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Abstract

During the last several years new methods for structural analysis based on X-ray radiation interaction
with matter such as XPCS, CXDI and others were developed. Significant part of them rely on powerful
radiation sources with high coherent properties and high-brilliance of the beam. It is clear that
understanding of those properties is of importance for the scientific community. Results of
simulation ray tracing and wave propagation in X-ray regime for study coherence properties of P10
beamline at PETRA Ill synchrotron are presented in this research.
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. Introduction

At present, a class of methods for structural analysis based on different physical processes of X-
ray interaction with matter is being developed. The resulting structural information highly depends
on the method applied. Applicability of methods directly depends on the task, so that many of them
are complement to each other. Using a combination of methods with high spatial resolution for
finding local structural components and low spatial resolution for macroscopic mutual arrangement
leads to full determination of the structure. In case of local structure determination, high spatial
resolution comes from short wavelengths on one hand and high coherence properties of probing
waves on the other. That is why modern sources of highly-brilliant x-ray radiation begin to play an
increasingly important role.

Storage rings are nowadays the principle sources of high-brilliance x-rays beams. They provide
beams which are highly stable in photon energy, beam intensity, size and position. The photon
energy is easily tunable over a wide spectrum. The most powerful sources, such as European XFEL,
LCLS and FLASH, have the average brilliance above 10721 ph/(s mm”2 mrad*2 %0.1 BW). Third
generation x-ray sources typically have brightness of a few orders of magnitude lower, for example,
PETRA lll storage ring has 10719 ph/(s mm”2 mrad”2 %0.1 BW). With the advent of highly brilliant x-
ray sources, a new type of experiments became available, which utilize the high degree of coherence
of x-ray beams. In lenseless imaging techniques, due to the fact that only the intensities are
measured on the detector, phase retrieval methods are required to recover the missing phase and,
consequently, the structure of the object. The examples of such novel methods where far-field
diffraction pattern is recorded when coherent radiation illuminates the sample, include CXDI and x-
ray ptychography [1].

In order to increase the amount of emitted radiation, arrangements of striped bending magnets,
called wigglers and undulators, were created. Radiation generated by these insertion devices is
confined to a narrow cone of angle © ~1/2y, where y is the Lorentz factor [2]. The conversion from
undulator radiation to wiggler radiation can be described by the undulator parameter K. For K<1,
undulator radiation with spectral harmonics is generated, for K > 1 wiggler radiation is produced. For
instance, at PETRA Ill, the undulator parameter is K = 2.2 for P10 undulator radiation. The harmonics
of the radiation can be described as dipole oscillations of the electron which propagates through the
undulator, so that the frequency of emitted radiation in the frame moving with the electron is given
by the frequency of oscillation. Typically, the radiation properties, such as brilliance and the degree
of transverse coherence are determined by the electron bunch properties which are in turn defined
by the accelerator ring characteristics. One of the most important characteristic is the electron beam
emittance €.= 0.0. , where 0. and 0. is the size of the electron bunch and its divergence,
respectively. The low emittance of the electron bunch provides a low emittance € of the photon
beam and this leads to a higher brilliance and a higher coherent photon flux of the source. Usually, all
storage rings have higher emittance in horizontal direction than in vertical.

The great majority of structural analysis methods require high coherence of the beam generated
at x-ray sources and understanding of those properties is of crucial importance for the scientific
community.



Il. Theory

Mutual coherence function MCF

The basics of radiation coherence theory can be introduced by the following equations. The main
role in describing the coherence phenomena, i.e. interference between the fields, is played by the
mutual coherence function (MCF) [3]

[(ry,ma, b1, t2) =< E*(ry, t1)E(12, ) >. (2.1)

This function describes correlations between two complex values of the electric field at different
points rl and r2 in space and at different times t1 and t2. The brackets <> denote the ensemble
average. If two points and times coincide then MCF turns into average intensity

<I(r,t)> =T(rrtt)=<|ETt)|*> (2.2

Normalization of MCF

T(ryra.tyts)
V<I(ryt)><I(ry,t5)>

Y, ty, ty) = (2.3)

gives us the complex degree of coherence (CDC). This measure can often be determined
experimentally as contrast of the interference fringes. For stationary and ergodic wave fields the
MCEF is invariant under time translation and thus can be written as

[(r,19;7) =< E*(rl, t )E(rz, t+71) >, (2.4)

where T = t,—t;, and ensemble average is replaced by the time average.

Cross-spectral density function CSD

The Fourier transform of MCF defines the cross-spectral density function (CSD)
W (ry, 15, @) = [ T(ry, 15, 1)e "t dr. (2.5)

The Fourier inverse equation is known as the generalized Wiener-Khintchine theorem
[(r,15,T) = if W (ry, 15, w)etdw. (2.6)

When two points coincide, CSD represents the spectral density of the radiation field
S(r,w) =W(r,r;w). (2.7)

The original Wiener-Khintchine theorem for this case would give
I(r,r;7) = ifS(r, w)etdw. (2.8)
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A convenient measure of spatial coherence is the normalized version of CSD

W (ry,12,0)

1 T2 0) = e Vs

which is called the spectral degree of coherence (SDC). For instance, the values of that function

(2.9)

depending on slits separation rl and r2, are determined in the classical Young’s experiment. Another
convenient measure of coherence, the degree of transverse coherence {, that characterizes
coherence properties of a wave field by only single number, can be introduced as

_ f|W(7"1.Tz,w)|2dr1dr2
Slw) = ( srw)yar)?

(2.10)

According to that, the values of the parameter {(w) lie in the range of 0 < {(w) <1 where

{(w) =1 and {(w) = 0 correspond to fully coherent and incoherent radiation, respectively.

Propagation of Correlation Functions
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Fig. 1. The propagation geometry. The source is positioned at z, plane and is described by W (sy, 55, ). CSD W (uy, u,, w)
of the radiation field in the observation plane positioned at distance z from the source is calculated (see Eq. (2.11)).

Propagation of correlation functions from the source plane at z0 to the plane at distance z from the
source is governed by the following formula

W(ul, Uy, 74, (1)) = ff W(ul,uz, Zy, (IJ)PZ*(ul, S1; (1)) Pz(ul, S1; (l))dsld52, (2.11)

where W (s1,s2,z0; w) is SCD in the source plane z0, and P,(u, s; w) is the propagator. The
integration is perfomed in the source plane (s4, s,). In the paraxial approximation valid for

kz(lu_sl)4 & 8m, the propagator can be written as

zZ

[u-s|?

k ikz 3
P(u, s; w) = z—nieTexp(Lk Py ). (2.12)

Propagation of SCD through a thin optical element can be described by transmission function T (u, )

Wul,u2,z,w) = Wul,u2, z,w)T(ul, w)T(u2, w). (2.13)



Young’s double slit experiment

Young's double slit experiment is the most common and direct method for characterization of
coherence and for demonstrating the interference effect.

Incoherent
Coherent
Partially coherent

Incident
radiation

1(q) = I, (@(1 + |uyz|cos(q - d + x;3)) ¥

Fig. 2. Young's double slit experiment geometry

In Young’s double slit experiment, partially coherent wave-field is incident on an opaque
screen with two separated slits. If the field transmitted by different slits is correlated, then due to the
wave superposition principle, the total radiation field in the observation plane will have interference
fringes. If these fields are uncorrelated, then the intensities from the individual pinholes sum up and
no interference is observed. To calculate the intensity distribution simulated in the double slit
experiment, we start with the field incident on the aperture, which can be described by CSD
W (s1,52,w). The CSD behind the double slit can be found by using equation (2.11) and the
transmission function of a double slit

T(s) = Ti(s) + T,(s). (2.14)

It can be shown [3], the simplified formula for the diffraction pattern can be written as

I(q) = 14(@)(1 + |uyzlcos(q-d+ a12)): (2.15)

where q = 7r is the transmitted pulse, d — separation between the slits, I,(q) is the intensity pattern

produced by a single slit, a4,, the phase difference between the slits, and p;, is SDC.

Let us now make three assumptions and derive the precise formulas for double slits
diffraction pattern I(q). First, let us assume that scattering at the slits occurs in the far-field. Second,
let the slit sizes at plane (x,y) be so small that the phases ¢4, ¢, and absolute values A; =
|E1(x,v)|, A, = |E;(x,y)| of the electric fields at the slits be constant. Also, let the slits be
separated in vertical direction, so that vertical spatial coherence is analyzed in the double slits
experiment.

Further, let Ay, 0y and D denote the horizontal, vertical dimensions of the slits, and
separation between them, respectively, and let ¢, = @, — @ correspond to the phases difference
between the fields in the slits. Finally, let us assume that z;, z, are undulator-slits and slits-detector
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distances, respectively, and A is the wavelength of the undulator radiation. Then, in reciprocal space
the intensity at the detector in Young’s double slits experiment is

1(4x.qy) = Ef + E3 + 2E; E; | 1] cos[—q,D + ¢15], (2.16)
where
sin(w—ka"D(zzlJrzzz)) L Gydx
By = E1(4x qy) = A1 ﬁ_@(ﬁz) 'Sm_(ﬁ ) (2.17)
2 2 \zq9zp 2
sin ALHER()) v
By = B (4w ay) = 4z ﬁJ,@(Ll;) 'Sm_(ﬁ ) (2.18)
2 2 \zy2p 2
and
_ kx _ky _2m
Q=" ay = k=" (2.19)

Formulas (2.16-2.19) would be further used in the “Results” section for fitting the simulation data
and retrieving SDC |u4, | for ranges of slits separations D.

Gaussian Schell-Model

A useful model to describe the radiation properties of partially coherent sources is the
Gaussian Schell-model (GSM). The model was recently successfully applied to FEL and synchrotron
radiation [4]. SCD of GSM source positioned at z, plane can be expressed as

W (s1,52) = W(S1x, SZx)W(Sly: SZy) (2.20)
where
5%x+5%x (S2x—51x)*
W(Slx' SZx) = \/S—Oexp(_ 402 - 282 ) (2-21)

Here S, - normalization constant, and the parameters g, ,, and ¢, ,, define the source size and
transverse coherence length in the source plane in x- and y-directions, respectively. In this equation
the frequency dependence omitted, and GSM applied to narrowband radiation, where w is average
frequency.

In the frame of GSM, the degree of transverse coherence (2.10) factorizes into x and y components

¢ = {x(, . For each transverse direction, an analytical expression for { can be found

¢=a+CHn (222)



[II. Synchrotron radiation from 3rd generation sources

Source properties

v

Fig. 3. Schematic illustration of the main parameters of Gaussian Schell-model source.

Source size and angular divergence of the single electron wavefield can be described by the
following expressions

’ Ly ’ , A
0, = ZAE, (31) 0, = m (32)

Electron bunch size and divergence can be calculated from the values of the electron bunch
emittance €., and B-function of the synchrotron source [5]

Oex,ey = 4/ 8ex,yﬁx,yv (3.3) U,ex,ey =4/ Eex,y/ﬁx,y- (3.4)

If Oexey/or =1 and a’ex,ey/a'r ~ 1, GSM can be used, and thus the photon source size and
divergence are determined from the convolution of the size and divergence of the electron bunch
(0., 04) with the intrinsic radiation characteristics of a single electron (o, g;. )

, / 2 2
Oxy = |Oexey” + 042, (3.5) 0'xy = [0 exey t0%". (3.6)

Coherence length and beam size in the source plane are

O'rd{“ _
$xy = TyTny (3.7) 2(z) = A(z) * o, (3.8)
where A(z) is magnification factor
zZ 2 l
A@) = (1+ ). (3.9)
eff

Effective distance equivalent to Rayleigh distance for a fully coherent Gaussian beam is
Zepr = 2ka%¢. (3.10)

Degree of transverse coherence can be calculated using equation (2.22). Coherence length (root
mean square of SDC) at distance z is thus

E(z) = A(z) = €. (3.11)



XRT software

XRay Tracer package (xrt) is a python software library for ray tracing and wave propagation in
x-ray regime. It is primarily meant for modeling synchrotron sources, beamlines and beamline
elements (optical elements, apertures, screens) [6].

For scripting in python you need to prepare a script that gives instructions on how to get the wanted
ray properties and prepare the graphs. The scripting is different for different backends (backend is a
module or an external program that supplies ray distributions). Currently, xrt supports two backends:
raycing — an internal backend — and shadow.

The main features of XRT are listed below:

e Publication quality graphics. 1D and 2D position histograms are simultaneously coded by hue
and brightness. Typically, colors represent energy and brightness represents beam intensity.
The user may select other quantities to be encoded by colors: angular and positional
distributions, various polarization properties, beam categories, number of reflections,
incidence angle etc. Brightness can also encode partial flux for a selected polarization and
incident or absorbed power.

e Rays and waves. Classical ray tracing and wave propagation via Kirchhoff integral.

e Unlimited number of rays.

e Scripting in Python. Xrt can be run within Python scripts to generate a series of images under
changing geometrical or physical parameters.

e Synchrotron sources. Bending magnet, wiggler, undulator and elliptic undulator are
calculated internally within xrt.

e Energy dispersive elements. Implemented are gratings (also with efficiency calculations),
Fresnel zone plates, Bragg-Fresnel optics. Crystals can work in Bragg or Laue cases, in
reflection or in transmission.

e Global coordinate system. The optical elements are positioned in a global coordinate system.
This is convenient for modeling a real synchrotron beamline. The coordinates in this system
can be directly taken from a CAD library. The optical surfaces are defined in local systems for
the user’s convenience.

e Beam categories. xrt discriminates rays by several categories: good, out, over and dead. This
distinction simplifies the adjustment of entrance and exit slits. An alarm is triggered if the
fraction of dead rays exceeds a specified level.

e Parallel execution. xrt can be run in parallel in several threads or processes (can be opted),
which accelerates the execution on multi-core computers. It can run on an external server
(supercomputer), also without X window system (X11) support.

XRT simulations were done for P10 beamline at PETRA Il synchrotron radiation source (see Fig. 4.).
The beamline serves three main experimental goals:

- Investigation of sample dynamics in the range from microseconds to seconds by X-ray Photon
Correlation Spectroscopy (XPCS).

- Coherent diffractive imaging of micro- and nanostructures (CDI).

- Time-resolved SAXS studies of complex liquids (Rheo-SAXS).
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Fig. 4. P10 layout geometry, situated in sector 7 of PETRA Il and a 5m long U29 undulator is installed in the straight section
in low beta configuration. The beamline operates in the medium-hard X-ray regime (5-25keV).

Simple geometry of beamline was applied to simulate X-ray propagation and to study coherence
properties of radiation source (see Fig.5)

o

20m

<
< rd

90m

LN
I

Fig. 5. Double slit geometry of PETRA Ill P10 beamline experiment (no optics) simulation performed with XRT. Schematic
layout includes undulator, double slits and detector at 90m and 110 m position respectively.

XRT program works simulates the following sources of X-ray radiation: bending magnet, wiggler and
undulator. The radiation emanating from the sources is further propagated either in rays or waves

regime.
Undulator I
 H u N s
- ©
y Propagator Propagator %
. o

Fig. 6. Schematic of rays propagation.

In the ray regime, each single electron from the undulator source generates defined amount
of rays, which spreads in angular vertical and horizontal directions also defined by user. Every time
the program generates random grid on one of the chosen elements with desirable amount of points,
and then electron generates the same amount of photons for further propagation through the
apertures or optical elements (see Fig. 6). After spreading through the grid, new rays are generated
reaching the next grid with uniform sampling on the detector. In this way, all rays spread through the
beamline and reach the detector where they are summed for each point on the grid by amplitude
and phase coherently for one electron and by intensity for desired amount of them.
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IV. Results

Double slit simulation

All simulations for P10 beamline at PETRA Il were made with the following parameters

P10 (PETRA lll) characteristics XRT parameter Value
horizontal emittance eEpsilonX (€,) 1 nmrad
vertical emittance eEpsilonZ (€,) 0.01 nm rad
Undulator characteristics

horizontal beta betaX (£y) 1.20
vertical beta betaZ (ﬁy) 3.95
radiation energy EO 12000 eV
undulator period period 29 mm
number of periods N 172
energy spread eEspread 0-0.001
Electron characteristics

energy eE 6.08 GeV
current el 0.1 mA
number of electrons nrep 200
Ray characteristics

Amount of rays mynrays 2*10”6 (2e6)
Minimum photon energy: eMinRays EO-0.4 eV
Maximum photon energy: eMaxRays EO+0.4 eV
Slits characteristics

slits position RO 90000 mm
Slits width slitDx 1.5 mm
Slits height slitDz 0.005 mm
Detector characteristics

Detector position dR 20m
Size of the detector (x direction) SCRx 1.5 mm
Size of the detector (y direction) SCRz 1 mm
Bins in horizontal direction xBins 512
Bins in horizontal direction zBins 512
Bins per pixel (x direction) xppb 1

Bins per pixel (y direction) zppb 1
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Here below the results of XRT simulations lie. For each slit separation from 40 pum to 400 um the
complex degree of coherence (CDC) functions were calculated by fitting in an 11 pixels cross-section
of the interference pattern with analytic expression (eq. 2.16) (see Fig. 8, 9). To estimate the spatial
coherence length, the values of the modulus of CDC were approximated by Gaussian function (see
Fig. 10). The obtained coherence length from the vertical double slit simulation is 238 um. All Young's
double slit simulations were done for zero energy spread.
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Slit separation =40pm slit separation = 40 ym

ﬁ Ny FA0DD00000
Bl crasskioe phs

MNpoaF271948

&F1.01 k104 ph: O
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Fig. 7. a) Incident intensity at slits position 90 m. Each color determines the photon energy. Energy bandwidth is 0.8 eV. b)
Intensity after double slits at 90m. Separation between the slits and slit widths are 40 um and 5 um, respectively.
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Fig. 8. Simulated double-slit interference patterns intensity for vertical slit separation of 50 um at wavelength of 0.103 nm.
White rectangle determines 11 pixels cross-section of interference patterns for further analysis.
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Fig. 9. Fit with analytic expression the results of interference patterns for double slit simulation. Black line corresponds to
XRT simulation data, red and blue for analytic expression and electric field from a single slit, respectively.
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Fig. 10. Gauss approximation for double slit experiment in vertical direction. Degree of coherence and separations between
slits performed on Y and X axis respectively.
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Direct simulations of CSD

Second approach for characterization of spatial coherence by XRT simulations is the
simulation of cross-spectral density function in vertical and horizontal directions. This method allows
characterization of coherence properties directly. The schematic of simulation is similar to the double
slit experiment, however, no apertures or optical elements were used. Generated x-rays from single
electrons were propagated directly from the undulator to the screen.

y X
IW*(y,, v,)I W™ (x;, x,)]

0.5

y,,mm

0
yl,mm xl,mm

Fig. 11. Simulation of a) cross-spectral density function W(y,, y,) in vertical direction at 90 m from the source and b)
W(x4,%;) in horizontal direction.

o 1Yy, ¥,)l | (x5 X,)]

Y,,mm
X,,mm

0.5 0 0.5 0.5 0 0.5
y,.mm X,,mm

Fig. 12. Simulation of a) spectral degree of coherence function p(y,, y>) in vertical direction at 90 m from the source and b)
K(X4, x3) in horizontal direction.

To calculate coherence properties of the source, spectral degree of coherence (SDC) functions were
derived by dividing CSD W(r;,r;) by spectral density S(r,w) (see Figs. 12 a, b). Gaussian
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approximation for diagonal cross section of SDC allows retrieving coherence length in vertical and
horizontal directions (see Figs. 13, 14, 15). Using size of the beam and the coherence length, a degree

of transverse coherence in vertical direction was obtained = 0.35.

I I T
- XRT simulation data

| - Fit with analytic

Leon = 234um

Distance y, mm

Intensity

%1011

15
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0 |
-0.5 0
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0.5

Fig. 13. Gaussian approximation for a) diagonal cross-section of SDC in vertical direction, blue and red line represent XRT
simulation data and approximation, respectively, b) beam intensity.

Almost the same results were obtained for the simulation with energy spread, where {=0.21.
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g. 14. Gaussian approximation for a) diagonal cross-section of SDC in vertical direction, blue and red line represent XRT
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Fig. 15. Gaussian approximation for diagonal cross-section of SDC in horizontal direction for simulations a) without and b)

In comparing both approaches: the double slits experiment and direct retrieval of coherence from
CSD and results obtained from Gaussian-Schell Model [7], we might say that they give similar results,
which can be included in good error of calculation (see Fig.15). Coherence length gained from the
double slit simulation and CSD simulation is about 238 um and 234 um, respectively, and result from

Gaussian-Schell Model is 260 um.

with energy spread.
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Fig. 15 Gauss approximations for double slit simulations (black line), diagonal cross-section of SDC simulations (blue line) in

vertical direction and Gaussian-Schell Model prediction (red line).

0.5

T, mm

The blue curve (Fig.15) has been normalized to exclude influence of noise. Due to the fact of low

electron statistics and influence of noise both simulated results are not completely coinciding.




V. Conclusion and outlook

In summary, it was demonstrated how XRT software can be applied to the analysis of
coherence properties of new generation x-rays radiation sources. It was shown how such
essential values as coherence length and degree of coherence can be obtained from XRT
simulations and can be used for understanding of coherence-based experiments. An important
part of this research was devoted to showing that both methods give comparable results.
Moreover, given the fact that XRT well reproduces theoretical estimates [4], it can be concluded
that XRT well reproduces coherent properties of P10 beamline of PETRA Il synchrotron x-ray
radiation and can be used to simulate coherence-based experiments, including different types of
radiation sources and beamline optics.
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Simulated double-slit interference patterns intensity for vertical slit separation and fit with analytic
expression the results of interference patterns for double slit simulation. Black line corresponds to
XRT simulation data, red and blue for analytic expression and electric field from a single slit,
respectively.
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