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ABSTRACT: This project aims to investigate boosted objects, such as top quarks and W
bosons, in current searches for supersymmetry signals with the CMS detector at the LHC.
Using Monte Carlo simulations, we check out expected correlations between generator level
quantities such as mass, transverse momentum and the distance between decay products.
In this project we focus on a simplified SUSY model, where pair produced gluinos decay into
a neutrino and two top quarks and compare this to the main background originating from
ttbar and jet events. After checking generator level quantities we look at reconstructed jets
and match them to MC truth tops and W'’s for different variables. The main conclusion of
this project is to suggest that investigations should be carried out into using a smaller cone
size for W jets than the default size used by the CMS collaboration.
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1 Motivation for Supersymmetry

1.1 The Standard Model

The Standard Model (SM) of particle physics is the best model we have to date classifying
all known subatomic particles as well as describing the strong, weak and electromagnetic
(EM) interactions. To this point, the SM has been self-consistent and in 2012, CMS and
ATLAS teams at the LHC successfully detected the much awaited Higgs boson. The ob-
vious problem with the SM is that it is yet to include gravitational interaction, but it also

encounters further difficulties such as:

e Planck scale unification - not even including gravitational interaction, it is desirable
to have unification of the weak, strong and EM forces at the Planck scale, but the
coupling constants of the three forces fail to unify at this scale.

e The massive neutrino - the SM expects a massless neutrino, but experiments have
shown that neutrinos can oscillate between lepton flavours. This is only possible if

the neutrino is massive.

e Hierarchy problem - There is no current explanation for why the weak force is 1032
times stronger than gravity. Furthermore, the SM cannot explain the hierarchy prob-
lem that arises when calculating the fermion loop correction to the Higgs mass.

e Dark matter and dark energy - from observations (such as rotation) of gravitational
bodies, it is proposed they consist of a significant amount more matter than is observ-
able. The SM does not propose any suitable candidate for a dark matter candidate.

e CP violation - the standard model predicts that under maximal CP violation, the
maximum discrepancy between matter and antimatter could be a ratio of 10710,

whereas current observations predict instead that it should be 10720,

Therefore we need to look for a theory beyond the SM that can provide answers to these

fundamental questions.

1.2 Supersymmetry theory

Supersymmetry (SUSY) theory states that every SM particle has a SUSY partner with
which its spin differs by one half. SUSY relates fermions and bosons, and says that each
particle from one group has a partner in the other - a superpartner. Ideally we would like
SUSY symmetry to be unbroken, but considering that these superpartners have not yet been
seen in nature, we know that spontaneous symmetry breaking must occur if SUSY is to exist.
This would allow superpartners to differ in mass from their SM counterparts. SUSY suggests
an elegant solution for some of the SM issues mentioned above. For example, spontaneous
symmetry breaking may be a solution to the gauge hierarchy problem. Similarly, Planck-
scale quantum corrections cancel between partners and superpartners, avoiding fermionic
loop corrections to the Higgs mass. Still further, SUSY unifies the weak, strong and EM
forces at 10'® GeV. SUSY also expects massive neutrinos.



There are a number of different SUSY models with varying numbers of parameters.
The Minimal Supersymmetric Standard Model (MSSM) utilises 105 parameters, whereas a
theory like the Constrained Minimal Supersymmetric Standard Model (CMSSM) has only
4 (and a phase). For a comprehensive guide to SUSY, see [1].

2 Searches for SUSY

After a quark or gluon is produced in a reaction, it quickly fragments into a spray of hadrons
(hadronisation) - a jet. By looking at the energy, F, transverse momentum, p; , and other
jet attributes, we can work backwards to form an idea of the particle that produced it.

The CMS detector is a general purpose detector which is comprised of three sections:
the tracking section, the calorimeter and the muon tracker. In this project we will study
signal and background events simulated using Monte Carlo methods (MC). At generator
level we have a pure process, like the ones shown in 1, that are purely simulated. However,
to make these simulations realistic, these events are processed by a simulation of the CMS
detector and the full event reconstruction chain is applied, as it would be performed on
data.

2.1 Interesting quantities

In order to distinguish BSM processes from SM processes, we want to look at some useful

generator level quantities such as:

e Transverse momentum, p; - this is the component of the momentum in the transverse

plane to the beam line.

e Missing transverse energy, M ET - in hadron colliders, the initial momentum of the
colliding partons is unknown owing to the fact that the individual constituents within
the hadrons share the energy between them, which we cannot measure. The energy
of the particles in the direction transverse to the beam axis is originally zero. We
can then check for any MET by taking the absolute value of the negative sum of all
visible reconstructed particles in the transverse plane after the collision.

e Minimum pairwise mass, M, - the three subjets with the highest p; are taken
pairwise and the invariant masses of the combinations are calculated. The minimum
pairwise mass is the mass of the pair with the lowest invariant mass. In top-tagging,
the minimum pairwise mass should reconstruct the W mass.

2.2 Jet algorithms

Jets are not always so easily defined, and there can be much pile-up to sort through. Pile-
up is when the detector is affected by several events simultaneously. Jet clustering aims to
reduce the complexity of the final state of the process by simplifying many hadrons into far
fewer jets. Jet algorithms are a set of rules used to group together particles into jets. There
are two main types of algorithm: cone algorithms and sequential-clustering algorithms.

The former is used more frequently in hadron colliders and typically involves the use of more



parameters than the latter. In a cone algorithm, the most widely used of which are iterative
algorithms, we take the most energetic particle in the hadron spray - the seed (the particle
with the leading momentum). Then we sum the momenta of all the particles surrounding
the seed within a cone of some radius R with azimuthal angle ¢ and pseudorapidity n (or
rapidity y). It is unavoidable that there arise such problems as overlapping cones, for which
there are subsequent various methods to deal with the issue, such as progressive removal
(remove all seeds from the event once a cone is formed) and split merging (merging a pair
of cones if a significant portion of the transverse momentum is shared by particles in both
cones).

Sequential-clustering algorithms, such as the k;, anti-k; and Cambridge-Aachen (CA) al-
gorithms, are currently used by the CMS experiment. Sequential-clustering algorithms are
based on two distance measures: the distance d;; between two particles ¢ and j, and the
distance d; g between any particle ¢ and the beam B. The algorithm used to re-cluster jets
in this project is the anti-k; (AK) algorithm, where the distance measures are given by [2].

AR
d;j = min (pff) RQJ 5 (2.1)
dip = p)f (2.2)

with
AR% = (yi —y;)* + (¢ — 8;)°. (2.3)

The parameter p specifies whether the reclustering is more likely to form around a hard
particle or a soft particle. A hard particle is one that is more likely to come directly from
the decay, and hence have a higher p;. A soft particle is more likely to be a secondary
particle in the reaction and hence have a lower p;. In the AK algorithm, p = —1, which
favours reclustering around hard "seeds", whereas p = 1 for the k; algorithm.

3 Data analysis

3.1 Aim of this project

This project aims to investigate the use of jet substructure for a SUSY signal, to look for
correlations in variables and to see whether, using Monte Carlo simulations, we see patterns
we would expect. In this project we focus on gluino-gluino production of top quarks using
the signal T1tttt mGo1500 mChil00 and background ¢t.

In order to incorporate SUSY into the SM, we need to double the number of particles.
Considering the resulting large number of parameters, this means that SUSY is a difficult
theory to search for, which is why we decide to search for a certain signature. In the
signature we looking for, the main source of background events arises mainly from gluon
gluon to tt, gg — tt, which is a SM process and is shown in 1(a).
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Figure 1: a) shows a Feynman diagram of the SM process gg — tt. b) shows a Feynman
diagram of one branch of the SUSY process gg — tt — W, b.

Here we would see one top, and one anti-top. On the other hand, in the simplified SUSY
process we would expect to see

GG — tt (= .. )+ XY, (=0, W = Ly) + X7

Shown in 1(b) is one branch of this process when we examine the decay of just one of
the two gluinos. This means that in our signal, we would expect to see two tops and two
anti-tops (and consequently four W-bosons). It is this signature process that this project
aims to inspect.

We are interested in identifying hadronically boosted top quarks from gluino-gluino
production, and W bosons resulting from their decay, and tagging them. We can use
multiple techniques in order to do this, like using the CMS top-tagger, W-tagger, and
N-subjettiness.



3.2 Matching and Top and W tagging

To match the appropriate tops and W’s to MC truth tops and W’s, we can check their
order in the decay chain and at the particles they were produced from. We do this by
checking the particle’s ID and demanding that its mother and grandmother particles also
have a certain ID. A jet is matched to an MC particle if a jet in detector reconstruction
could be assigned to that particle at generator level. Once we have matched jets, we can
check properties of the reconstructed jet that might separate it from quark/gluon jets.

In order for jets to be tagged as top jets using the CMS top-tagging algorithm, we
require that the jets have a mass close to the top mass; that there be at least 3 subjets;
a p; of at least 350 GeV and a minimum pairwise mass close to that of the W boson. In
CMS W-tagging, if the original W< 0.2 away from the main axis, we can match it to the
W. If it is further away than this, we match it to a quark or gluon (i.e. it is an unmatched
jet). An in-depth report on the identification techniques of the CMS collaboration in the
area of boosted W tagging and top-tagging can be found in [3] and [4], respectively.

The efficiency of this process is given as a ratio of those matched and tagged to those
just matched. This gives us how likely we are to tag the appropriate particle.

3.3 Boosted objects

AR decay

The four tops resulting from gluino-gluino production can decay either leptonically or
hadronically, or in a mixture of these two, but this project does not go onto cut on these
variables to specify the end state of the process. The following plots show only hadronic
tops.

If the top quark is very boosted, the decay products will tend in the same direction
(in one jet), and hence be closer together. In comparison, if the top quark decays while it
is stationary, the decay products are more likely to go off in different directions, and we
would see three jets - the b jet and the W — ¢q jet. If the top is slightly boosted then we
are likely to see two jets.

AR decay refers to the distance between the decay products and the main jet axis,
and we find it by calculating the four vectors of the decay products. We are interested in
the maximised distance, i.e. that of the constituent the furthest from the main axis. By
plotting this against p;, we can see the correlation between how boosted the jet constituents
are, and how close together they are, and from this get a more precise idea of the cone size
that it might be suitable to use.
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Figure 2: a) (and b) show histograms of p; against A R decay for MC tops for signal (and
background) . The same is shown in ¢) and d) but for MC W's.

From figure 2 It is clear from a and ¢ that the higher the p;, the closer the constituents
are together, which we would expect in a boosted jet. Histograms b and d show nicely that
the decay products for the background particles are further apart, and have less energy,
as we would expect. Current searches involving hadronic top quarks and W bosons often
utilise jets with a cone size of 0.8 or larger. However, we can see that the decay products
matched to MC W’s are closer together than the decay products matched to MC tops. It
therefore may make more sense to separate out the signal and background for W jets even
further by decreasing the cone size used.

We can then justify that, in the following analysis, we will be using a cone size of
AR = 0.4 when looking at W jets, and a cone size of AR = 0.8 when looking at top jets.
In the following paragraphs we refer to these as AK4 and AKS, respectively.This is because
when identifying a top jet, it is necessary to include all the decay products so we want a
larger cone size, whereas as a W-jet is more boosted, it is more meaningful to search for
the decay products in a smaller cone size.

Mass and p; studies

By looking at a plot of the jet mass against the transverse momentum for the entire AKS8
signal, we can see that with increasing p;, top and W decay products start to merge around
their respective masses of 175 GeV and 80 GeV. It must be mentioned that when talking
about mass, it is meaningless to look at the original mass of the jet as this depends too
much on the pile-up in the event. We want to use ’grooming’ algorithms to get rid of
the additional energy that doesn’t come from the particle, such as pruning, trimming and



filtering. In other words, we want to remove the softer components in the reaction to leave
behind the constituents resulting from the hard scattering. In this analysis we will use the
trimmed mass, which uses the k; algorithm to recluster subjets of a size Ry from the jet.
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Figure 3: Histogram showing AKS jet trimmed mass against p;.

In figure 3, we observe in the region 200 < p; < 500 that the W — ¢ merges first. Then
at values between 500 < p; < 800 we see the b-jet also merging around the mass of the top

quark.

After checking generator level quantities we move on to reconstructed jets and are
interested in matching them to MC truth tops and W’s. The first quantities we match are
the (trimmed) mass and p;, projected onto the x-axis, shown in figure 4.



Trimmed mass AK4 jets

Matched oM

Matehed to MG maiched 1o @ o Gluon

Trimmed mass AKS8 jets

———— Mahed oM TaTop

Matehod 1o MG matched 1o Q o Gluon

| 0.03

.

100 150

u\Wm‘\m‘uu‘m\‘m\‘mw‘ml‘ml‘u‘

:\‘\HJH\‘\H‘H\‘\H‘H\luw‘\u‘u‘

el b b b La
200 250 300 350 400
Trimmed mass AK4 jets

100 200 300 400 500 8019 700 800 900

rimmed mass AK8 jets

b)

pt AK4 jets pt AKS jets
. - — S5 i —
=} F C =
< r e | e
0.141— - F
= 0.14f
012~ ——— Macnagio NG maned o Qor F ——— Wacrodto NG maknad o Qor
F 012~
0.1 E
F 04—
0.08[ r
E 0.08F-
0.08] oosE-
0.04] .04
£ M £ i
0.02 0.02[- I
[T \:\w\LwL‘L\ P S I S IR S | L po Lme v b b Ly g 1y
500 1000 1500 2000 1000 500 2000 2500 3000

C) 2§°£Ko‘ jots d) ptAKS jets
Figure 4: a) and b) show the 1D histograms of the trimmed mass of jets with AR = 0.4,
and AR = 0.8 respectively. Below, ¢) and d) show 1D histograms of the p; of jets with
AR = 0.4, and AR = 0.8 respectively. All plots show overlays of jets matched to either a

top/W alongside the jets matched to a gluon/quark, and are also normalised.

As can be seen from a) there is a defined peak around 80 GC%V, the mass of the W boson,

where the jet has been matched to an MC truth W. We can see that the jets not matched

GeV
)

to a W have a mass peak much closer to 0 owing to the fact that quarks/gluons are

closer to being massless. We can see the same pattern in b) where instead the jets matched
to MC truth tops have a mass around 170 GC%V

the jet not matched to a W or top is significantly shifted towards the left, showing us the

. Again, in ¢) and d) we see that the p; of

remaining p; that is of real interest when seeking our signature process.

We can similarly show these correlations by plotting the mass and p; against each other
like in figure 5.
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Figure 5: a) and b) show 2D histograms of trimmed mass Vs p; for AK4 jets matched
and unmatched to an MC truth W jet (respectively) . The same is shown in ¢) and
d), instead matching AKS8 jets to MC truth tops. In all plots there is a requirement
100€Y. < p, < 8004<Y. Further, JetMatchidx|0] indicates that only the leading order

c Cc

matched jet is shown in the plot. Note that fatjets are heavy jets with larger particles.
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In a) we can see a higher density of events with a higher p; around the mass of the W boson.
In ¢) there is a high density of events around the mass of the top quark, but with larger
spread of p;. This pattern indicates that the tops decaying from the gluinos are boosted by
different amounts. In both ) and d) we see a cluster of low p;, low mass events that are
neither matched to tops nor W’s.

N-subjettiness

N-subjettiness describes a jet shape, and is useful in boosted object determination. It is
an effective measure for identifying how the jet energy is divided up into subjets, and is
calculated by taking the ratio of N 4+ 1 and NN, which gives us how likely a jet is to have
N +1 subjets. For these studies, jets are again spatially matched to generator level tops and
Ws. A detailed look into the use of N-subjettiness is given in [5]. N-subjettiness is defined
in terms of the variable 75y, which is found by summing over the constituents within a jet
and minimising the distance to the nearest subjet axis. As the name implies, IV defines the
number of subjets. 75 takes the value 0 < 7y < 1, with a small 75 indicating constituents
are close to the subjet axes, and a large 7y indicating the constituents are spread out.The
jet shapes best describing tops and W’s are given by

~10 -
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W-subjettiness = — , (3.1)
1
C 73
Top-subjettiness = — . (3.2)
T2

It happens that (3.1) well describes a 2-pronged objet such as a W-jet, whereas (3.2) better
describes a three-pronged objet such as a top-jet.
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Figure 6: a) and b) show the 1D histograms of the x-projection of the top and W subjet-
tiness respectively.

In figure 6, the curves of the jets matched to MC truth tops (W’s) are smaller which indicate
that they are more likely to contain 3 (2) subjets than those matched to quarks/gluons.
The curves of both MC particles matched to quarks/gluons are shifted to the right, towards
a value of 1. From the red and blue curves we can determine that a cut on on the subjet-
tiness (0.6 for tops and 0.5 for W’s) would help to separate signal and background. While
increasing the cut value increases the identification efficiency, it also yields a higher false
positive rate, i.e. one gets more background classified as signal.

4 Conclusions and Outlook

In this project, an investigation into some of the variables describing jets has been carried
out. Histograms of trimmed mass and transverse momentum have shown what we would
expect, and have given a taste into the use of matching and how matching enables us
to differentiate between the initial noise of the collision, and the SUSY signature we are
searching for. As an extension, it could be interesting to compare some of the plots here
with new ones done using different mass-grooming techniques and to implement cuts to see
how these change results. The next step in this project would be to inspect the efficiencies
between the rate of jets matched and tagged, and those matched. We have seen that,
although a cone size of 0.8 is used by default in both top and W tagging, it could yield
more information were we to reduce the cone size when looking at W tagging, and an
investigation into this is suggested.
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