.01. Blue: q3. Green: q4. Red: q6

Going to volume fraction higher than φ = 0.33 in the ns = 0.01 mM model,
the correlation decays again as for the higher screening model. Again the
hcp symmetry stays present, but the correlations completely decay as in-
dicated by c6(ij).

3.3 Structure factor

After having seen the local structure with both real space symmetry meas-
ures of the RDF and the BOO parameters, we want to investigate our
system in reciprocal space by calculating the structure factors, which can
be directly determined via X-ray experiments. Figure 16 shows structure
factors obtained for the higher screened potential.
In the leftmost figure showing φ = 0.31 the system was liquid and also the
structure factor is that of a liquid. It is smoothly varying and decaying
to large momentum transfer. Compared to fig. 6 for lower φ = 0.16 the
second peak is not completely round indicating some more symmetry. In
the middle we saw the the system to be correlated in both inter particle dis-
tances and bond orientational order. Added to the weak scattering of the
liquid, we see high peaks like in a crystal, decaying quickly towards higher
momentum transfer though, indicating only short ranged correlation. At
volume fraction φ = 0.44 the system is less correlated in terms of distances.
There is BOO but it is not correlated between particles. The sharp peak in
the RDF produces a sharp peak in the structure factor. In the second peak
of the structure factor we see faint peaks that might arise from the BOO
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Figure 16: Structure factor, for different volume fractions φ at salt concen-
tration nnom

s = 0.1.

and still high distance correlation.

In the less screened system the behaviour is similar. At φ = 0.18 we see the
short ranged correlation producing high peaks in the structure factor on top
of a liquid-like curve. The inter particle BOO correlation also vanished at
higher volume fractions starting at φ = 0.35, and again the structure factor
becomes more like a typical liquid one. Strong local distance correlation
to the first neighbour shell results in high first peaks in the corresponding
structure factors.
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Figure 17: Structure factor, for different volume fractions φ at salt concen-
tration nnom

s = 0.01.
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4 Conclusion and outlook

Charge stabilised colloidal suspensions are a challenging system to investig-
ate, using both simulations and experiments, as the non-trivial relationship
between the volume fraction and screening results in interesting structural
properties. The agreement between the analytically-derived results from
DLVO theory, Monte Carlo simulations using the hard-core Yukawa poten-
tial model and the X-ray experiments on charge stabilised colloids, makes
this model a very good candidate to go beyond understanding the structural
properties via translational order parameters towards also including orient-
ational order parameters. Thus, this model serves as a reasonable starting
point for the investigation of how local BO parameters are related to results
from angular cross-correlations (XCCA).
The RDF analysis proves to be useful when combined with a further ana-
lysis of BO parameters and the corresponding correlation functions clij. We
observe that the hard-core Yukawa model fluid exhibits a rich phase dia-
gram.
There are highly correlated fluid states that exhibit the BOO symmetries
of different crystal lattices in their first neighbour shell at the same time.
Additional to fluid states that showed non significant BOO, there are fluid
states that exhibit high correlation, though only in the first neighbour shell.

While our model was monodisperse, the production of corresponding real
colloids results in particles being both disperse in size and charge. One of
the next steps following this work will therefore be including polydispersity
in the model. This will be a significant step towards modelling experimental
systems since polydispersity can have huge impacts on the crystalline (or
aggregration) behaviour of the colloidal system [7].

Concluding, I learnt a lot about complex’ liquids states and computing
during my time at DESY. Special thanks to Avni Jain for selecting me
for the summer student program, being my supervisors and helping me so
much. Many thanks to the group for all the nice lunchs, barbecue, and
coffees we had. Also, many thanks to Felix Lehmkühler, Lisbeth Janssen,
Michael Höltig and Wojciech Roseker for many fruitful conversations and
tips.
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