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Abstract 
During the last several years new methods for structural analysis based on X-ray radiation interaction 
with matter such as XPCS, CXDI and others were developed. Significant part of them rely on powerful 
radiation sources with high coherent properties and high-brilliance of the beam. It is clear that 
understanding of those properties is of importance for the scientific community. Results of 
simulation ray tracing and wave propagation in X-ray regime for study coherence properties of P10 
beamline at PETRA III synchrotron are presented in this research. 
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I. Introduction 

At present, a class of methods for structural analysis based on different physical processes of X-
ray interaction with matter is being developed. The resulting structural information highly depends 
on the method applied. Applicability of methods directly depends on the task, so that many of them 
are complement to each other. Using a combination of methods with high spatial resolution for 
finding local structural components and low spatial resolution for macroscopic mutual arrangement 
leads to full determination of the structure. In case of local structure determination, high spatial 
resolution comes from short wavelengths on one hand and high coherence properties of probing 
waves on the other. That is why modern sources of highly-brilliant x-ray radiation begin to play an 
increasingly important role. 

Storage rings are nowadays the principle sources of high-brilliance x-rays beams. They provide 
beams which are highly stable in photon energy, beam intensity, size and position. The photon 
energy is easily tunable over a wide spectrum. The most powerful sources, such as European XFEL, 
LCLS and FLASH, have the average brilliance above 10^21 ph/(s mm^2 mrad^2 %0.1 BW). Third 
generation x-ray sources typically have brightness of a few orders of magnitude lower, for example, 
PETRA III storage ring  has 10^19 ph/(s mm^2 mrad^2 %0.1 BW). With the advent of highly brilliant x-
ray sources, a new type of experiments became available, which utilize the high degree of coherence 
of x-ray beams. In lenseless imaging techniques, due to the fact that only the intensities are 
measured on the detector, phase retrieval methods are required to recover the missing phase and, 
consequently, the structure of the object. The examples of such novel methods where far-field 
diffraction pattern is recorded when coherent radiation illuminates the sample, include CXDI and x-
ray ptychography [1].  

In order to increase the amount of emitted radiation, arrangements of striped bending magnets, 
called wigglers and undulators, were created. Radiation generated by these insertion devices is 
confined to a narrow cone of angle Θ ~1/2ƴ, where ƴ is the Lorentz factor [2]. The conversion from 
undulator radiation to wiggler radiation can be described by the undulator parameter K. For K≤1, 
undulator radiation with spectral harmonics is generated, for K > 1 wiggler radiation is produced. For 
instance, at PETRA III, the undulator parameter is K = 2.2 for P10 undulator radiation.  The harmonics 
of the radiation can be described as dipole oscillations of the electron which propagates through the 
undulator, so that the frequency of emitted radiation in the frame moving with the electron is given 
by the frequency of oscillation. Typically, the radiation properties, such as brilliance and the degree 
of transverse coherence are determined by the electron bunch properties which are in turn defined 
by the accelerator ring characteristics. One of the most important characteristic is the electron beam 
emittance Ɛe= σeσ’

e , where σe and σ’
e is the size of the electron bunch and its divergence, 

respectively. The low emittance of the electron bunch provides a low emittance Ɛ of the photon 
beam and this leads to a higher brilliance and a higher coherent photon flux of the source. Usually, all 
storage rings have higher emittance in horizontal direction than in vertical. 

The great majority of structural analysis methods require high coherence of the beam generated 
at x-ray sources and understanding of those properties is of crucial importance for the scientific 
community. 
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II. Theory 

 

Mutual coherence function MCF 

The basics of radiation coherence theory can be introduced by the following equations. The main 
role in describing the coherence phenomena, i.e. interference between the fields, is played by the 
mutual coherence function (MCF) [3] 

Г(𝑟1, 𝑟2, 𝑡1, 𝑡2) =< 𝐸∗(𝑟1, 𝑡1)𝐸(𝑟2, 𝑡2) >.  (2.1) 

This function describes correlations between two complex values of the electric field at different 
points r1 and r2 in space and at different times t1 and t2. The brackets <> denote the ensemble 
average. If two points and times coincide then MCF turns into average intensity 

< 𝐼(𝑟, 𝑡) >  =  Г(𝑟, 𝑟; 𝑡, 𝑡) =< |𝐸(𝑟, 𝑡)|2 >.  (2.2) 

Normalization of MCF  

𝛾(𝑟1, 𝑟2, 𝑡1, 𝑡2) =
Г(𝑟1,𝑟2,𝑡1,𝑡2)

√<𝐼(𝑟1,𝑡1)>√<𝐼(𝑟2,𝑡2)>
     (2.3) 

gives us the complex degree of coherence (CDC). This measure can often be determined 
experimentally as contrast of the interference fringes. For stationary and ergodic wave fields the 
MCF is invariant under time translation and thus can be written as 

Г(𝑟1, 𝑟2; 𝜏) =< 𝐸∗(𝑟1, 𝑡 )𝐸(𝑟2, 𝑡 + 𝜏) >𝑇,  (2.4) 

where 𝜏 = 𝑡2−𝑡1, and ensemble average is replaced by the time average.  

 

Cross-spectral density function CSD 

The Fourier transform of MCF defines the cross-spectral density function (CSD) 

𝑊(𝑟1, 𝑟2, 𝜔) = ∫Г(𝑟1, 𝑟2, 𝜏)𝑒−𝑖𝜔𝑡𝑑𝜏.     (2.5) 

The Fourier inverse equation is known as the generalized  Wiener-Khintchine theorem 

Г(𝑟1, 𝑟2, 𝜏) =
1
2𝜋 ∫𝑊(𝑟1, 𝑟2,𝜔)𝑒𝑖𝜔𝑡𝑑𝜔.   (2.6) 

When two points coincide, CSD represents the spectral density of the radiation field 

𝑆(𝑟, 𝜔) = 𝑊(𝑟, 𝑟;𝜔).     (2.7) 

The original Wiener-Khintchine theorem for this case would give 

Г(𝑟, 𝑟; 𝜏) = 1
2𝜋 ∫ 𝑆(𝑟, 𝜔)𝑒

𝑖𝜔𝑡𝑑𝜔.   (2.8) 
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A convenient measure of spatial coherence is the normalized version of CSD 

𝜇(𝑟1, 𝑟2,𝜔) =
𝑊(𝑟1,𝑟2,𝜔)

√𝑆(𝑟1,𝜔)√𝑆(𝑟2,𝜔)
,   (2.9) 

which is called the spectral degree of coherence (SDC). For instance, the values of that function 
depending on slits separation r1 and r2, are determined in the classical Young’s experiment. Another 
convenient measure of coherence, the degree of transverse coherence 𝜁, that characterizes 
coherence properties of a wave field by only single number, can be introduced as 

𝜁(𝜔) = ∫ |𝑊(𝑟1,𝑟2,𝜔)|2𝑑𝑟1𝑑𝑟2
(∫𝑆(𝑟,𝜔)𝑑𝑟)2

.    (2.10) 

According to that, the values of the parameter 𝜁(𝜔) lie in the range of  0 ≤ 𝜁(𝜔) ≤ 1 where 
𝜁(𝜔) = 1  and 𝜁(𝜔) = 0 correspond to fully coherent and incoherent radiation, respectively.  

 

Propagation of Correlation Functions 

 

Fig. 1. The propagation geometry. The source is positioned at 𝑧0 plane and is described by 𝑊(𝑠1, 𝑠2, 𝜔).  CSD 𝑊(𝑢1, 𝑢2, 𝜔) 
of the radiation field in the observation plane positioned at distance z from the source is calculated (see Eq. (2.11)). 

Propagation of correlation functions from the source plane at z0 to the plane at distance z from the 
source is governed by the following formula 

𝑊(𝑢1, 𝑢2, 𝑧1,𝜔) = ∬𝑊(𝑢1, 𝑢2, 𝑧0,𝜔)𝑃𝑧∗(𝑢1, 𝑠1; 𝜔)𝑃𝑧(𝑢1, 𝑠1; 𝜔)𝑑𝑠1𝑑𝑠2,  (2.11) 

where 𝑊(𝑠1, 𝑠2, 𝑧0;𝜔) is SCD in the source plane z0, and  𝑃𝑧(𝑢, 𝑠;ω) is the propagator. The 
integration is perfomed in the source plane (𝑠1, 𝑠2). In the paraxial approximation valid for 

𝑘𝑧(|𝑢−𝑠|
𝑧
)4 ≪ 8𝜋, the propagator can be written as 

P(u,  s;  𝜔) = 𝑘
2𝜋𝑖

𝑒𝑖𝑘𝑧

𝑧
exp⁡(𝑖𝑘 |𝑢−𝑠|2

2𝑧
).     (2.12) 

Propagation of SCD through a thin optical element can be described by transmission function 𝑇(𝑢,𝜔) 

𝑊(𝑢1, 𝑢2, 𝑧, 𝜔) = ⁡𝑊(𝑢1, 𝑢2, 𝑧, 𝜔)𝑇(𝑢1,𝜔)𝑇(𝑢2,𝜔).  (2.13) 
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Young’s double slit experiment 

Young's double slit experiment is the most common and direct method for characterization of 
coherence and for demonstrating the interference effect.  

 

Fig. 2. Young's  double slit experiment geometry 

In Young’s double slit experiment, partially coherent wave-field is incident on an opaque 
screen with two separated slits. If the field transmitted by different slits is correlated, then due to the 
wave superposition principle, the total radiation field in the observation plane will have interference 
fringes. If these fields are uncorrelated, then the intensities from the individual pinholes sum up and 
no interference is observed. To calculate the intensity distribution simulated in the double slit 
experiment, we start with the field incident on the aperture, which can be described by CSD 
𝑊(𝑠1, 𝑠2,𝜔). The CSD behind the double slit can be found by using equation (2.11) and the 
transmission function of a double slit 

 
𝑇(𝑠) = 𝑇1(𝑠) + 𝑇2(𝑠).    (2.14) 

It can be shown [3], the simplified formula for the diffraction pattern can be written as 

𝐼(𝒒) =  𝐼𝐴(𝒒)(1 +  |𝜇12|𝑐𝑜𝑠⁡(𝒒 ∙ 𝒅 + 𝛼12)),  (2.15) 

where 𝒒 = 𝑘𝒓
𝑧

 is the transmitted pulse, 𝒅 – separation between the slits, 𝐼𝐴(𝒒) is the intensity pattern 

produced by a single slit, 𝛼12, the phase difference between the slits, and 𝜇12 is SDC. 

Let us now make three assumptions and derive the precise formulas for double slits 
diffraction pattern 𝐼(𝒒). First, let us assume that scattering at the slits occurs in the far-field. Second, 
let the slit sizes at plane (𝑥, 𝑦) be so small that the phases 𝜑1,⁡𝜑2 and absolute values 𝐴1 =
|𝐸1(𝑥, 𝑦)|,⁡𝐴2 = |𝐸2(𝑥, 𝑦)| of the electric fields at the slits be constant. Also, let the slits be 
separated in vertical direction, so that vertical spatial coherence is analyzed in the double slits 
experiment. 

Further, let 𝑎𝑥,𝑎𝑦 and D denote the horizontal, vertical dimensions of the slits, and 
separation between them, respectively, and let⁡𝜑12 = 𝜑2 − 𝜑1 correspond to the phases difference 
between the fields in the slits. Finally, let us assume that  𝑧1, 𝑧2 are undulator-slits and slits-detector 
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distances, respectively, and 𝜆 is the wavelength of the undulator radiation. Then, in reciprocal space 
the intensity at the detector in Young’s double slits experiment is 

𝐼(𝑞𝑥, 𝑞𝑦) = 𝐸12 + 𝐸22 + 2𝐸1𝐸2|𝜇12| cos[−𝑞𝑦D + 𝜑12],   (2.16) 

where 

𝐸1 = 𝐸1(𝑞𝑥, 𝑞𝑦) = 𝐴1 ∙
sin(

𝑎𝑥𝑞𝑦
2 −𝑘𝑎𝑥D

2 (𝑧1+𝑧2𝑧1𝑧2
))

𝑎𝑥𝑞𝑦
2 −𝑘𝑎𝑥D

2 (𝑧1+𝑧2𝑧1𝑧2
)

∙
sin(−

𝑎𝑦𝑞𝑥
2 )

−
𝑎𝑦𝑞𝑥
2

,   (2.17) 

𝐸2 = 𝐸2(𝑞𝑥, 𝑞𝑦) = 𝐴2 ∙
sin(

𝑎𝑥𝑞𝑦
2 +𝑘𝑎𝑥D

2 (𝑧1+𝑧2𝑧1𝑧2
))

𝑎𝑥𝑞𝑦
2 +𝑘𝑎𝑥D

2 (𝑧1+𝑧2𝑧1𝑧2
)

∙
sin(−

𝑎𝑦𝑞𝑥
2 )

−
𝑎𝑦𝑞𝑥
2

,   (2.18) 

and 

𝑞𝑥 =
𝑘𝑥
𝑧2

, 𝑞𝑦 =
𝑘𝑦
𝑧2

, 𝑘 = 2𝜋
𝜆
.   (2.19) 

Formulas (2.16-2.19) would be further used in the “Results” section for fitting the simulation data 
and retrieving SDC |𝜇12| for ranges of slits separations D. 

 

Gaussian Schell-Model 

A useful model to describe the radiation properties of partially coherent sources is the 
Gaussian Schell-model (GSM). The model was recently successfully applied to FEL and synchrotron 
radiation [4]. SCD of GSM source positioned at z0 plane can be expressed as 

𝑊(𝑠1, 𝑠2) = 𝑊(𝑠1𝑥, 𝑠2𝑥)𝑊(𝑠1𝑦, 𝑠2𝑦)    (2.20) 

where  
𝑊(𝑠1𝑥, 𝑠2𝑥) = √𝑆0exp⁡(−

𝑠1𝑥2 +𝑠2𝑥2

4𝜎𝑥2
− (𝑠2𝑥−𝑠1𝑥)2

2𝜉𝑥2
)   (2.21) 

Here 𝑆0 - normalization constant, and the parameters 𝜎𝑥,𝑦  and 𝜉𝑥,𝑦 define the source size and 
transverse coherence length in the source plane in x- and y-directions, respectively. In this equation 
the frequency dependence omitted, and GSM applied to narrowband radiation, where 𝜔 is average 
frequency. 

In the frame of GSM, the degree of transverse coherence (2.10) factorizes into x and y components 
𝜁 = 𝜁𝑥𝜁𝑦 . For each transverse direction, an analytical expression for 𝜁 can be found 

𝜁 = (1 + (2𝜎
𝜉
)2)−

1
2       (2.22) 
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III. Synchrotron radiation from 3rd  generation sources 

Source properties 

 

Fig. 3. Schematic illustration of the main parameters of Gaussian Schell-model source. 

Source size and angular divergence of the single electron wavefield can be described by the 
following expressions  

                             𝜎𝑟 = √2𝜆 𝐿𝑢
4𝜋
,                      (3.1)                         𝜎𝑟′ = √ 𝜆

2𝐿𝑢
.                (3.2) 

Electron bunch size and divergence can be calculated from the values of the electron bunch 
emittance Ɛ𝑒𝑥,𝑦  and  β-function of the synchrotron source [5] 

𝜎𝑒𝑥,𝑒𝑦 = √Ɛ𝑒𝑥,𝑦𝛽𝑥,𝑦,   (3.3)    𝜎′𝑒𝑥,𝑒𝑦 = √Ɛ𝑒𝑥,𝑦/𝛽𝑥,𝑦.  (3.4) 

If 𝜎𝑒𝑥,𝑒𝑦/𝜎𝑟 ≈ 1 and   𝜎′𝑒𝑥,𝑒𝑦/𝜎′𝑟 ≈ 1 , GSM can be used, and thus the photon source size and 
divergence are determined from the convolution of the size and divergence of the electron bunch  
(𝜎𝑒, 𝜎𝑒′) with the intrinsic radiation characteristics of a single electron  (𝜎𝑟, 𝜎𝑟′ )  

𝜎𝑥,𝑦 = √𝜎𝑒𝑥,𝑒𝑦2 + 𝜎𝑟2,       (3.5)    𝜎′𝑥,𝑦 = √𝜎′𝑒𝑥,𝑒𝑦
2 + 𝜎′𝑟

2. (3.6) 

Coherence length and beam size in the source plane are 

                              𝜉𝑥,𝑦 =
𝜎𝑟𝜎𝑟′

𝜎𝑥,𝑦𝜎′𝑥,𝑦
 ,   (3.7)                       𝛴(𝑧) = ∆(𝑧) ∗ 𝜎,      (3.8) 

where ∆(𝑧) is magnification factor 

∆(𝑧) = (1 + ( 𝑧
𝑧𝑒𝑓𝑓

)2)
1
2.   (3.9) 

Effective distance equivalent to Rayleigh distance for a fully coherent Gaussian beam is 

𝑍𝑒𝑓𝑓 = 2k𝜎2𝜉.    (3.10) 

Degree of transverse coherence can be calculated using equation (2.22). Coherence length (root 
mean square of SDC) at distance z is thus 

𝛯(𝑧) = ∆(𝑧) ∗ 𝜉.   (3.11) 
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XRT software  

XRay Tracer package (xrt) is a python software library for ray tracing and wave propagation in 
x-ray regime. It is primarily meant for modeling synchrotron sources, beamlines and beamline 
elements (optical elements, apertures, screens) [6]. 

For scripting in python you need to prepare a script that gives instructions on how to get the wanted 
ray properties and prepare the graphs. The scripting is different for different backends (backend is a 
module or an external program that supplies ray distributions). Currently, xrt supports two backends: 
raycing – an internal backend – and shadow. 

The main features of XRT are listed below: 

x Publication quality graphics. 1D and 2D position histograms are simultaneously coded by hue 
and brightness. Typically, colors represent energy and brightness represents beam intensity. 
The user may select other quantities to be encoded by colors: angular and positional 
distributions, various polarization properties, beam categories, number of reflections, 
incidence angle etc. Brightness can also encode partial flux for a selected polarization and 
incident or absorbed power. 

x Rays and waves. Classical ray tracing and wave propagation via Kirchhoff integral. 
x Unlimited number of rays.  
x Scripting in Python. Xrt can be run within Python scripts to generate a series of images under 

changing geometrical or physical parameters.  
x Synchrotron sources. Bending magnet, wiggler, undulator and elliptic undulator are 

calculated internally within xrt. 
x Energy dispersive elements. Implemented are gratings (also with efficiency calculations), 

Fresnel zone plates, Bragg-Fresnel optics. Crystals can work in Bragg or Laue cases, in 
reflection or in transmission. 

x Global coordinate system. The optical elements are positioned in a global coordinate system. 
This is convenient for modeling a real synchrotron beamline. The coordinates in this system 
can be directly taken from a CAD library. The optical surfaces are defined in local systems for 
the user’s convenience. 

x Beam categories. xrt discriminates rays by several categories: good, out, over and dead. This 
distinction simplifies the adjustment of entrance and exit slits. An alarm is triggered if the 
fraction of dead rays exceeds a specified level. 

x Parallel execution. xrt can be run in parallel in several threads or processes (can be opted), 
which accelerates the execution on multi-core computers. It can run on an external server 
(supercomputer), also without X window system (X11) support. 

XRT simulations were done for P10 beamline at PETRA III synchrotron radiation source (see Fig. 4.). 
The beamline serves three main experimental goals: 

 - Investigation of sample dynamics in the range from microseconds to seconds by X-ray Photon 
Correlation Spectroscopy (XPCS). 

 - Coherent diffractive imaging of micro- and nanostructures (CDI). 

 - Time-resolved SAXS studies of complex liquids (Rheo-SAXS). 
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Fig. 4. P10 layout geometry, situated in sector 7 of PETRA III and a 5m long U29 undulator is installed in the straight section 
in low beta configuration. The beamline operates in the medium-hard X-ray regime (5-25keV). 

Simple geometry of beamline was applied to simulate X-ray propagation and to study coherence 
properties of radiation source (see Fig.5)

Fig. 5. Double slit geometry of PETRA III P10 beamline experiment (no optics) simulation performed with XRT. Schematic 
layout includes undulator, double slits and detector at 90m and 110 m position respectively. 

XRT program works simulates the following sources of X-ray radiation: bending magnet, wiggler and 
undulator. The radiation emanating from the sources is further propagated either in rays or waves 
regime. 

 

Fig. 6. Schematic of rays propagation. 

In the ray regime, each single electron from the undulator source generates defined amount 
of rays, which spreads in angular vertical and horizontal directions also defined by user. Every time 
the program generates random grid on one of the chosen elements with desirable amount of points, 
and then electron generates the same amount of photons for further propagation through the 
apertures or optical elements (see Fig. 6). After spreading through the grid, new rays are generated 
reaching the next grid with uniform sampling on the detector. In this way, all rays spread through the 
beamline and reach the detector where they are summed for each point on the grid by amplitude 
and phase coherently for one electron and by intensity for desired amount of them. 
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IV. Results 

Double slit simulation 

All simulations for P10 beamline at PETRA III were made with the following parameters 

P10 (PETRA III) characteristics XRT parameter Value 
horizontal emittance eEpsilonX (Ɛ𝑥) 1 nm rad 
vertical emittance eEpsilonZ (Ɛ𝑦) 0.01 nm rad 
   
Undulator characteristics   
horizontal beta betaX (𝛽𝑥) 1.20 
vertical beta betaZ (𝛽𝑦) 3.95 
radiation energy E0 12000 eV 
undulator period period 29 mm 
number of periods N 172 
energy spread eEspread 0-0.001 
   
Electron characteristics    
energy eE 6.08 GeV 
current eI 0.1 mA 
number of electrons  nrep 200 
   
Ray characteristics   
Amount of rays mynrays 2*10^6 (2e6) 
Minimum photon energy: eMinRays E0 - 0.4 eV 
Maximum photon energy: eMaxRays E0 + 0.4 eV 
   
Slits characteristics   
slits position R0 90000 mm 
Slits width slitDx 1.5 mm 
Slits height slitDz 0.005 mm 
   
Detector characteristics   
Detector position dR 20 m 
Size of the detector (x direction) SCRx 1.5 mm 
Size of the detector (y direction) SCRz 1 mm 
Bins in horizontal direction xBins 512 
Bins in horizontal direction zBins 512 
Bins per pixel (x direction) xppb 1 
Bins per pixel (y direction) zppb 1 

 

 

 



13 
 

 

 

Here below the results of XRT simulations lie. For each slit separation from 40 μm to 400 μm the 
complex degree of coherence (CDC) functions were calculated by fitting in an 11 pixels cross-section 
of  the interference pattern with analytic expression (eq. 2.16) (see Fig. 8, 9). To estimate the spatial 
coherence length, the values of the modulus of CDC were approximated by Gaussian function (see 
Fig. 10). The obtained coherence length from the vertical double slit simulation is 238 μm. All Young’s 
double slit simulations were done for zero energy spread. 

  

Fig. 7.  a) Incident intensity at slits position 90 m. Each color determines the photon energy. Energy bandwidth is 0.8 eV.  b) 
Intensity after double slits at 90m. Separation between the slits and slit widths are 40 μm and 5 μm, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Simulated double-slit interference patterns intensity for vertical slit separation of 50 μm at wavelength of 0.103 nm. 
White rectangle determines 11 pixels cross-section of interference patterns for further analysis. 

11 pixels 
cross-section 

for further 
analysis 
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Fig. 9. Fit with analytic expression the results of interference patterns for double slit simulation. Black line corresponds to 
XRT simulation data, red and blue for analytic expression and electric field from a single slit, respectively. 

 

Fig. 10. Gauss approximation for double slit experiment in vertical direction. Degree of coherence and separations between 
slits performed on Y and X axis respectively. 

 

 

 

 

 

𝐿𝑦𝑐𝑜ℎ = 238⁡𝜇m 

- XRT simulation data 
- Fit with analytic expression 
- Electric field from a single slit 
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Direct  simulations of CSD 

Second approach for characterization of spatial coherence by XRT simulations is the 
simulation of cross-spectral density function in vertical and horizontal directions. This method allows 
characterization of coherence properties directly. The schematic of simulation is similar to the double 
slit experiment, however, no apertures or optical elements were used. Generated x-rays from single 
electrons were propagated directly from the undulator to the screen.  

 

Fig. 11. Simulation of a) cross-spectral density function W(y1, y2) in vertical direction at 90 m from the source and b) 
W(x1, x2) in horizontal direction. 

 

Fig. 12. Simulation of a) spectral degree of coherence function μ(y1, y2) in vertical direction at 90 m from the source and b) 
μ(x1, 𝑥2) in horizontal direction. 

 

To calculate coherence properties of the source, spectral degree of coherence (SDC) functions were 
derived by dividing CSD W(r1, r2) by spectral density 𝑆(𝑟, 𝜔) (see Figs. 12 a, b).  Gaussian 
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approximation for diagonal cross section of SDC allows retrieving coherence length in vertical and 
horizontal directions (see Figs. 13, 14, 15). Using size of the beam and the coherence length, a degree 
of transverse coherence in vertical direction was obtained ζ = 0.35. 

  

 

 

 

 

 

 

 

  

Fig. 13. Gaussian approximation for a) diagonal cross-section of SDC in vertical direction, blue and red line represent XRT 
simulation data and approximation, respectively, b) beam intensity. 

Almost the same results were obtained for the simulation with energy spread, where ζ = 0.21. 

 

 

 

 

 

 

 

 

Fig. 14. Gaussian approximation for a) diagonal cross-section of SDC in vertical direction, blue and red line represent XRT 
simulation data and approximation, respectively, b) beam intensity. 

 

  

 

- XRT simulation data 
- Fit with analytic 

- XRT simulation data 
- Fit with analytic 
expression 

  

- XRT simulation data 
- Fit with analytic 
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Fig. 15. Gaussian approximation for diagonal cross-section of SDC in horizontal direction for simulations a) without and b) 
with energy spread. 

In comparing both approaches: the double slits experiment and direct retrieval of coherence from 
CSD and results obtained from Gaussian-Schell Model [7], we might say that they give similar results, 
which can be included in good error of calculation (see Fig.15). Coherence length gained from the 
double slit simulation and CSD simulation is about 238 μm and 234 μm, respectively, and result from 
Gaussian-Schell Model is 260 μm.    

    

Fig. 15 Gauss approximations for double slit simulations (black line), diagonal cross-section of SDC simulations (blue line) in 
vertical direction and Gaussian-Schell Model prediction (red line). 

The blue curve (Fig.15) has been normalized to exclude influence of noise. Due to the fact of low 
electron statistics and influence of noise both simulated results are not completely coinciding. 

 

 

 

(1) -∙- Young’s⁡experiment⁡simulation 
(2) ∙ ∙ ∙ Direct SCD retrieval 
(3) --- Gaussian-Schell Model*  
 

1. 𝐿𝑦𝑐𝑜ℎ = 𝟐𝟑𝟖 𝜇m 
2. 𝐿𝑦𝑐𝑜ℎ = 𝟐𝟑𝟒 𝜇m 
3. 𝐿𝑦𝑐𝑜ℎ = 𝟐𝟔𝟎 𝜇m 
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V. Conclusion and outlook 

In summary, it was demonstrated how XRT software can be applied to the analysis of 
coherence properties of new generation x-rays radiation sources. It was shown how such 
essential values as coherence length and degree of coherence can be obtained from XRT 
simulations and can be used for understanding of coherence-based experiments. An important 
part of this research was devoted to showing that both methods give comparable results. 
Moreover, given the fact that XRT well reproduces theoretical estimates [4], it can be concluded 
that XRT well reproduces coherent properties of P10 beamline of PETRA III synchrotron x-ray 
radiation and can be used to simulate coherence-based experiments, including different types of 
radiation sources and beamline optics. 
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VII. Appendix 

 

Simulated double-slit interference patterns intensity for vertical slit separation and fit with analytic 
expression the results of interference patterns for double slit simulation. Black line corresponds to 
XRT simulation data, red and blue for analytic expression and electric field from a single slit, 
respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

d = 40 μm     
μ =  0.96 

d = 80 μm     
μ =  0.92 

d = 120 μm     
μ =  0.85 
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d = 160 μm     
μ =  0.76 

d = 200 μm     
μ =  0.75 

d = 280 μm     
μ =  0.53 
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d = 320 μm     
μ =  0.39 

d = 360 μm     
μ =  0.33 

d = 400 μm     
μ =  0.23 


