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Abstract

In QCD, the coupling constant becomes large in the low energy regime, such
that the usual perturbative approach using quark and gluon fields is not effective.
In that case one needs to resort to other approaches − one of which is Chiral
Perturbation Theory (ChPT). This is an effective theory of QCD applicable at
low energies, constructed in accordance with the approximate chiral symmetry of
QCD. In this work, we make use of ChPT to investigate the pion matrix elements
of double-parton distribution (DPD)-type operators. DPDs are an important in-
gredient to calculate double parton scattering, the process in which two distinct
hard parton interactions occur simultaneously in a hadron-hadron collision. This
process can be relevant as a background and signal process at the LHC.
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1 Introduction

In this work, we investigate the use of Chiral Perturbation Theory (ChPT), an effective
theory of QCD applicable at low energies, to calculate the behavior of DPD-type matrix
elements in the pion.

1.1 Main Goals of this work

• Use ChPT to calculate DPD-type operator(s) matrix elements of pion(s) in 4 cases
including scalar, pseudoscalar, vector and axial-vector currents to describe double
parton scattering in the processes involving pion(s).

• Explain each matrix elements through the corresponding Feynman diagrams, each
diagram reveals the momentum conservation in which the corresponding external
fields to each type of currents have to be satisfied.

1.2 Convention and definition

These formulas are borrowed from [3, 4]. The Fourier transformation are given by

f(x) =

∫
d4k

(2π)4
e−ik·xf(k̃) and f̃(k) =

∫
d4xeik·xf(x) (1)

The 4-dimensional Dirac delta function is

δ(4)(k) =
1

(2π)4

∫
d4xeik·x (2)

The free field expansion is given by

ϕ(x) =

∫
d3p

(2π)3
1√
2Ep⃗

(
ap⃗e

−ip·x + a†p⃗e
ip·x

)
= ϕ+(x) + ϕ−(x) (3)

where we defined

ϕ+(x) =

∫
d3p

(2π)3
1√
2Ep⃗

ap⃗e
−ip·x (4)

ϕ−(x) =

∫
d3p

(2π)3
1√
2Ep⃗

a†p⃗e
ip·x (5)

The partial derivative for spacetime coordinates is given by

∂µ =

(
∂

∂x0
, ∇⃗

)
, ∂µ =

(
∂

∂x0
,−∇⃗

)
(6)

From the previous equation, we obtain ∂µeip·x = ipµeip·x. The creation and annihilation
operators is given through

|pa⟩ =
√
2Ep⃗aa

†
p⃗a
|0⟩ , ⟨pa| = ⟨0| ap⃗a

√
2Ep⃗a (7)
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The commutation between creation and annihilation operators of Klein-Gordon field is
given by [

aa
k⃗
, ab†p⃗

]
= (2π)3δ(3)(k⃗ − p⃗)δab (8)

The Feynman propagator is defined through

⟨0|T (ϕ(x)ϕ(y)) |0⟩ = DF (x− y) =

∫
d4p

(2π)4
i

p2 −m2 + iϵ
e−ip·(x−y) (9)

The time order product of n-fields (where ϕa = ϕ(xa)) can be resolved into a combination
between normal order of those fields and all possible contractions between them via
Wick’s Theorem,

T (ϕ1ϕ2ϕ3...ϕn) = N(ϕ1ϕ2ϕ3...ϕn) + all possible contractions (10)

2 Basic elements of this project

2.1 Double parton scattering

Double parton scattering is the process in which two distinct hard parton-parton inter-
actions occur simultaneously in a hadron-hadron collision[1]. It can be an important
background to rare single-scattering processes at the LHC, and is interesting to study
in its own right as it reveals new information concerning the structure of the proton.
An important quantity needed to calculate double parton scattering cross sections is
the double parton distribution (DPD), which roughly speaking quantifies the number
density of a pair of partons in the proton. Rather little is known about this quantity,
and its value at any particular scale cannot be calculated using normal perturbative
QCD. In analogy to the operators matrix elements, we can represent the double parton
distributions for the proton-proton collisions as

F (x1, x2,y;µ) ∼ ⟨p|O1(0;µ)O2(y;µ) |p⟩ (11)

and
F (x;µ) ∼ ⟨p|O(0;µ) |p⟩ (12)

In which the term µ stands for the renormalization scale. From the above definition, we
are going to calculate the matrix elements in this form for the sub-processes including
pion field(s). In which we will make use of chiral perturbation theory, the effective field
theory of QCD using chiral symmetry as the approximate symmetry of the underlying
theory to work out the matrix elements. The benefits from these matrix elements are

1. These matrix elements are equivalent to double parton distributions, so we can
use them to explain the sub-processes occur between two pairs of partons inside
the proton-proton collisions.
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2. These matrix elements calculated from chiral perturbation theory would be a good
compliment for a study of double parton distributions in the context of other QCD
studies at low energies.

3. In the double parton scattering, double parton distributions is the one of important
puzzles to work out the scattering cross-section for hadron-hadron collisions. So
we can make use of those matrix elements to calculate the cross-section and other
physical observables relate to proton-proton collisions.

4. The matrix elements that we’re going to calculate are use for a practical training.
Since the matrix elements for 2 vector currents between 2 protons would takes
sometime to be finished.

2.2 The running of strong coupling constant

QCD αs(Mz) = 0.1185 ± 0.0006

Z pole fit  

0.1

0.2

0.3

αs (Q)
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DIS jets (NLO)

Sept. 2013
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1000
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Figure 1: The plot of strong coupling constant αs versus the respective energy scale Q
[6].

The theory which describes the strong nuclear force is Quantum Chromodynamics
(QCD), containing 6 flavors of quark and 8 types of gluon as a fundamental objects.
The interaction between quark fields can be represented by the exchange of gluon, the
force carrier (or gauge field) of the strong interaction. One of the main interesting point
in QCD is the coupling constant of the theory, It depends strongly on the energy scale.
From the figure 1, the coupling constant is obviously low at the high energy scale so that
one can applies the perturbation theory to work out the observables for such interesting
processes without getting a trouble. In contrast, this coupling constant becomes large at
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a small energy scale so that the perturbation theory is no longer available, so the trouble
has come at this point. This is the starting point of finding a new extension to explain
the dynamics of a QCD at the low energies regime, later the effective field theory is taken
into account to solve this problem systematically. In our present work, the effective field
theory that we’re going to use as a basic tool is so-called Chiral Perturbation Theory,
It’s going to be explained in the next section.

2.3 Chiral perturbation theory : ChPT

ChPT is an effective field theory used to describe QCD at the low energies using the
approximate symmetry of QCD as a fundamental principle. ChPT was first proposed
by Weinberg, later Gasser and Leutwyler formulated ChPT for the light mesons when
external momenta are small relative to the chiral symmetry-breaking scale, Λ ≈ 1GeV
[2]. The approximate symmetry I mentioned is so-called a chiral symmetry. Chiral
symmetry (SU(N)L × SU(N)R) is a symmetry which held by QCD in a limit that the
quarks are massless. When the chiral symmetry is said to be spontaneous broken by the
ground state, it gives rise to the Goldstone bosons. In ChPT, we want to construct the
SU(N)L × SU(N)R Lagrangian describing the dynamics of the N2−1 Goldstone bosons.
In order to see how symmetry breaking generates Goldstone bosons, we start with the
QCD Lagrangian by following the procedure from [5].

L =
∑
j

q̄ji /Dqj +
∑
jk

q̄j (mq)jk qk (13)

where q1 = u, q2 = d, and q3 = s respectively. The term mq stands for a light quark
mass. The light quark mass can be described via a matrix

(mq)jk =

 mu 0 0
0 md 0
0 0 ms

 = diag [mu,md,ms] (14)

The covariant derivative is defined through

Dµ = ∂µ + igsA
b
µT

b, b = 1, 2, ..., 8 (15)

The first term on the right side represents a regular partial derivative with respect to a
spacetime coordinates. A term gs stands for a strong coupling constant, Aν

µ is a color
gauge field, and T b is a SU(3) color generator. In fact, the chiral symmetry is held
for the Lagrangian involves the quark fields in the limit mq → 0 but It seems to be
wrong for a chiral transformation of a quark bilinear inside a vacuum expectation value.
Unfortunately the chiral symmetry SU(3)L × SU(3)R is said to be spontaneous broken
to the vector transformation of a group SU(3)L=R, technically says SU(3)V , where the
32−1 = 8 Goldstone bosons are therefore generated. In order to make a clearer concepts
of the spontaneous symmetry breaking, a left handed and a right handed quark fields
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are defined through

qLb =
1

2
(1− γ5)qb = PLqb (16)

qRb =
1

2
(1 + γ5)qb = PRqb (17)

Note that the transformation matrix PL belongs to SU(3)L while PR belongs to SU(3)R
respectively. These 2 fields are connected with each other by a proper Lorentz transfor-
mation. In term of these left handed and right handed quark fields, the Lagrangian can
be rewritten as

L =
∑
j

q̄j
Li /DqLj +

∑
j

q̄j
Ri /DqRj +

∑
jk

[
q̄j

L (mq)jk q
R
k + q̄j

R (mq)jk q
L
k

]
(18)

In the limit mq → 0, the Lagrangian can be reduced to

L =
∑
j

q̄j
Li /DqLj +

∑
j

q̄j
Ri /DqRj (19)

nsThis Lagrangian is invariant under a global chiral transformation. So that the left
handed and the right handed quark fields are transform under SU(3)L and SU(3)R
transformation respectively. The transformation of a quark bilinear under a chiral trans-
formation can be seen through

⟨0| q̄jRqLk |0⟩ → ⟨0| q̄iRPR∗
ji PL

klq
L
l |0⟩ = v

(
PLPR†)

kj
(20)

In case that PL = PR, the chiral transformation becomes a vector transformation of
SU(3)V group providing vacuum invariant. Consequently the chiral symmetry group is
spontaneous braking into a vector subgroup in order to provide the vacuum invariant
of the quark bilinear under a transformation. In QCD, the Goldstone bosons can be
interpreted through 3 × 3 unitary matrix. In other words, those Goldstone bosons are
said to be arisen from the transformation of the quark bilinear away from its vacuum
expectation value. For example, the quark bilinear in case of low-energy excitation can
be written as

q̄j
RqLk ≃ vΣkj (21)

with the transformation according to the chiral symmetry group

Σ → PLΣPR† (22)

The explicit form of Σ is

Σ = exp

(
i
2M

f

)
(23)

where

M =


1√
2
π0 +

1√
6
η π+ K+

π− − 1√
2
π0 +

1√
6
η K0

K− K̄0 − 2√
6
η

 (24)
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The constant f appeared in the previous equation is a constant with a dimension of
mass. The SU(3)V transformation implies that

M → VMV † (25)

Thus one says that π, K, and η are transform as an SU(3)V octet.

2.4 Application of effective Lagrangian : A Pion-Pion scattering

The Feynman Rules for a ππ interaction can be derived by using the effective Lagrangian
from ChPT. To begin the derivation, we start with the effective Lagrangian satisfying
SU(2)L × SU(2)R chiral symmetry

L2 =
F 2

4
Tr[DµU(DµU)†] +

F 2

4
Tr[χU † + Uχ†] (26)

The constant F is a pion decay constant in the chiral limit. The SU(2) matrix U contains
the Goldstone bosons fields inside while the term χ is relates to the singlet scalar quark
condensate through a constant B. Moreover the covariant derivative is defined through

DµA ≡ ∂µA+ iAlµ − irµA (27)

After we set the external fields equal to zero, the effective Lagrangian becomes

L2 =
F 2

4
Tr[∂µU(∂µU)†] +

F 2

4
Tr[χU † + Uχ†] (28)

where

χ = 2BM = 2B

(
m̂ 0
0 m̂

)
,

U = exp

(
i
ϕ

F

)
, ϕ =

3∑
j=1

ϕjτj =

(
π0

√
2π+

√
2π− −π0

)
This Lagrangian is invariant under parity transformation, therefore It turns out that the
including terms must contain an even powers of field ϕ. Therefore this Lagrangian can
be expressed by

L2 = L2ϕ
2 + L4ϕ

2 + ....... (29)

From the previous expression, we may obtain the interacting Lagrangian which contains
4 fields as

L4ϕ
2 =

1

6F 2
(ϕi∂

µϕi∂µϕjϕj − ϕiϕi∂µϕj∂
µϕj) +

M2

24F 2
(ϕiϕiϕjϕj) (30)

where M2 = 2Bm̂. The Feynman rule for the interacting vertex as shown in the figure
2 is proven by using the expression for the invariant amplitude from quantum field
theory by expanding the scattering operator (S) through Dyson series, then work out
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Pa, a

Pb, b

Pc, c

Pd, d

Figure 2: ππ scattering diagram

the matrix element contains the order of S we’re interested in. After a calculation is
done with contraction of the fields, we get

M = i

[
δabδcd

s−M2

F 2
+ δacδbd

t−M2

F 2
+ δadδbc

u−M2

F 2

]
− i

3F 2
(δabδcd + δacδbd + δadδbc) (Λa + Λb + Λc + Λd) (31)

where Λa = p2a − M2. The other 3 parameters s,t and u represent the mandelstam
variables,

s = (pa + pb)
2, t = (pa − pc)

2, u = (pa − pd)
2 (32)

3 Calculation of matrix elements

In this section, we may apply the ideas from ChPT to work out the matrix elements
of 4 types of current to understand what may happens to the double parton scattering
within the pp collisions. We begin with the effective Lagrangian in SU(2)L × SU(2)R
sector

L2 =
F 2

4
Tr[DµU(DµU)†] +

F 2

4
Tr[χU † + Uχ†] (33)

Where χ = 2B(s+ ip). The covariant derivative and the SU(2) matrix U are similar to
those in the previous section. In quantum field theory, the interacting Lagrangian can
be expressed through

Lint(x) = J(x)ϕext(x) (34)

Where ϕext(x) represents the external field which coupling to the corresponding current
density. In order to obtain the explicit form of the current density, we need to represent
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each part of the effective Lagrangian as a multiplication between external field and
current as in the previous equation. The first term in the effective Lagrangian includes
the vector and axial vector fields while another term contains a scalar and pseudoscalar
fields respectively. Anyway It is convenient to rewrite the previous Lagrangian as

L2 = Lv,a
2 + Ls,p

2 (35)

where Lv,a
2 =

F 2

4
Tr[DµU(DµU)†] and Ls,p

2 =
F 2

4
Tr[χU † + Uχ†]

Situation 1 : Finding V µ
a (x) and Aµ

a(x)

The vector and axial vector currents are defined through

V µ
a = Rµ

a + Lµ
a (36)

Aµ
a = Rµ

a − Lµ
a (37)

First, we need to find the expressions for Lµ
a and Rµ

a . In case of Lµ
a , we set rµ = 0 so

that the Lv,a
2 takes the form

Lv,a
2 =

iF 2

2
Tr[lµ∂

µU †U ] + .... (38)

In which only the linear term in left handed field is shown, The left handed field lµ can
be paremeterized by

lµ =
1

2
(lµaτa + lµ0I) (39)

Then we expand U inside the trace of our Lagrangian up to the third order and substitute
the expression for lµ. After the traces are evaluated, we get

Lµ
a =

F

2
∂µϕa −

ϵabc
4

(∂µϕbϕc − ϕb∂
µϕc) +

1

6F
ϕb(ϕa∂

µϕb − ϕb∂
µϕa) +O(ϕ4) (40)

In the same way as Lµ
a , we set lµ = 0 and follow the previous steps, we get the expression

for Rµ
a as

Rµ
a = −F

2
∂µϕa −

ϵabc
4

(∂µϕbϕc − ϕb∂
µϕc) +

1

6F
ϕb(ϕa∂

µϕb − ϕb∂
µϕa) +O(ϕ4) (41)

So that we obtain
V µ
a (x) =

ϵabc
2

(ϕb∂
µϕc − ∂µϕbϕc) +O(ϕ4) (42)

Aµ
a(x) = −F∂µϕa −

1

3F
ϕb (ϕa∂

µϕb − ∂µϕaϕb) +O(ϕ5) (43)

Situation 2 : Finding S(x) and Pa(x)
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We begin our calculation by using the expression for Ls,p
2 . We rewrite this Lagrangian

in terms of scalar and pseudoscalar fields as

Ls,p
2 =

BF 2

2
Tr[(s+ ip)U † + U(s− ip)] (44)

The scalar and pseudoscalar fields can be parameterized by

s = saτa + s0I (45)

p = pbτb + p0I (46)

After plugged the expansion of s and p into the Lagrangian and expanded U up to the
third order, we end up with the expression for scalar and pseudoscalar current densities,

S(x) = 2BF 2 −Bϕaϕa +O(ϕ4) (47)

Pa(x) = 2BFϕa +
B

3F
ϕaϕbϕb +O(ϕ5) (48)

We’ve derived the expressions for four types of current density. After this, we’ll make
use of them to calculate the matrix elements and work out the Feynman rules for the
particular vertices involving pion field.

3.1 Case I : Matrix elements for the scalar current

For one incoming pion and one outgoing pion, the matrix element that those two pions
coupling with the single scalar current is

⟨πa|S2(x)
∣∣πb

⟩
= δdf ⟨0|

√
2Ep⃗aaa(p⃗a)(−Bϕ−

d (x)ϕ
+
f (x))

√
2Ep⃗ba

†
b(p⃗b) |0⟩

= −Bδdf ⟨0|
√
2Ep⃗aaa(p⃗a)(−Bϕ−

d (x)ϕ
+
f (x))

√
2Ep⃗ba

†
b(p⃗b) |0⟩

= −Bδdf

∫ ∫
d3pdd

3pf
(2π)6

√
Ep⃗aEp⃗b

Ep⃗dEp⃗f

eipd·xe−ipf ·x ⟨0| aa(p⃗a)a†d(p⃗d)af (p⃗f )a
†
b(p⃗b) |0⟩

= −Bei(pa−pb)·xδab

(49)
The Fourier transformation of this matrix element is

⟨πa| S̃2(p)
∣∣πb

⟩
= −Bδab(2π)4δ(4)(p+ pa − pb) (50)

This matrix element can be expressed by

S2(x)

pb pa
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Another interesting case is the matrix element for a one incoming pion and one outgoing
pion coupling to two scalar currents,

⟨πa|S(x)S(y)
∣∣πb

⟩
= δcfδde ⟨πa| (2BF 2−Bϕc(x)ϕc(x))(2BF 2−Bϕd(y)ϕd(y))

∣∣πb
⟩

(51)

For example, the non-trivial matrix elements which possibly describe the physical process

are ⟨πa|ϕc(x)ϕc(x)ϕd(y)ϕd(y)
∣∣πb

⟩
and ⟨πa|ϕc(x)ϕc(x)ϕd(y)ϕd(y)

∣∣πb
⟩
. These 2 matrix

elements are equivalent so that we choose from one of them to do the calculation. We
get

⟨πa|ϕc(x)ϕc(x)ϕd(y)ϕd(y)
∣∣πb

⟩
= ⟨πa|ϕc(x)D

cd
F (x− y)ϕd(y)

∣∣πb
⟩

= Dcd
F (x− y)

[
⟨πa|ϕ−

c (x)ϕ
+
d (y)

∣∣πb
⟩
+ ⟨πa|ϕ−

d (y)ϕ
+
c (x) | πb⟩

]
(52)

In our notation Dcd
F (x − y) = DF (x − y)δcd. After the contractions inside the vacuum

expectation values have made, the results we’re looking for are

⟨πa|ϕ−
c (x)ϕ

+
d (y)

∣∣πb
⟩
= δacδbdei(pa·x−pb·y)

⟨πa|ϕ−
d (y)ϕ

+
c (x)

∣∣πb
⟩
= δacδbdei(pa·y−pb·x)

So that the matrix element included a single propagator with the vertex factor in front
is

⟨πa|S(x)S(y)
∣∣πb

⟩
1p

= B2DF (x− y)δab
[
ei(pa·x−pb·y) + ei(pa·y−pb·x)

]
(53)

The Fourier transformation of this matrix element can be represented by

⟨πa| S̃(p′)S̃(k)
∣∣πb

⟩
1p

= iB2(2π)4δab
[
δ(4)(p′ + pa + k − pb)

(p′ + pa)2 −m2 + iϵ
+

δ(4)(k + p′ − pb + pa)

(p′ − pb)2 −m2 + iϵ

]
(54)

This matrix element can be expressed by

pbp′ + papa

S(x) S(y)

S(x) S(y)

pb p′ − pb pa

3.2 Case II : Matrix elements for the pseudoscalar current

First of all, we’ll consider the matrix element for one outgoing pion coupling to the single
pseudoscalar current

⟨πa|Pc,1(x) |0⟩ = ⟨πa| 2BFϕc |0⟩ = 2BF

∫
d3pc
(2π)3

√
Ep⃗a

Ep⃗c

eipc·x ⟨0| aa(p⃗a)a†c(p⃗c) |0⟩ (55)
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After the integration is evaluated, the result is

⟨πa|Pc,1(x) |0⟩ = 2BFδaceipa·x (56)

This matrix element can be expressed by

Pc,1(x)

pa

In case of 3 incoming pions, we might calculate

⟨0|P (3)
d (x)

∣∣πaπbπc
⟩
= ⟨0| B

3F
ϕd(x)ϕe(x)ϕe(x)a

†
a(p⃗a)a

†
b(p⃗b)a

†
c(p⃗c)2

√
2Ep⃗aEp⃗bEp⃗c |0⟩

=
Bδef

3F

∫ ∫ ∫
d3pdd

3ped
3pf

(2π)9
e−i(pd+pe+pf )·x

√
Ep⃗aEp⃗bEp⃗c

Ep⃗dEp⃗eEp⃗f

ζ

=
2B

3F
e−i(pa+pb+pc)·x(δabδcd + δacδbd + δadδbc)

(57)

where we note that in the second line, ζ = ⟨0| ad(p⃗d)ae(p⃗e)af (p⃗f )a†a(p⃗a)a
†
b(p⃗b)a

†
c(p⃗c) |0⟩.

The Fourier transformation of this matrix element is

⟨0| P̃ (3)
d (k)

∣∣πaπbπc
⟩
=

2B

3F
(2π)4δ(4)(k − pa − pb − pc)(δ

abδcd + δacδbd + δadδbc) (58)

This matrix element is therefore represented by

P
(3)
d (x)

pa pb

pc

What we are going to compute for the next one is the pion matrix element coupling to
2 pseudoscalar currents in the form

⟨πa|Pc(x)Pd(y)
∣∣πb

⟩
=

⟨
πb
∣∣ (2BFϕc(x) +

B

3F
ϕc(x)ϕe(x)ϕe(x))(2BFϕd +

B

3F
ϕd(y)ϕf (y)ϕf (y))

∣∣πb
⟩

(59)
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The calculation for this matrix elements is pretty long, so that the calculation will not
be shown here. The fully connected matrix elements we got from the calculation for a
no loop cases take the form

2B2

3
⟨πa|Dcd

F (x− y)ϕ−
e (x)ϕ

+
e (x)

∣∣πb
⟩
=

2B2

3
DF (x− y)ei(pa−pb)·xδabδcd (60)

2B2

3
⟨πa|Dcd

F (x− y)ϕ−
f (y)ϕ

+
f (y)

∣∣πb
⟩
=

2B2

3
DF (x− y)ei(pa−pb)·yδabδcd (61)

where another 4 terms can be worked out by exchanging the isospin indices. These 2
matrix elements can be represented by

pb

pa

Pc(x) Pd(y)

k′

Pd(y)Pc(x)

k

pb

pa

For a single-loop diagrams, the matrix elements take the form

B2

9F 2
⟨πa|Dcd

F (x− y)Def
F (x− y)ϕ−

e (x)ϕ
+
f (y)

∣∣πb
⟩
=

B2

9F 2
D2

F (x− y)ei(pa·x−pb·y)δabδcd (62)

B2

9F 2
⟨πa|Dcf

F (x− y)Ded
F (x− y)ϕ−

f (y)ϕ
+
e (x)

∣∣πb
⟩
=

B2

9F 2
D2

F (x− y)ei(pa·y−pb·x)δabδcd (63)
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by exchanging the isospin indices, another 4 matrix elements can be obtained. These 2
matrix elements can be represented by

Pc(x) Pd(y)

pbpa

Pc(x) Pd(y)
pb pa

3.3 Case III : Matrix elements for the vector current

We consider in case of one incoming pion and one outgoing pion coupling to the single
vector current, the matrix element takes the form

⟨πa|V µ
c,2(x)

∣∣πb
⟩
= ⟨0|

√
2Ep⃗aaa(p⃗a)

ϵcde
2

(ϕd(x)∂
µϕe − ∂µϕd(x)ϕe(x))

√
2Ep⃗ba

†
b(p⃗b) |0⟩

=
ϵcde
2

(⟨0|
√

2Ep⃗aaa(p⃗a)ϕd(x)∂
µϕe(x)

√
2Ep⃗ba

†
b(p⃗b) |0⟩ − ⟨0|

√
2Ep⃗aaa(p⃗a)∂

µϕd(x)ϕe(x)
√
2Ep⃗ba

†
b(p⃗b) |0⟩)

= ei(pa−pb)·x ϵcde
2

(
−ipµb δ

adbe + ipµaδ
aeδbd − ipµaδ

adδbe + ipµb δ
aeδbd

)
=

iϵcde
2

(pµa + pµb )e
i(pa−pb)·x(δaeδbd − δadδbe)

(64)

This matrix element can be represented by

V
µ
c,2(x)

pb pa

3.4 Case IV : Matrix elements for the axial vector current

The first simplest case is the matrix element for one outgoing pion couplings to the single
axial vector current
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⟨πa|Aµ
b,1(x) |0⟩ = ⟨0|

√
2Ep⃗aaa(p⃗a)(−F∂µϕ+

b ) |0⟩

= −F

∫
d3pb
(2π)3

√
Ep⃗a

Ep⃗b

ipµb e
ipb·x ⟨0| aa(p⃗a)a†b(p⃗b) |0⟩

= −iFpµae
ipa·xδab

(65)

This matrix element can be represented by

A
µ
b,1(x)

pa

Another interesting case is the matrix element with three incoming pions

⟨0|Aµ
d,3(x)

∣∣πaπbπc
⟩
= ⟨0|Aµ

d,3(x)a
†
a(p⃗a)a

†
b(p⃗b)a

†
c(p⃗c)

√
2Ep⃗a

√
2Ep⃗b

√
2Ep⃗c |0⟩

=
δef

3F
(c1 − c2)

where c1 and c2 are defined through

c1 = ⟨0|ϕ+
e ∂

µϕ+
d ϕ

+
f a

†
a(p⃗a)a

†
b(p⃗b)a

†
c(p⃗c)

√
2Ep⃗a

√
2Ep⃗b

√
2Ep⃗c |0⟩ (66)

c2 = ⟨0|ϕ+
e ϕ

+
d ∂

µϕ+
f a

†
a(p⃗a)a

†
b(p⃗b)a

†
c(p⃗c)

√
2Ep⃗a

√
2Ep⃗b

√
2Ep⃗c |0⟩ (67)

by working out the vacuum expectation values, we get the simpler forms of c1 and c2 as

c1 = −ie−i(pa+pb+pc)·x[pµa(δ
adδbfδce+δadδbeδcf )+pµb (δ

aeδbdδcf+δafδbdδce)+pµc (δ
aeδbfδcd+δafδbeδcd)]

c2 = −ie−i(pa+pb+pc)·x[pµa(δ
afδbeδcd+δafδbdδce)+pµb (δ

aeδbfδcd+δadδbfδce)+pµc (δ
aeδbdδcf+δadδbeδcf )]

After substituted c1 and c2, what we get is

(68)⟨0|Aµ
d,3(x)

∣∣πaπbπc
⟩
=

i

3F
e−i(pa+pb+pc)·x(δadδbc(−2pµa + pµb + pµc )

+ δacδbd(−2pµb + pµa + pµc ) + δabδcd(−2pµc + pµb + pµa))

This matrix element can be represented by

A
µ
d,3(x)

pa pb

pc
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4 Conclusion

We have obtained the matrix elements and the corresponding Feynman diagrams to de-
scribe the processes including pion(s). The result can be seen in the section 3. This work
demonstrates that ChPT provides a good framework to work out the matrix elements
including pion(s) from the spontaneous chiral symmetry breaking of chiral symmetry by
the ground state. The one of the important matrix elements including pion(s) is the case
that two vector currents coupling to 1 incoming pion and 1 outgoing pion, which eventu-
ally describing Compton Scattering between pion and photon. In summary, ChPT can
be useful method to work out the matrix elements for various current densities coupling
to pion(s) as inspired by the equivalence between DPD-type operator matrix elements
and double parton distributions through Mellin moments. This methods can be applied
to calculate the matrix elements in case of of 2 vector currents for pp collisions, which
is a more realistic quantities to describe double parton scattering occurs in pp collisions
at CERN.
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