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Abstract

Since synchrotron radiation from storage rings has been utilised in the produc-
tion of high intensity, bright X-ray beams, the study of the structure of matter
using X-ray diffraction has improved dramatically. This report outlines the theory
behind X-ray diffraction and discusses the testing of a 3-beam X-ray diffraction
simulation produced in 1994, comparing it’s results with a more recent programme
in Mathematica.
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1. Introduction

X-rays were first discovered by Wilhelm C. Rontgen in 1895 while examining the dis-
charge from electrodes in an evacuated glass tube. He observed faint light from a fluores-
cent screen placed near the tube and found that, when placing his hand between the tube
and the screen, he could see the bones inside. He photographed this phenomena using
his wife’s hand, providing scientific documentation of his discovery, as shown in Figure
1. X-ray imaging like this is based on X-ray absorption being dependent o the atomic
number of the elements the ray is interacting with. Another important application of
X-rays is diffraction phenomena, which was not realised until 1912 when von Laue et
al. obtained the first diffraction pattern from a crystal of copper sulfate. This was a
key event triggering a dramatic development in scientific research into the structure of
matter, utilising X-rays to analyse the atomic structure of crystalline materials. Von
Laue et al. were able to show how crystalline matter is built up by atoms forming a
periodic lattice. Since the discovery of X-rays, they have been shown to be an invaluable
tool for investigating the structure of matter, including the celebrated discovery of the
double helix structure of DNA in 1953 due to the combined efforts of Franklin, Watson
and Crick. In turn this use of X-rays has been important not only in scientific research
but also in contemporary technology.
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Figure 1: X-ray image captured by Réntgen of his wife’s hand [1].

Synchrotron radiation describes the radiation from charged particles forced to travel
along curved paths by applied magnetic fields, travelling at relativistic speeds. This
can be produced in storage rings (Figure 2), either in the bending magnets which keep
electrons in a circular orbit, or in insertion devices such as undulators placed at the
straight sections of the ring. In devices such as undulators, an alternating magnetic field
induces the electron into an oscillatory path rather than a straight line.

Initially, synchrotron radiation occurred as a nuisance, causing undesirable energy loss
during particle physics research. However, the usefulness of this radiation production
was soon realised and in modern X-ray research, most sources of synchrotron radiation
are storage rings. Previously, the source of X-ray production was the main limitation
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Figure 2: Example set up of a storage ring producing synchrotron radiation [2].

of exploring the structure of matter, until the 1970s when the synchrotron radiation
produced from charged particles circulating in storage rings was realised to be a more
intense and versatile source of X-rays. This has resulted in synchrotron sources which are
approximately a factor of 10'? times brighter than earlier lab-based sources and hence
the pace of innovation in X-ray science increased significantly to what is used today.
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Figure 3: History of X-ray brilliance [2].



2. X-Ray Diffraction: Dynamical Theory

2.1. X-Ray Diffraction

Crystalline materials are such that the atoms are arranged in a regular pattern, and there
exists a minimal volume element which describes the crystal through periodic repetition
in three dimensions. This volume element is called the unit cell, described by the axes
a, b and c, with angles between them «, § and . The planes of atoms are spaced a
distance d apart. When X-rays interact with a crystalline substance, a diffraction pattern
is obtained. For a pure substance, the diffraction pattern is similar to a fingerprint of
the substance, being unique specifically to the material being examined.

William Lawrence Bragg and William Henry Bragg first proposed the Bragg formulation
of X-ray diffraction in 1913 after their discovery that crystalline solids produced inter-
esting patterns of reflected X-rays. Their research found that at specific wavelengths
and incident angles, the crystals produced intense peaks of reflected radiation. Bragg
diffraction supplies the angles for both coherent and incoherent scattering from a crystal
lattice, by analysing the wave interference (diffraction) pattern produced by re-emitted
wave fields interfering with each other, either constructively or destructively.
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Figure 4: Bragg’s Law on Diffraction [3].

This Bragg diffraction occurs when the wavelength is comparable to the atomic spacings
of the crystal and the radiation is scattered in a specular fashion by the atoms, under-
going constructive interference. Constructive interference demands the waves remain in
phase, with the path length being an integer multiple of the wavelength, which is out-
lined in Figure 4. The effect of the interference intensifies due to the cumulative effect
of reflection in additional planes of the crystalline lattice leading to Bragg’s law, defined
in Equation 1, outlining the condition on # for constructive interference.

nA = 2dsin(0) (1)

Here, X is the wavelength of the incident wave, d is the lattice spacings as shown in
Figure 4 and n is a positive integer. In diffraction patterns, strong intensities called



Bragg peaks can be observed at points where the scattering angles satisfy the Bragg
condition.

To describe the crystallographic planes in either laboratory space or reciprocal space,
one uses the Miller notation. Miller indices are a notation system for planes in crystal
lattices, with a family of lattice planes being defined by the three Miller indices, h, k
and [, written (hkl). These define the family of planes orthogonal to

ha+ kb +lc

where a, b and c are the basis vectors of the reciprocal lattice. The constants h, k£ and [
are the reciprocals of the fractional intercepts of the a, b and ¢ axes of the unit cell - i.e.
the intercepts which the plane makes with the crystallographic axes. Some examples are
pictured in Figure 5.
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Figure 5: Examples of Miller indices and their planes [4].

Laue developed a simple theory of three-dimensional X-ray diffraction, called Kinemat-
ical (or geometrical) theory. However, the Kinematical theory of X-ray diffraction only
considers the materials atoms interacting with the primary (refracted) wave in the crys-
tal. Therefore, it neglects interactions with the part of the wave field arising from the
collective scattering due to the other atoms, i.e. the theory ignores the interaction be-
tween the refracted wave and the diffracted ones. This theory is a good approximation
when considering highly imperfect crystals, constructed with small mosaic blocks, how-
ever for imperfect crystals the theory breaks down when comparing theoretical results to
experimental results, thus a more rigorous theory, called Dynamical theory, is required.

2.2. Elementary Dynamical Theory

Darwin (1914b) was first to point out the inaccuracy of the Kinematical theory and
it’s violation of the conservation of energy [6]. This is because the Kinematical theory
assumes the amplitude of the wave arriving at each diffracting centre in the crystal is
the same, neglecting the interaction of the wave with matter, not taking into account
the energy which has already been reflected by previous layers in the crystal. This
theory doesn’t account for the interaction of diffracted waves with the refracted wave,
disregarding multiple scattering effects. Additionally, the Kinematical theory doesn’t
provide any phase information about the processes inside the crystal. To understand the



diffraction of perfect, or close to perfect, crystals, the dynamical theory is necessary, since
to explain the formation of defect images in diffraction patterns requires information on
the propagation of the beam inside the crystal, not just the global intensity diffracted
by the X-rays. However, the results from the Dynamical theory tend asymptotically
towards those of the Kinematical theory when the crystal thickness is much smaller
than a certain length called Pendell6sung distance.

The first Dynamical theory of X-ray diffraction was developed by C. G. Darwin in
1914, in which the crystal is considered to be an infinite stack of atomic planes, each
causing a weak reflected wave, with a possibility of the direction of re-scattering being
the same as that of the incident beam. Additionally, both Ewald and Laue have outlined
a Dynamical theory of X-ray diffraction. Ewald’s approach discusses the interaction of
a electromagnetic wave with a distribution of discrete dipoles, while Laue’s assumption
(1931, 1960) considers the electric negative and positive charges being distributed in
a continuous way throughout the volume of the crystal. The distribution is such that
the total charge cancels out and the crystal is neutral, and the local electric charge and
density of current are also zero.
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Figure 6: lustration of multiple diffraction in a perfect crystal [3].

Away from the simplistic assumption that each individual diffraction event acts indepen-
dently of others, the Dynamical theory accounts for multiple scattering effects. When
the incident wave propagates down into the (perfect) crystal, a small fraction is reflected
as it passes each atomic plane, which in turn decreases the amplitude of the wave. There
is also a chance of the reflection being re-scattered in the direction of the incident beam
prior to leaving the crystal. If the X-ray beam is incident at the Bragg angle 6, it will
be reflected at the angle # and the diffracted ray will continue to satisfy Bragg’s law,
enabling it to diffract a second time in the direction of the original incident beam (and



perhaps a third time, and so on). This is shown in Figure 4 in the previous section. If
the whole crystal is bathed in X-rays, all of the waves, subject to multiple diffraction,
can interfere with each other. Ewals described this process in his Dynamical theory,
in which the diffraction intensity, I, is proportional to the magnitude of the structure
factor, F'. This Dynamical diffraction is illustrated in Figure 6.

2.3. Additional Equations

When X-rays, short-wavelength electromagnetic waves, interact with matter, they excite
electrons which oscillate and behave like dipoles. The wave equation in both Ewald’s
and Laue’s Dynamical theories of X-ray diffraction is derived based on the properties of
electromagnetic waves’ interaction with matter. The electromagnetic field is represented
by the electric field, E, and the magnetic induction, B. These are also related locally to
the electric displacements, D, and the magnetic field, H, by material relations (describing
the reaction of a linear medium to the electromagnetic field):

D=cE=¢E+P
B = uH = po(H + M)

where € and p are the dielectric constant and magnetic permeability of the medium,
respectively, with €y and pg referring to the same constants in a vacuum. P is the
electric polarisation and M the magnetisation [6].

In a continuous medium, the space and time derivatives of E, B, D, H, j (electric current
density, j = oE, o specific conductivity) and of the local electric charge density p are
related by Mazxwell’s equations

oD

IH=—+j
cur 5 +J,
curlE = —6—B,

ot
divD = p,
divB = 0.

The fundamental equations of Dynamical theory, as named by Laue, is the set of equa-
tions

]{?2
Uy = ——— gy 2
h K}%_kZ;Xhh h (2)

where k is the wave number in vacuum, K is the wave vector of the wave field, y is
the Fourier component of dielectric susceptibility and W is the rotation angle around the
reciprocal lattice vector.



3. Simulation Testing

3.1. "Multi" Program

To simulate n-beam diffraction, and measure its reflectivities, a program Multi was writ-
ten in 1994 by Wolfgang Schwegle, with the most recent modification being in 2009. The
source code is written in FORTRAN and was compiled using ifort2015. The program
is developed using the Dynamical theory of X-ray diffraction and has the potential to
calculate structure factors along with the reflectivities of a crystal for varying w or ¥
angles and even varying values of energy.

The program receives information from two input files containing information on all the
parameters required for its calculations. The parameters include actual values of the psi
angle, omega angle, specific wavelength and miller indices of the considered n reflections
along with the surface normal into the crystal, crystal thickness and polarisation angle.
For the calculation of reflectivities for the scans available (w, ¥ and energy), Multi
creates an output file, multi.refl, which stores the data. The scan parameter is in the
first column, and the reflectivities of each reflection in the following columns. This allows
easy plotting of the data against the chosen scan variable.

barryrox@hasmstud21: ~/cryst/test

time ¢ Fri Sep 4 15:11:15 2015
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Figure 7: Home screen of Multi program

3.2. Results

The program Multi was tested by comparing results of reflectivities with another pro-
gram Crystallography, written by Martin Tolkiehn, based on the Dynamical theory’s



mathematical calculations of structure factors in Authier. Currently, the program is un-
able to calculate structure factors internally, so the tests were run using pre-set structure
factors calculated using the program Crystallography. Results for Germanium, Silicon
and Gallium Arsenate are discussed below.

The program was tested for 2-beam diffraction, as the 2-beam case was easily comparable
with the results from the Dynamical theory outlined in Authier. However, it was found
that the program was unable to simulate 2-beam diffraction. Hence 3-beam diffraction
was used and the tests were run with Pi polarisation and ¥ = —1000arcsec. This value
of U allowed the reflectivities to be calculated as if it were a 2-beam case, permitting
the comparison between the results obtained from Multi and those from the Dynamical
theory.
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Figure 8: (a) Germanium (Ge), and (b) Silicon (S%).

Figure 8 displays data for the elements of Germanium and Silicon obtained from the
program (red) plotted along with the results obtained from the mathematical calcula-
tions in Authier |6] (blue). The plots display the reflectivities calculated while varying



w, the rotation angle of the crystal. It is clear the two calculations are highly correlated,
inferring the usefulness and accuracy of this multi-beam simulation program.
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Figure 9: Gallium Arsenate (GaAs)

Germanium and Silicon are both crystalline materials such that the structure factor val-
ues from the reflection (a, b, ¢) are equal to that of the negative reflection (—a, —b, —c).
This provided no information as to the structure of the structure factor matrices essen-
tial in the multi programs calculations of reflectivity. Thus a new test was necessary
with a different material - Gallium Arsenate, which has structure factors of (a,b, c) and
(—a,—b,—c) that differ, allowing a comparison with the program Crystallography to
determine the structure of the amplitude and phases matrices.

Clearly the simulations made with the program Multi and the program Crystallography
give analogous results for all of the elements tested, implying the program Multi can be
utilised effectively in simulating n-beam X-ray diffraction.

3.2.1. Future Work

One problem with running the program in xterm is that it may be different platform
used to when the program was originally being written. One example of this is having
to make the change "MATLABEXPORT PAGER=LESS" in xzterm before using the program.
This change allows the program to properly load the parameter file for the user to view
in the program. However, it would be more useful for this change to be implemented in
the source code in the future.

Additionally, further investigation into the source code would be useful to solve the
problem of certain files being unable to load, which could be due to a simple path error
the program is trying to take. This would hopefully solve the problem of the program
being unable to currently calculate structure factors individually. Although this was also
due to the problem of missing cromer which was required to calculate both f and f’ for
the structure factor calculation, which could perhaps be implemented in an alternative
way.



3.3. Creating a new Input file

To run the original Mult: program, it is required to set all the variables required, for
example the element, energy and reflections. These can all be set within the program,
however this method can be slow, and the program will revert back to the previous
settings without saving the users preferences upon reopening of the program if the user
doesn’t set the variables correctly. The input for the variables comes from two main files,
multi.inp (input file) and multi.ub (UB matrix file), which the program reads and loads as
variables, so it was thought to create a more efficient way to set these variables by writing
a small function in Mathematica to produce both files from a single location. However,
the first few lines of the file were space sensitive, with the program unable to load them
and crashing when the number of characters or spaces were changed. Therefore the same
filenames are used and same number of spaces inserted. A short function was written
which, upon being presented with the required parameters all in one place in a single
notebook, produced the two files multi.inp and multi.ub in the correct format such that
Multi could read them. This worked well, however an improvement could be made to
turn this function into a package. The function is listed in Appendix A. A next step
would be presenting this function in the form of a Mathematica Package, making it more
accessible and provide ease of implementation in the future.
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Appendices

A. Mathematica Function

Listing 1: Multi Input File Generator (for notebook).

1| (x Multi_Input function to create two output files
2 |multi.inp and multi.ub for the use of the programme
3 |multi in calculating reflectivities x)

7 |SetDirectory[ "/home/barryrox/cryst/test"];
s | <<Crystallography ¢

10 | (* * )
11 | (x Function to write multi.inp and multi.ub Input

12 | files. Set to a psi value of 1000. Set to Pi

13 |Polarization (PiPol) . x*)

14 | (* Input Variables (in order):

15 | Nbeam — number of beams,

16 |element — chosen element,

17 |energy — in,

18 | surfnorm — surface normal INTO the crystal {a,b,c},
19 |refll — first reflection {a,b,c},

20 |refl2 — second reflection {a,b,c},

21 |crysthick — thickness of crystal in mm,

2 | seminf — "T" for semi—infinite crystal, "F" if not,
23 |omesteps — number of steps in the omega scan,

24 |lome — lower 1limit (and actual value) of omega scan

25 | value,

26 | omescan — upper limit of omega scan value x)
27
25 | GenerateMultiInput [Nbeam_,element_,energy_,surfnorm_,
20 |refll_,refl2_ ,crysthick_,seminf_,omesteps_,ome_,

30 |omescan_] := Block[{SigPol,PiPol,LinPol,angle,E11Pol,
31 | compamp ,refvect ,deg,wvlgth ,wvlgthscan ,reciplattice,

32 |crystthick ,SFO,SFOR,SFOI ,SF1,SFlneg,SF2,SF2neg,SFAO1,
33 | SFAO2 ,3FA10,SFA20,SFA12 ,SFA21 ,SFPO1,SFP02,SFP10,

sa | SFP20,8FP12,SFP21 ,SFAmp, SFPhas},

35 | SigPol="F";

36 |PiPol="T";
37 |LinPol="F";
38 |angle=90;

39 |[EL1Pol="F";
40 | compamp="1";
a1 |refvect={0,0,0};
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42

44

45

46

47

48

49

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

76

7

78

79

80

81

82

83

84

85

86

87

deg=Pi/180;

wvlgth= [Lambda[energy] ,5];
wvlgthscan= [Lambda [energy]+0.1,5];
reciplattice= [1/(element [[2,2,1,1]]),

{11,10}]1;

SFO=CalcFH[element ,energy,refvect];
SFOR= [Re [SFO0],{6,3}];
SFOI= [Im[SFO0],{6,3}];

SFl1=CalcFH[element ,energy,refll];
SFilneg=CalcFH[element ,energy,-refll];
SF2=CalcFH[element ,energy,refl2];
SF2neg=CalcFH[element ,energy,-refl2];

SFAO1= [ [SF1],{6,3}];

SFA02= [ [SF2],{6,3}];

SFA10= [ [SFineg] ,{6,3}];

SFA20= [ [SF2neg] ,{6,3}];

SFA12= [ [CalcFH[element ,energy,
refl2-refl1]],{6,3}];

SFA21= [ [CalcFH[element ,energy,
refll-refl2]1],{6,3}];

SFPO1= [ [ [SF1]/deg,360]1 ,{6,3}];
SFP02= [ [SF2]/deg+360,{6,3}];
SFP10= [ [SFinegl/deg+360,{6,3}];
SFP20= [ [SF2negl/deg+360,{6,3}];
SFP12= [ [CalcFH[element ,energy,
refl2-refli1]]/deg,{6,3}];

SFP21= [ [CalcFH[element ,energy,

refll-refl2]]/deg,{6,3}];
SFAmp={{0,SFA01,SFA02},{SFA10,0,SFA12},{SFA20,
SFA21,0}};

SFPhas={{0, SFP0O1,SFP02},{SFP10,0,SFP12},{SFP20,
SFP21,0}};

[ ["multi.ub",

[ [CoordinateSystem/.element],
{""},
{" Transponierte UB rrrrren}]
"Table"],

["multi.inp",
[{"multi.inp
this filename"},
{"multi.prt
genaral data
file"},
{"multi.refl
file for
reflectivities"},
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g8 |{"multi.trans

89 : file for

90 |transmittivities"},

o1 |[{"multi.3D1

92 : 1. file for mesh
93 | scans"},

o4 |[{"multi.3D2

95 : 2. file for mesh
9 |scans"},

o7 [{"multi.ub

98 : file name of

99 |orientation matrix"},

100 |{"02

101 : 0OM=02, 01=03,
102 |to select lorentz point"},

103 | {{Nbeam ," : n-beam case "}3},

14 |{{crysthick," : crystal thickness in mm"1}},

105 | {{seminf ," : T = semi infinite crystal"}},

we | {{ SFOR,SFOI,": F(0) real and imaginary part"},

wr [ {0, , ),

108 |{{surfnorm[[1]], surfnorm[[2]],surfnorm[[3]] ,

109 | " : surface normal (into the crystal)"},{ , , }},
110 | {{omesteps ,ome, omescan," : omega scan parameter"}},
m | {{1000,-1000,1000," : psi scan parameter"1}},

112 | {{0,wvlgth,wvlgthscan," : energy scan parameter"},
s (L, L33,

1ma |[{" h k 1 1list of all reflections (n-beam - 1)
115 | = === = === === n} ,

e |{refll,refl2,{ , , }I},

ur [ {" ------- matrix of structure factor amplitudes
118 | mmmmmmm e e m e m e m e m e — o — - "},

119 | Transpose [SFAmp],

o | {{ F,{" ------- matrix of structure factor phases
1210 | mm e e e e e e e e m e mm o — - "“}},

122 | Transpose [SFPhas],

s | {{ ¥, {" ----- Polarization parameters ------- "}3},

124 {{”Sig .Pol","Pi.Pol","Lin.Pol","E11-Pol"},

125 |{SigPol ,PiPol ,LinPol ,E11Po0l},{,,angle, compamplt},
126 |[{{ },{" --- List of output Parameters ------- "1},
127 | {{"mesh-3D1","mesh-3D2" ,"transmittivities"},

g | {"T","T","F"},{2,3,}}

129 ],

130 | "Table"]1]1];
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