
A Scanning Tool Program for FLASH

2015 DESY summer student, FLASH

Yifan Li, Tsinghua University

Supervisor: Stefan Dusterer

September 9, 2015

Abstract

A scanning tool program for the Free-Electron Laser FLASH with graphical user
interface (GUI) is completed using Matlab tools. It is used to change the controlled
value of a FLASH instrument, observe the measured value and plot results after
processing. With the scanning tool, users can easily scan parameters of a specific
instrument and get one DOOCS (FLASH control system) property versus another
property. It is helpful and the GUI makes the program more easy to use. In
this report, the method of realization is introduced in detail, a simple application
example is given and conclusions are presented.

1

Contents

1 Introduction 3
1.1 A scanning tool . 3
1.2 Program structure . 4

2 Methodology 5
2.1 Introduction to MATLAB GUIDE . 5
2.2 Realization of basic function . 6
2.3 Realization of other function . 7

2.3.1 Pause and continue . 7
2.3.2 Save . 8
2.3.3 Analyze . 8

2.4 Solutions to some typical problems . 9
2.4.1 Read back value . 9
2.4.2 Value addresses . 9
2.4.3 Network interruption . 10
2.4.4 Device does not respond . 10

3 A simple applicaion example 10
3.1 Application example . 10
3.2 Results and Analysis . 10

4 Summary 12

5 Acknowledgement 12

2

1 Introduction

1.1 A scanning tool

A scanning tool program with graphical user interface (GUI) was finished using MAT-
LAB tools. It is used for scanning parameters of an instrument.

The program is useful for scientific research in some cases. For example, researchers
need to get X-rays with specific energy or laser with specific time structure. It would
take a large e↵ort for researchers to manually change parameters and measure the output
for many times in order to find the most proper way to obtain lasing. This scanning tool
is programmed to solve this problem by doing this kind of repetitive work automatically
instead of manually. It is helpful and the GUI makes the program more easy to use.

A GUI is a graphical display in one or more windows containing controls, called
components, enable a user to perform interactive tasks. The user does not have to
create a script or type commands at the command line to accomplish the tasks [2].

The GUI of scanning program is shown in Figure 1.

Figure 1: Graphical user interface (GUI)

• Users communicate directly with the GUI. The program allows users to type in
essential parameters (like step size or controlled value range) and choose what they

3

want to measure by using the pop-up-menu. The measured value could be scalar
or vector, users can choose proper pattern to display results on the GUI (see more
at section 2.2).

• Once the scan button is clicked, the program starts to work. The scanning progress
starts at minimum controlled value that users set, grows with step by step and
finishes at the maximum value. And the results are displayed at axes on GUI.

• The scan program can also go backwards, with starting value larger than finishing
value and a negative step length.

• Note that if the step attribute is omitted, the step size defaults to 1.

• Some buttons are put on the GUI. Users can use“pause/continue” button to control
the progress, and use “stop” button to stop scanning.

• The results are not only presented in forms of graphs. Users can also get a text
file of data. A text file would be saved every time when a user scans, by popup of
a dialog window asking for file name.

• Analyze: calculate a fitted curve with errorbar to show tendency.

1.2 Program structure

The association diagram can be seen in Fig 2. The whole project includes 3 sections:
GUI, Core Program and Adapter.

A user communicates with the GUI. A user could type in scanning parameters and
click a button to command the program to execute instructions.

The core program, which is actually an m-file in MATLAB, is written as the callback
function of “scan” button of the GUI. It gains information from the GUI and also passes
essential data to the device. The information contains: which device or which motor a
user chooses; what the controlled value is (one device may have more than one controlled
value); data such as step size and controlled value range (minimum and maximum value).
The information transfer is completed through the adapter.

An adapter is a special script for connecting the program with some specific instru-
ments. There are two kinds of adapters. The Fake Adapter is used to link the program
with a virtual device. The JDoocsAdapter can enable the program to get access to the
FLASH control system DOOCS so that the program can execute instructions. The two
adapters are independent of each other and the switch between them is free without
changing the code.

4

Figure 2: Program association diagram

Once a user commands to start scanning, the core program sets the parameter of the
device and asks the adapter for a return of the output value, which is called measured
value in this case. After some simple processing, the results are displayed on the GUI
to show to users.

2 Methodology

2.1 Introduction to MATLAB GUIDE

In this program, the author chose to create the GUI using GUIDE. This approach
starts with a figure that you populate with components from within a graphic layout
editor. GUIDE creates an associated code file containing callbacks for the GUI and its
components. GUIDE saves both the figure (as a FIG-file) and the code file [1].

There are 5 buttons, 1 axes, 2 pop-up menus and a panel with several edits on the
GUI. Each of these components has a callback function. The GUI waits for a user to
manipulate a control, and then respond to each user action in turn. A particular user

5

action, such as pressing a screen button, or passing the cursor over a component, triggers
the execution of each callback. By writing callbacks that define what the components
do to handle events, we can realize di↵erent functions.

2.2 Realization of basic function

The core program is put into the callback function of the button scan, used to realize
the most fundamental function: scanning. Once the scan button is clicked, the scanning
progress starts, from starting controlled value that users set, changing by step-length
and finishing at the stop value. And the results are displayed at axes on the GUI.

Figure 3: Program association diagram

Since there are di↵erent types of measured values, multiple plot patterns are designed.
Fig. 3 shows the interface when the scalar (number) pattern is chosen. Under this
pattern, the measured value is simply a number, which is collected by the program as
y-coordinate of a point. The program plots corresponding points on the axes.

Fig. 4 shows the interface when the spectrum (vector) pattern is chosen. Users choose
this pattern when the measured value is a vector, typically a spectrum. After the scan-
ning is finished, some important results containing meaningful information are displayed
in the picture form.

6

Figure 4: Program association diagram

2.3 Realization of other function

There are some other buttons on the GUI for executing di↵erent instructions. For
example, the pause/continue button allows users to pause the action, and the stop
button is used to stop the whole progress. These functions are realized in a modularize
way. Later, when people in the FLASH group need to modify some function, they just
have to change one part rather than go across the whole program.

2.3.1 Pause and continue

In order to make sure users can control the progress, a pause/continue button is
designed.

To indicate the pause state, we can assign a variable named “pause state”. The author
uses 1 to represent operating state, while 0 represents suspended state.The GUI contains
interdependent controls, menus, and graphics objects. Since each callback function has
its own scope, a problem to solve is how to share data with those parts of GUI that need
access it. The solution chosen is to associate data with a specific component using the
setappdata function. You can access the data from other functions using the getappdata
function. The code is shown below:

function pause Cal lback (hObject , eventdata , handles)
% hObject handle to pause

7

% hand les s t r u c t u r e wi th hand les and user data
pau s e s t a t e=getappdata (gcf , ‘ pause s ta t e ’) ;
switch pau s e s t a t e

case 0
setappdata (gcf , ‘ pause s ta t e ’ , 1)
set (handles .pause , ‘ s t r i ng ’ , ‘ cont inue ’)

case 1
setappdata (gcf , ‘ pause s ta t e ’ , 0)
set (handles .pause , ‘ s t r i ng ’ , ‘pause ’)

end

Pressing the pause button triggers a change of the variable “pause state”. In the core
program ”scan”, the variable is checked frequently, once it is found to be 1, the program
would be suspended. The stop button is programmed similarly. Pressing the stop button
triggers the change of “stop state” variable, making further e↵ect to stop the device at
current set value.

2.3.2 Save

Every time a user starts a new scan, the program would save a text file automatically,
and pop up a dialog asking for a file name. It is easily realized using uiputfile function.
The code is shown below:

[f i l ename , pathname , f i l e i n d e x]=uiputf i le ({ ‘⇤ . txt ’ ; ‘ ⇤ .m’} , ‘ save data as ’) ;
f i l e=s t r c a t (pathname , f i l ename) ;
dlmwrite (f i l e , ‘ Scan data ’ , ‘ d e l im i t e r ’ , ’ ’) ;

2.3.3 Analyze

The analysis function does make results more visible. For the scalar pattern, a fitted
curve with errorbar is plotted to show a tendency. For the spectrum pattern, an image
is plotted using image function.

The data used for the analysis is the set value and the corresponding measured scalar
or vector. These values are put in a matrix respectively, and the matrixes are stored
at handles, which is a struct array containing all the GUI components. Therefore, the
matrixes are easy to retrieve.The code is shown below:

function ana lyze Ca l lback (hObject , eventdata , handles)
s=st r2doub l e (get (handles . step , ‘ s t r i ng ’)) ;
a=st r2doub l e (get (handles . from , ‘ s t r i ng ’)) ;
b=st r2doub l e (get (handles . to , ‘ s t r i ng ’)) ;
numberOfRepeats=st r2doub l e (get (handles . numberOfRepeats , ‘ s t r i ng ’)) ;
switch get (handles . popupmenu1 , ‘ Value ’) ;

8

case 1
x=a : s : b ;
y=sum(handles .M’) / numberOfRepeats ;
e=std (handles .M’) ;
errorbar (x , y , e , ‘ b ’ , ‘ LineWidth ’ , 0 . 8) ;

case 2
image (handles .M’ , ‘ CDataMapping ’ , ‘ s ca l ed ’) ;

end

However, the analysis is quite simple and crude, which might require improvement for
further use.

2.4 Solutions to some typical problems

2.4.1 Read back value

After users set a value for the device, it takes time for motor to drive the device to the
set position. Since that time depends on various factors, it is unpredictable. To solve
the problem, the program observes another value, the read back value, and compares it
with the set value. Before the program executes next action, the read back value would
increases (or decreases) until it equals the set value. It makes sure every measurement is
done at right time and right position. And there are also literal indications showing the
progress on the interface. So before a new scan starts, it takes a while to wait for the
device to be driven to the starting value. And before a new measured value is observed,
the program does nothing until the read back value equals the set value. A tolarence
within 0.001 is allowed.

2.4.2 Value addresses

It is of great significance to clarify value address when the program is used in FLASH
system.

As is indicated before, the program must get access to the FLASH control system
DOOCS in order to control equipment of the FLASH group. When the program set
a controlled value, it actually writes a DOOCS property. When the program read a
measured value, it actually reads from a DOOCS property.The JDOOCS-Adapter en-
ables the program to get access to the FLASH control system DOOCS by transmitting
addresses of the DOOCS property. The format of a DOOCS address is “facility/de-
vice/location/property”. In this way, the JDOOCS-Adapter isolates the scanning tool
program from dealing with details of control system.Therefore it is necessary to clarify
the addresses of the property, which contain important information about the device
and property. The addresses are displayed on GUI to users.

9

In order to get access to DOOCS, the program also need realize java-MATLAB-
DOOCS communication. How to read and write DOOCS properties with MATLAB
have been covered in details on a DESY website. If you want to know more about that,
please go to: http//hasfweb.desy.de/bin/view/Setup/MatlabDOOCS.

2.4.3 Network interruption

Sometimes the server could be unavailable. If a network interrupt like that happens,
the program should identify it, give users a hint and try again to get access to the
network. That is realized using try and catch statement.

2.4.4 Device does not respond

There is a situation that the device does not respond to the program and it could
occur sometimes. Di↵erent from the server unavailable, this is caused by some improper
actions or other on various factors.A temporary solution is to observe the read back
value. If the program has sent a set value to the device, but the read back value does
not equal the set value and does not change towards the set value, the program could
tell that the device does not respond. There would be a hint on the interface informing
users of the situation and suggesting users to try to scan again.However, the solution
is not very friendly and should be modified. An expected way is to try to awaken the
device for several times again automatically, and give a hint only after all e↵orts fail.

3 A simple applicaion example

3.1 Application example

We test the scanning tool program in Terahertz streaking experiment set-up. The
experiment platform structure is shown in Fig. 5 [3].

In this example we have sampled a trace of a photodiode, which measured the HYDRA
pulse scattering light at one sampling point (1MHz ADC). The scan plotted the photo
diode ADC value versus the temporal position of delay stage in the THz setup.When
the program is scanning, one mirror in set delay is moving slowly, driven by an electric
motor. Change of the temporal position of the mirror means change of set delay. That
means the set value is delay time and the measured value is HYDRA pulse scattering
light.

3.2 Results and Analysis

Obviously it shows us the relationship between ADC signal and delay time. As is
shown in Figure 6, at the sampling point, the HYDRA pulse scattering light reaches its
bottom when the delay is 6 ps.

10

Figure 5: Terahertz streaking experiment set-up [3]

Figure 6: A photo diode ADC value versus set delay

11

4 Summary

This scanning tool program is a project that enables users to explore the output signals
of a device under a certain range of inputs.

The GUI is accomplished by MATLAB GUIDE tools. MATLAB is a high-level lan-
guage and GUIDE is an interactive environment for visualization and programming,
which is a proper way to do this kind of programming. The scanning tool program is
modular. The GUI, the main function and other functions are separate so that users
can change any part without a↵ecting others.

There are some limitations about the program. The interface is not so artistic, which
can decrease the user-friendliness. However, it is not fundamentally flawed. And the
analysis function is crude, for some further application, the author suggests it should be
improved.Moreover, the stop button on the GUI is used to stop the scanning program
rather than the hardware or the device. When extreme emergency happens, it is not
powerful enough to brake the machine immediately. It may be safer to add a button
which can cut o↵ the power of the tested machine.

5 Acknowledgement

The author acknowledges the guidance and attendance of supervisor Dr. Stefan
Dsterer. And I am also grateful to Erland Mller for his great support in this sum-
mer. The author also thanks for all the support of Deutsches Elektronen-Synchrotron
(DESY) sincerely.

12

References

[1] MATLAB Creating Graphical User Interfaces @ COPYRIGHT by The MathWorks,
Inc.

[2] MATLAB Primer @ COPYRIGHT by The MathWorks, Inc.

[3] I. Grguras1, A. R. Maier2,3, C. Behrens4, T. Mazza5, T. J. Kelly6, P. Radcli↵e5,
S. Dusterer4, A. K. Kazansky7,8,9, N. M. Kabachnik5,9,10, Th. Tschentscher5,
J. T. Costello6, M. Meyer5, M. C. Ho↵mann1,11, H. Schlarb4 and A. L. Cava-
lieri1* Ultrafast X-ray pulse characterization at free-electron lasers.Nature Phon-
tonics.VOL 6.DECEMBER 852(2012)

13

