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Abstract
In this work, polystyrene microspheres with a nominal diameter of 1.93 µm and
4.52 µm are characterised by means of dynamic light scattering (DLS). A commer-
cially available DLS setup containing a point detector for recording the scattered
light is extended by a two-dimensional CCD detector, allowing for di↵erent corre-
lation methods to be used and compared. In particular the analysis of speckle pat-
terns enables both characterisation of the sample as well as of the beam properties.
The validity of the assumption of free di↵usion is checked and the hydrodynamic
radius of the particles is determined to be R

h

= (1.03± 0.03) µm for the smaller
spheres and R

h

= (2.54± 0.12) µm for the larger spheres. Based on the analysis
of the correlation data, the application limits of dynamic light scattering methods
for very large spheres (a diameter of 4.52 µm in this work) are discussed.
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1 Introduction

Dynamic light scattering (DLS) is a key method to study the structural and dynamical
properties of colloidal particle suspensions and has important applications in physics,
chemistry and biology [1], for example in observing typical motility patterns of bacteria
[2], or the size distributions of macromolecules and their interactions [3].
In this work, which was carried out in the context of the 2015 DESY summer student
programme, solutions of polystyrene microspheres are characterised by means of dy-
namic light scattering and the analysis of so-called speckle patterns. DLS methods are
usually applied to solutions of nanoparticles and the direct applicability to larger spheres
is not necessarily given [1, 2, 4]. Therefore part of this work is to check the applicability
for spheres with a diameter of 1.93 µm and 4.52 µm.
Section 2 gives an overview over the basic theory needed to understand dynamic light
scattering and defines the correlation functions, which are directly or indirectly mea-
sured in an experiment. The experimental setup, the samples used and the measuring
procedure are illustrated in section 3, while the analysis of the measured data is carried
out in section 4. The analysis of the data taken with a standard DLS setup containing
a point detector is illustrated in section 4.1, while the analysis of the speckle patterns
recorded by a two-dimensional CCD camera and a comparison to the point detector
data is shown in section 4.2. Finally section 5 presents a summary and conclusion over
this work.

2 Theory

This section gives an overview over the most important theoretical results needed to
understand the experimental findings. Unless stated otherwise, this section is based on
[1].

2.1 Correlation Functions

The evaluation of light scattering experiments is strongly based on time correlation
functions [1]. Therefore these are defined and introduced in this section.
To this end let A(t) be some stochastic signal or function. The time average, i.e. the
correlation function of first order, is defined as follows

hA(t)i
t

= lim
T!1

1

T

Z
T

t

A(t0)dt0. (1)

For stationary signals, for example observables of systems in (thermal) equilibrium,
the time average becomes time-independent and instead of hA(t)i

t

, hAi
t

is written. In
an experiment, a continuous measurement in the strict sense is of course not possible.
Instead, the signal is recorded at several consecutive times t

j

and the time average is
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now given by

hAi
t

= lim
N!1

1

N

NX

j=1

A(t
j

). (2)

Equivalently, higher order correlation functions are defined as the time average of pro-
ducts of stochastic signals. As an important example, consider the time autocorrelation
function

C2 = hA(0)A(⌧)i
t

. (3)

In the limit of ⌧ ! 0 the time autocorrelation function simplifies to hA(0)A(0)i
t

= hA2i
t

,
giving an upper limit, while for long delay times ⌧ ! 1 the measured signals (usually)
get completely uncorrelated leading to hA(0)A(⌧ ! 1)i

t

= hA(0)i
t

hA(⌧)i
t

= hAi2
t

as a
lower limit. A typical form of the time autocorrelation function is given by [1]

hA(0)A(⌧)i
t

= hAi2
t

+ [hA2i
t

� hAi2
t

]e�
⌧

⌧

r (4)

where ⌧
r

is the correlation or relaxation time. More generally one defines the relaxation
time for an arbitrary form of time autocorrelation functions by

⌧

r

=

Z 1

0

d⌧

h�A(0)�A(⌧)i
h�A2i (5)

where �A(t) = A(t)� hAi.
In experiments usually time-averaged correlation functions are measured while in theory
ensemble-averaged correlation functions are more accessible for calculations [1]. They
are related by Birkho↵’s ergodic theorem [5], stating that they are the same if the system
is ergodic which is assumed henceforth.

2.2 Basic Light Scattering Theory

This subsection gives, based on [6], a short summary of some basic (static-) light scat-
tering theory. Consider an incident electrical field in the form of a plane wave 1

E
i

= n
i

E0e
i(k

i

·r�!

i

t)
, (6)

in terms of the polarisation vector n
i

of the wave, its amplitude E0, wavevector ki and
frequency !, illuminating a volume with a density of scattering centres ⇢(r) 2. In the far
field and applying the first Born approximation the scattered electrical field takes the
form

E

f

(r0) = E

i

e

ik
i

r0 + E

i

e

ik

i

r

0

r

0 r0

Z

V ol

⇢(r)eiqrd3r (7)

1More realistic incident fields take the form of a superposition of several plane waves; however the
spread in frequency is oftentimes negligible.

2In light scattering the scattering centres are predominantly electrons. Since we are not interested
in the precise scattering mechanism here, a completely analogous treatment for scattering with for
example neutrons is possible, where the scattering centres are nuclei.
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in terms of the classical electron radius r0, where one defines the form amplitude as

F (q) =

Z

V ol

⇢(r)eiqrd3r. (8)

In these equations q describes the wavevector transfer, q = k
s

� k
i

, where k
i/f

denotes
the wavevector of the incident and the scattered light, respectively. Elastic scattering is
assumed such that |k

i

| = |k
f

|. In this approximation the modulus of the wave vector
transfer is given by

q =
4⇡n

�

sin
⇥

2
, (9)

where � denotes the wavelength of the laser, n the index of refraction and ⇥ is the angle
between k

i

and k
s

.
Using the definition of the form amplitude, one arrives at the expression

d�

d⌦
(q) = r

2
0F (q)F (q)⇤ (10)

for the di↵erential cross section and

I(q) = I0
1

L

2

d�

d⌦
(q) (11)

for the scattered intensity. I0 = E

2
0 denotes the intensity of the incident wave.

The next step is to go from a general distribution of scattering centres to a system
of many - more precisely N̄ on average - identical and radial-symmetric particles in
the illuminated volume. Su�cient dilution, such that only single scattering has to be
accounted for, is assumed. With the form amplitude F1(q) of the single particle, given
in terms of the scattering centre distribution within one particle ⇢

(p) by

F1(q) =

Z

V ol

⇢

(p)(r)eiqrd3r (12)

and the total density of scatteres

⇢(R) =
N̄X

j=1

⇢

(p)(R�R
j

), (13)

where R
j

denotes the centre of particle j, the total form amplitude is given by

F (q) =
N̄X

j=1

F1(q)e
iqR

j

. (14)

Making use of equations 10 , 11 and 14, the scattered intensity turns out to be given by

I(q) = I0
r

2
0

L

2
N̄P (q)S(q) (15)
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in terms of the form factor P (q) and the structure factor S(q). The form factor accounts
for the scattered light from each individual particle and is given by

P (q) = |F1(q)|2, (16)

while the structure factor characterises correlations between the particles and is given
by

S(q) = 1 + 4⇡
N̄

V

Z 1

0

r

2(g(r)� 1)
sin qr

qr

dr, (17)

where g(r) is the pair distribution function, that is, the probability of finding a particle
at distance r from a given other particle. Note that in a more general approach it is
possible to allow for anisotropic particles by introducing the form factor as averaged
over orientations and replacing the structure factor by an e↵ective one [6].
In this work diluted solutions of uncharged particles are considered. This implies that
the particles can be assumed to be nearly non-interacting (g(r) ! 1) and therefore
S(q) ! 1. Thus the structure factor is assumed to be equal to unity in the following.

2.3 Dynamic Light Scattering

In this subsection some basic results from dynamic light scattering (DLS) theory are
summarized.
Light scattering experiments for relatively slow dynamic processes on timescales above
10�6 s usually rely on optical mixing techniques [1]. In this method the scattered light is
recorded by a ’square-law detector’, like a photo-diode or a CCD chip. If the scattered
light is additionally superimposed with a local oscillator it is called a heterodyne method,
otherwise a homodyne method. In both cases the count rate of the detector n(t) at a
certain time is proportional to the impinging light field,

n(t) / |E(t)|2. (18)

In optical mixing, the time autocorrelation of this signal is of interest, which is the
output of some digital or analog (hardwire computer) correlator,

hn(0)n(⌧)i / h|E(0)|2|E(t)|2i . (19)

In the special case of the homodyne method considered in this work, this is simply
proportional to

I2 = h|E
s

(0)|2|E
s

(t)|2i . (20)

It is not yet obvious on how to extract information on the dynamics out of this fourth
moment of the scattered electrical field. It is possible, though, to simplify I2 in the
special case of ’Gaussian fields’ [1]: To this end, assume that the e↵ective scattering
volume can be divided into several sub-regions, small in each dimension compared to
the wavelength of light. In this case the total scattered field can be safely approximated
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by the superposition of the mean value of the field originating from each individual
region,

E

s

=
X

n

E

(n)
s

. (21)

Assume further that on the one hand, each sub-volume is large enough to treat the
motion of the particles independently, and that on the other hand, their total number is
large enough to apply the central limit theorem to the scattered field. This means that
the total scattered field, composed of many independent randomly distributed fields is
itself randomly distributed according to a Gaussian. In general a Gaussian distribution
is fully determined by its first two moments. Therefore the correlation function of fourth
order I2 can be related to correlation functions of first and second order by means of,
for example, Wick’s theorem [7],

I2(t) = h|E
s

|2i2 + hE⇤
s

(0)E
s

(t)i2 . (22)

Reintroducing the q dependence of the scattered field and defining the normalised cor-
relation functions

g1(q, t) =
hE⇤

s

(q, 0)E
s

(q, t)i
h|E

s

(q)|2i , (23)

as well as

g2(q, t) =
h|E

s

(q, 0)|2|E
s

(q, t)|2i
h|E

s

(q)|2i2 , (24)

leads to the important Siegert relation:

g2(q, t) = 1 + �(q)|g1(q, t)|2. (25)

As a slight generalisation to realistic experimental conditions, in the Siegert relation
an additional coherence factor �(q) (referred to as contrast as well), not present in the
original Gaussian approximation, was introduced. It accounts for the (limited) coherence
of the laser, and more importantly of the optics used. In light scattering experiments it
is usually close to unity [1].

2.3.1 Di↵usion

In order to relate the measured I2 correlation function to the dynamics of the system the
g1 function has to be evaluated further. In this work diluted samples of large particles
in the micrometer regime immersed in a fluid are considered. Their dynamics is well
described by the translational self-di↵usion model [8]. The basic assumptions are that
the particles perform mutual independent translational movements, where the movement
at any given point in time is independent of the movement and position at any earlier
time 3. The di↵usion equation is given by

@P (r, t)

@t

= Dr2
P (r, t), (26)

3That is, the particles perform a so-called random walk.

5



where P (r, t) is the probability density of a single particle being at r at time t and D is
the translational di↵usion coe�cient for a spherical particle, given by the Stokes-Einstein
relation [8],

D =
kT

6⇡⌘R
h

(27)

in terms of the temperature T , the Boltzmann constant k, the solvent viscosity ⌘ and
the (hydrodynamic) radius R

h

of the particles.

2.3.2 Time Correlation Functions for Di↵using Particles

Using equation 14, still assuming that the particles are uncorrelated, g1 takes a form
according to

g1(q, t) / 1

N̄

h
NX

j=1

b

j

(0)b
j

(t)eiq[rj(t)�r
j

(0)]i . (28)

Here the sum spans over all particles in the sample, not only those in the scattering area.
To account for this the factors b

j

(t) where introduced, where b
j

(t) is defined to be unity
if the particle j is in the scattering volume at time t and zero otherwise. Comparing the
timescale on which a particles di↵uses through the sample with the timescale the particle
correlation falls o↵ shows [1] that b

j

(0)b
j

(t) varies much slower and therefore can be set
to be equal to the value at t = 0 for all times, resulting in a factor of b

j

(0)b
j

(0) = b

j

(0)
in equation 28. Furthermore, b

j

is independent of the particle correlation and therefore:

g1(q, t) / 1

N̄

NX

j=1

hb
j

(0)i heiq[rj(t)�r
j

(0)]i =
NX

j=1

heiq[rj(t)�r
j

(0)]i . (29)

The correlation function F

s

= heiq[rj(t)�r
j

(0)]i is related to the probability distribution
G

s

(R, t) for a particle performing a displacement R in the time t via Fourier transfor-
mation,

FT [heiq[rj(t)�r
j

(0)]i] = h�(R� [r
j

(t)� r
j

(0)])i = G

s

(R, t). (30)

In the current approximation framework, for small concentrations [9], G
s

is given as the
solution of the di↵usion equation

@G

s

(R, t)

@t

= Dr2
G

s

(R, t), (31)

and accordingly
@F

s

(q, t)

@t

= �q

2
DF

s

(q, t). (32)

Therefore,
F

s

(q, t) = e

�q

2
Dt = e

�t/t

r

. (33)

Finally, the g2-function can be expressed in terms of the di↵usion coe�cient making use
of equation 25,

g2(q, t) = 1 + �(q)e�2q2D
. (34)
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Note that, at least for spherical particles, where no rotational motion has to be consid-
ered, the exact form of the form factor is of little interest, since it does not show up in
the normalized g2-function [2].

2.4 Speckle Patterns

Up to now the intensity at a fixed point in space was considered. This chapter focuses
on the spatial distribution of the scattered light and is based on [10].
Coherent light impinging on a disordered system results in a random di↵raction pattern
known as ’speckle’ pattern. While in a conventional DLS setup using a point detec-
tor only a small sector of the pattern on the order of a single speckle is analysed, a
’multispeckle analysis’ takes the whole pattern into account. It is possible to extract
information about the degree of coherence of the impinging radiation, as well as the
(e↵ective) illuminated volume size from a recorded speckle pattern as explained in the
following [10]. Assuming full coherence, the probability distribution of the intensity in
the speckle pattern is given in terms of the mean intensity by an exponential distribution
[11]

P (I) =
1

hIie
� I

hIi
. (35)

A generalisation to partial coherence, i.e. to sample volumes consisting of M coherence
volumes, leads to

P

M

(I) = M

M

✓
I

hIi
◆

M�1
e

�MI

hIi

�(M) hIi (36)

in terms of the Euler �-function. This allows for a di↵erent expression for the coherence
factor �. It is given by

� =
�(I)

hIi (37)

where the standard deviation � of the intensity may be expressed in terms of M by

� =
hIip
M

, (38)

resulting in

� =
1p
M

. (39)

In addition to the intensity distribution, in the speckle pattern the size of the individual
speckles in the far field is of interest. It is given by

�x = �

L

D

(40)

where �x is the full width at half maximum in one direction, D the e↵ective scattering
region in this direction and L the sample detector distance. The speckle size is indepen-
dent of the particle size; however in the limit of multiple scattering (i.e. turbid samples)
the e↵ective scattering volume increases (large q-values from the first scattering process
may be rescattered to lower q-values) and accordingly the speckle size decreases [12].
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3 Experiment

In this work several samples of polystyrene microspheres are characterised by dynamic
light scattering techniques. This includes both measurements with an avalanche photo-
diode (APD) and two-dimensional measurements of speckle patterns with a CCD cam-
era. This section outlines the experimental setup and the general measurements proce-
dure.

3.1 Experimental Setup

The DLS setup used in this work is sketched in figure 1.
It is based on the 3D DLS spectrometer from LSinstruments4. The setup consists of
a HeNe cw-laser as a light source, and a tunable filter to attenuate the laser beam
accounting for di↵erent scattering intensities of di↵erent samples and di↵erent angles.
The specifications of the laser are given in table 1. Note that the original setup is capable
of cross-correlation measurements, and therefore the beam path is split. In this work
only one of the paths is used, while the other one is blocked.

Parameter HeNe laser

Wavelength � 632.8 nm
Power P 22mW

Beam diameter (1/e2) 0.7mm
Beam divergence 1.15mrad
Polarization ratio 500 : 1 (vertical)

Table 1: Specifications of HeNe laser.

The sample, contained in a 10mm diameter glass cuvette, is placed in an index-matching
cis/trans-decalin bath to avoid unwanted scattering from the cuvette walls. Scattered
light is focused into an avalanche photo-diode (APD), which is connected to a multitau-
correlator giving the auto-correlation function. The sample is temperature monitored
using a Pt-100 temperature sensor.
The photo-diode is placed on a goniometer arm, capable of scanning an angular range
of 16� to 148�. The setup was extended by mounting, in addition to the photo-diode,
a Basler Aviator avA 1000-120km CCD camera5 on the goniometer arm, to allow for
recording two-dimensional speckle patterns. The specifications of the CCD camera are
given in table 2. The CCD is connected via a camera link interface to a computer. To
avoid stray light, the camera is carefully shielded by a light absorbing cover. Further-
more, for each measurement with the CCD camera, a couple of dark frames are taken
as well, and their mean is subtracted from the recorded images.

4LS instruments AG, Fribourg, Switzerland
5Basler AB, Ahrensburg, Germany
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Figure 1: Sketch of the experimental setup. The setup is capable of cross-correlation
measurements. Therefore the light from the laser is reflected into a beam
splitter. In the original setup, both beams are focused on the sample and the
scattered light is detected by two photo-diodes (here marked by D) and for
both diodes the correlation is calculated. This work does not rely on cross-
correlation measurements. For this reason, one of the beams was blocked
and only one photo-diode and correlator used. The setup was extended by
mounting an additional CCD detector next to the diodes.
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Parameter Basler Aviator

Pixel 1024 x 1024
Pixel size 5.5 x 5.5 µm

Dynamic range 8 bit
Max. frame rate 120 fps

Sensor type Kodak KAI-1050
Sensor techn. Progressive scan CCD, global shutter

Table 2: Specifications of Basler Aviator CCD Camera.

3.2 Sample preparation

All the samples in this work consist of polystyrene spheres solved in water. The spheres
used are Polybead Polysterene Microspheres 6 (2.5 % by volume polystyrol spheres in wa-
ter) with a diameter of approximately 2 µm and 4.5 µm, respectively. The specifications
of the spheres are given in table 3

Solution Diameter standard deviation concentration

2 µm Microspheres 1.93 µm 0.05 µm ⇡ 5.9⇥ 109 ml�1

2 µm Microspheres 4.52 µm 0.15 µm ⇡ 5.0⇥ 108 ml�1

Table 3: Specifications of microspheres.

The samples are prepared by pipetting a certain amount of polystyrene sphere solution
and purified water into a cuvette with 10mm diameter. The cuvette is carefully cleaned
(from the inside) beforehand and purified water is used. In principle isopropanol can
be used to clean the cuvettes. However it proved to be hard to fully evaporate the
isopropanol (see section 4.1.4) and therefore the cuvettes are cleaned with water alone
in all measurements unless stated otherwise.
To have a good homogeneity the samples are mixed with a vortex mixer as well as an
ultrasonic bath. Furthermore, the samples are centrifuged to get rid of small bubbles
within the solution that lead to additional parasitic scattering. However, the time in the
centrifuge is kept short enough (⇡ 15 s) and the rotation speed slow enough (1000 rpm)
to avoid sedimentation of the microspheres. Scattering from the wall of the cuvette is
further minimized by cleaning it from the outside with ethanol.
The concentration of spheres in water is chosen low enough, such that the approximation
of single scattering, which is central to the scattering theory developed in the previous
sections, holds. Nevertheless enough spheres have to be present in the scattering volume
to use all the statistical properties, for example in deriving the Siegert relation (equation
25). Fulfilling both requirements gets increasingly problematic for larger particles. For
this reason samples with two di↵erent concentrations of polystyrene spheres are prepared
and are compared in the analysis.

6Polysciences, Inc., Warrington, USA
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Table 4 gives an overview over all the samples used, and the names they are referred to
henceforth.

Name Size of spheres Polystyrene Water Isopropanol

2 µm PS DL0 2 µm 3 µl 3000 µl No
2 µm PS DL1 2 µm 1 µl 3000 µl No
4.5 µm PS DL0 4.5 µm 20 µl 3000 µl No
4.5 µm PS DL1 4.5 µm 5 µl 3000 µl No

2 µm PS DL1 + Iso. 2 µm 1 µl 3000 µl Yes
Water + Iso. - 0 µl 3000 µl Yes

Table 4: Overview over the samples used.

3.3 Measurements

In table 5 all the measurements performed are summarized. The output of the DLS setup
with the point detector, i.e. both the instantaneous count rate and the autocorrelation
function, is saved in an ASCII data file, while the data taken by the CCD is saved as a
png-image. Both data types are analysed and evaluated using MATLAB.

Number Sample Detector angles

1 2 µm PS DL1 APD 30� - 130� (1� stepsize)
2 4.5 µm PS DL1 APD 30� - 130� (1� stepsize)
3 4.5 µm PS DL0 APD 30� - 130� (1� stepsize)
4.1 2 µm PS DL0 APD 15� - 130� (1� stepsize)
4.2 2 µm PS DL0 APD 15�,20�,25�,30�,35�,40�,50�

5.1 4.5 µm PS DL0 APD 15� - 130� (1� stepsize)
5.2 4.5 µm PS DL0 APD 15�,20�,25�,30�,35�,40�,45�,50�

Table 5: Overview over all measurements.

4 Analysis

To extract information about size and dynamics of the microspheres, the recorded data
are analysed. Section 4.1 focuses on the data from the point detector, whereas section
4.2 explains the analysis of the two-dimensional speckle patterns.

4.1 Static and Dynamic Light Scattering

4.1.1 2 µm polystyrene spheres

The first measurement is the characterisation of the 2µm polystyrene spheres. Data
were taken with the DLS setup in an angular range from 30� to 130� in steps of 1�, with
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a measurement time of 60 s each. The temperature was set to (22.3± 0.1) �C.
Figure 2a shows, as an example, the measured g2-function for the full time-scale mea-
sured plotted in semi-logarithmic scale for an angle of 40�.

(a) Full range (b) Limited range and fit to data

Figure 2: Measured g2-function of 2µm polystyrene spheres at 40�.

According to theory (see equation 34) an exponential decrease of correlation from an ini-
tial value of � . 1 is expected. Indeed, for a time range from 10�6 s to 10�1 s, this seems
to be the case. For very low times, due to the finite time resolution of the detector, the
correlation function starts to build up from a value of zero. For a delay time ⌧ around
⌧ ⇡ 10�7 s the g2-function exceeds the value of 1, which is clearly in contradiction to
equation 34. This can be explained by the limited time resolution of the detector in ad-
dition to possible incoherent background by e.g. the optics in the setup. Furthermore,
in principle scattering by both the solute and the solvent has to be considered. The
water molecules are of course much smaller and their correlation function decays on a
much shorter timescale. Therefore, by excluding very small times (⌧ & 10�6), equation
34, with � replaced by �

app

= �( I

solute

I

solution

)2, is recovered [9]. However, the scattered in-
tensity of the water is much lower than the intensity scattered by the spheres, such that
�

app

⇡ �.
For larger times ⌧ & 10�1 s fluctuations show up. Some fluctuations are expected, be-
cause of decreasing statistics (e.g. for 1 s, the averaging process includes a solely 59
single measurements) and possible e↵ects from non-Gaussian statistics. This is because
in deriving the Siegert relation, the scattered field in equation 21 was approximated by
a Gaussian. This approximation breaks down for particles larger than the wavelength
of the laser, which is indeed the case here. In [4] it was shown, though, that the result-
ing e↵ect of non-Gaussian fluctuations of the concentration leads only to an additional
background for larger values of the delay time, leaving the central content of the Siegert
relation valid. A further discussion of fluctuations at large ⌧ is postponed to section 4.1.3
in the context of the larger 4.5 µm spheres at very low concentrations, where fluctuations
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are even more apparent.
For the reasons stated above, fitting of the g2-function is restricted to the range of 10�6 s
to 10�2 s. The exponential fit corresponding to the data in figure 2a is shown in figure
2b. The dotted vertical line indicates the longest time still accounted for in the fit. With
the limitation to the given time range the fit is of good quality, which is supported by an
adjusted R

2-value of R2 = 0.9995. From the fit the corresponding values for the contrast
� = 0.89± 0.01 and the relaxation rate � = (18.62± 0.06) s�1 are determined.
In order to determine the hydrodynamic radius of the spheres and to check the assump-
tion of free di↵usion, the relaxation rate has to be determined for di↵erent values of the
scattering angle. Figure 3 shows some examples of the resulting fits to the data. It is
clearly visible that the relaxation rate is decreasing with increasing angle, since for a
larger wavevector transfer a smaller distance is resolved.
Most of the fits are of very good quality (more then 90% of the adjusted R

2-values are
above 0.95; the minimum value is R2 = 0.869). The next step is to relate the scattering
angle to the wavevector transfer q. With the given wavelength of the laser and the index
of refraction of water n = 1.33 [13], these are related by equation 9. Figure 4 shows
the relaxation rate � plotted against the q2-value. Assuming free di↵usion, according to
equation 34, a linear behaviour is expected with a slope of

�

q

2
= 2D. (41)

A linear regression of the data supports the assumption of linear behaviour with a
goodness of fit of R

2 = 0.993. The resulting di↵usion coe�cient is given by D =
(2.23± 0.01)⇥ 10�13 m2

/s. According to equation 27 the hydrodynamic radius can be
calculated if the viscosity and the temperature are known. The temperature was directly
measured, while the viscosity, being a function of the temperature itself, is given for
example in [14]. This results in a hydrodynamic radius of

R

h

= (1.03± 0.03) µm

to be compared with the particle radius according to the manufacturer of

R = (0.97± 0.03) µm.

The measured hydrodynamical radius is comparable to the nominal one. A complete
equivalence is not to be expected, since the hydrodynamical radius is an e↵ective radius
which accounts for a possible ’solvent-shell’ around the particles as well.
Due to the facts that the data follows the assumed linear behaviour closely and that
a second measurement with slightly higher concentrations gives compatible results (see
section 4.2.2) it can be assumed that the relevant assumptions on free di↵usion and
single scattering are valid. Note however, that for micrometer sized particles, this is
only the case for spherical particles. To illustrate this the median of the total scattered
intensity is plotted against the wavevector transfer in figure 5.
In arbitrary scaling the form factor in the approximation scheme used in section 2 (which
is in its combined form called Rayleigh-Gans-Debye (RGD) approximation) is plotted as
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Figure 4: Dependence of the relaxation rate on the q2-value for 2 µm polystyrene spheres
and a corresponding linear regression.

Figure 5: Dependence of the median of the scattered intensity from 2 µm polystyrene
spheres on the wavevector transfer and the theoretical curve according to
Rayleigh-Gans-Debye theory for spheres of radius R = 0.97 in arbitrary scal-
ing.
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well 7. The RGD approximation assumes that the quotient m of the refractive indeces
of particles and solution is close to one (|m � 1| ⌧ 1) and that the phase di↵erence of
light with wavevector k travelling through the particle with radius R and light passing
by is small (2kR|m� 1| ⌧ 1) [2]. Both requirements are clearly not met by polystyrene
microspheres (index of refraction of about 1.6). Therefore it is not surprising, that the
form factor in figure 5 is not able to describe the intensity curve correctly 8. Some
features, especially the general decrease of intensity with increasing angle as well as the
oscillations in the intensity are present in both theory and experimental data, though.
Note however that back-scattering is not accounted for in the theoretical form factor
shown here, but leads to an increase of intensity at wide angles in the experimental data
and that the oscillations are not fully resolvable due to the finite angle resolution.
For spheres the lack of a proper description of the form factor has no impact on the
time autocorrelation functions determined above, because the g2-function is normalized
by the mean scattered intensity into the di↵erent angles [2]. This is not true for non-
spherical particles, where rotational motions and therefore a change of the form factor
at a certain fixed angle has to be considered. Therefore, for nonspherical particles in
the micrometer regime, the theory has to be extended in terms of the exact scattered
intensity distribution [1, 2].

4.1.2 4.5 µm polystyrene spheres

In principle the same procedure as in section 4.1.1 can be used to determine the hydrody-
namical radius of the 4.5 µm polystyrene spheres. In this section the higher concentrated
4.5 µm PS DL0 sample is used. Approximately O(104) of spheres are in the scattering
volume at all times, ensuring at least an approximate validity of the assumed many-
particle limit. Nevertheless, the results have to be treated carefully, since the solution is
already slightly opaque at such high concentration and the single scattering limit holds
now only approximately true.
Figure 6 shows the measured g2-function, with very low times already excluded, and a
fitted curve according to equation 34.
As before, some fluctuations for larger delay times are visible. These will be further
discussed in the context of very low concentrations (section 4.1.3). For now, the range
of fitting is restricted to 10�6 s to 5⇥ 10�2 s 9. For this range the fit is, with an adjusted
R

2-value of R2 = 0.998, of good quality.
Figure 7 shows some examples of the g2-functions over the whole angular range, including
the corresponding fits.
Overall the fits are of good quality with a minimum adjusted R

2-value of R2 = 0.85.
However, for some of the correlation functions, the contrast determined by the fit lies
above 1. This is a relict of the finite averaging time, when for a short time the scattered

7It is given in terms of the sphere radius R by P (q) =
⇣
3 sin (qR)�qR cos (qR)

q3R3

⌘
2

.
8For this, so-called Mie scattering has to be considered.
9Compared to the 2 µm particles, the fit range was slightly extended, accounting for the overall slower
dynamics.
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Figure 6: Measured g2-function of 4.5 µm polystyrene spheres at 40� and a fit to the
data.

intensity was surpassing the average significantly. These fits were excluded in the fol-
lowing.
The next step is again to determine the hydrodynamic radius. Figure 8 shows the decay
rate � determined by the fit, plotted against the squared wavevector transfer q2.
Overall, the relaxation rate approximately follows the expected linear behaviour and the
fit quality is good (R2 = 0.988). This supports the assumption that multiple scattering is
still negligible using this concentration. The linear regression yields a di↵usion coe�cient
of D = (9.04± 0.05)⇥ 10�14 m2

/s, resulting in a hydrodynamic radius of

R

h

= (2.53± 0.12) µm (42)

to be compared with the particle radius according to the manufacturer of

(2.26± 0.08) µm. (43)

The radii are compatible within the 3� range. However, it is pointed out again that
complete equivalence between hydrodynamic and nominal radius is not to be expected.
As for the smaller spheres, in figure 9 the median scattered intensity and the form factor
in RGD approximation are shown. For larger particles, the oscillations in q-space have a
higher frequency. For this reason, no clear structure in the experimental data is visible
anymore due to the finite resolution. Nevertheless, the considerations made above for
applicability and e↵ects of the RGD approximations apply to the larger 4.5 µm spheres
as well.
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Figure 8: Dependence of the relaxation rate on the q

2-value for 4.5 µm polystyrene
spheres and a corresponding linear regression.

Figure 9: Dependence of the median of the scattered intensity from 4.5 µm polystyrene
spheres on the wavevector transfer and the theorectical curve according to
Reighley-Gans-Debye theory.
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4.1.3 Very low concentrations

In order to illustrate the e↵ect of a very low concentration of spheres, results from
measurements of the 4.5 µm PS DL1 sample are discussed in this section. In principle,
for the 4.5 µm spheres, very low concentrations have to be used to ensure that only
single scattering takes place. In this case, however, the mean number of spheres in the
scattering volume drops to the order of O(103), and correlations due to fluctuations in
particle number are expected (see for example equation 28).
Figure 10 shows one measured g2-function, with very low times already excluded, and a
fitted curve according to equation 34.

Figure 10: Measured g2-function of 4.5 µm polystyrene spheres at 30� and a fit to the
data.

Deviations from the expected exponential behaviour, in form of oscillations for higher
delay times, are clearly visible. Comparison to figure 11, were the g2-functions of the
4.5 µm spheres for di↵erent angles are plotted, as well as to the according figure 3 for
the 2 µm particles, shows that the oscillations are most imminent for small angles. The
reason is that for higher wavevector transfers, faster dynamics are probed. Due to the
higher concentrations the oscillations are not unambiguously identified in the other sam-
ples. Nevertheless the oscillations might contribute to the noise at higher delay times.

Similarly, an unexpected behaviour is observable in the (uncorrelated) count rate of the
photo-diode. In figure 12 the count rates of the two 4.5 µm samples (at an angle of 40�)
are compared. Note that the absolute count rate is subject to the di↵erent attenuation
of the laser used.
While for the higher concentrated sample, the count rate fluctuates predominantly on
small timescales about the mean value (with correlations as given by the g2-function),
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(a) Count rate of 4.5 µm PS DL1 sample with
lower concentration of spheres.

(b) Count rate of 4.5 µm PS DL0 sample with
higher concentration of spheres.

Figure 12: Count rate of photo-diode for higher and lower concentrated samples of
polystyrene spheres.

for the sample with lower concentration, the count rate has fluctuations with a higher
relative amplitude on larger timescales indicating insu�cient statistics. Therefore, a
meaningful determination of the hydrodynamical radius is not possible for very low con-
centrations, since the theory outlined in this work is not able to describe the behaviour
su�ciently.
Due to the restrictions explained above, the use of DLS techniques to characterise par-
ticles of the size of several µm is limited. In principle it is possible, though, to further
increase the intensity at the cost of multiple scattering, but minimise these e↵ects by
cross-correlation techniques [9]. This is however not part of this work.

4.1.4 The e↵ect of isopropanole

In this section the e↵ect of parasitic scattering is exemplified by samples in cuvettes,
which were cleaned before use with isopropanole. In principle the isopropyl alcohol is
expected to evaporate quickly, such that the sample is not contaminated. It is possible,
however, that small remains stay in the cuvette and form droplets in the water used as
a solution, which turned out to be the case here.
To illustrate this, figure 13a shows the g2-function, of a - apart from the isopropanole -
pure water sample. It appears quite similar to the correlation function of the polystyrene
particles in water. Most importantly, the correlation decays on a comparable timescale,
while pure water is expected to decay much faster. Due to the overlap of relaxation
times this can strongly e↵ect the characterisation measurements of the polystyrene mi-
crospheres. As an example, figure 13b shows the the relaxation rate of 2 µm polystyrene
spheres in suspension with isopropanole present, which was determined via fits to the
g2-function like before. There are clear deviations from a linear behaviour visible. In
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(a) g2-function of a sample without
polystyrene spheres.

(b) Correlation between the median scattered
intensity and the relaxation rate

Figure 13: E↵ect of isopropanole vesicles remaining in the sample.

particular, modulations in the form of ’bumps’ on top of the linear slope show up. To
explain this, the median of the total scattered intensity is plotted (in arbitrary units) as
well. It can be seen that an increase in the relaxation rate corresponds to a minimum in
the scattered intensity. Therefore, whenever the scattered intensity of the polystyrene
spheres, which in principle contribute most to scattering, is low, scattering from the
isopropanole droplets becomes important, explaining the correlations between the re-
laxation rate and the scattered intensity. Thus, the cuvettes were not cleaned with
isopropanole in all other measurements.

4.2 Speckles patterns

In this section the analysis of the images taken by the CCD camera is discussed. In
figure 14 a typical speckle pattern taken by the CCD is shown. It depicts the intensity
(in arbitrary units) scattered by the microspheres in the 4.5 µm PS DL0 sample into an
angle of 15�. It was already corrected for dark field e↵ects. Many elliptical intensity
speckles are randomly distributed on the image and form the so-called speckle pattern.
In addition to the speckles interference fringes, resulting from the optics used, show up,
leading to modulations of the speckles.
To analyse the speckle patterns images of the scattered light of two di↵erent samples
were recorded. In contrast to the point detector, the scattered intensity is not focused on
the detector. Therefore, higher scattered intensities are needed to get a reliable signal.
For this reason the stronger concentrated samples 2µm PS DL0 and 4.5 µm PS DL0
were used. For the same reason it was not possible to cover the same angular range as
in the case of a point detector. Data was taken in the range of 15� to 50� in steps of
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5�10.
In principle it has to be considered that the CCD chip covers a certain angular range.
However, since the range is smaller than 1�, it will be assumed in the following that the
angle is fixed on the whole chip.

Figure 14: Example speckle pattern of light scattered by the 4.5 µm PS DL0 sample into
an angle of 15�. The intensity is in arbitrary units.

From the size of the speckles and the statistics of the intensity distribution it is possible
to extract information on the e↵ective scattering volume and the coherence of the light
source and the optics used, as will be explained in the following. Furthermore, similar
to the previously discussed case of a point-detector, it is possible to relate intensity
fluctuation in time to the dynamics of the system.

4.2.1 Speckle sizes

According to equation 40 the speckle size is inversely proportional to the e↵ective (lat-
eral) scattering region and has no direct dependence on particle size or scattering angle.
In the case of single scattering and full coherence the e↵ective scattering region is simply
the laser spot size in the sample, while in the case of multiple scattering the e↵ective
volume gets larger and the speckles accordingly smaller. In figure 15 a section of 400x400
pixels of CCD images for 15� and 40� and both sphere sizes are shown.
While in vertical direction the speckles seem to be of comparable size for both angles
and samples, in horizontal direction the speckles recorded at 40� are smaller than those
recorded at 15�. This can be explained as follows: The laser impinging on the sample
illuminates a volume characterised by (�x, �y, l), where (�x, �y) is the transverse spot

10For the 2 µm PS DL0 sample, due to too low intensities, no data was taken at an angle of 45�.
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(a) 2 µm spheres at 15� (b) 2 µm spheres at 40�

(c) 4.5 µm spheres at 15� (d) 4.5 µm spheres at 40�

Figure 15: 400x400 pixels sections of the recorded speckle patters of 2 µm and 4.5 µm
microsperes at scattering angles of 15� and 40�.
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size of the laser (in horizontal and vertical direction respectively) and l is (or is related
to) the length of the cuvette. In forward direction at an angle of ✓ = 0� the projection
of the illuminated volume onto the plane of observation is simply the transverse spot
size of the laser (�x, �y). When observing at an angle of ✓ = 90� the projection of the
illuminated volume in vertical direction is still given by the vertical spot size of the laser
�y, while in horizontal direction the projection is now the length of the cuvette l. For
an general angle the horizontal e↵ective scattering region is given by

D

hor

= �x cos ✓ + l sin ✓. (44)

To analyse the speckle size more quantitatively, the spatial autocorrelation function

C(�x, �y) =
hI(x+ �x, y + �y)I(x, y)i

px

hIi2
px

, (45)

where h·i
px

denotes the average over all pixels, of one image for each recorded angle (and
each sample) is computed. As an example the central section of the autocorrelation
function for the 4.5 µm microsperes at 15� is shown in figure 16.

Figure 16: Central section of the autocorrelation function for 4.5 µm microsperes at 15�.

Since the speckles are randomly distributed, correlations between di↵erent speckles aver-
age to a constant background in the limit of an infinite number of speckles and therefore
do not a↵ect the image strongly. On the contrary, the interference fringes already present
in figure 14 are regularly spaced and therefore clearly visible in figure 16. These fringes
strongly a↵ect the determination of the vertical speckle size. In figure 17 a horizontal
and vertical cut through the autocorrelation function is plotted.
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(a) Horizontal cut through the autocorrela-
tion function with a fit to the data in the
area indicated by the dotted vertical lines.

(b) Vertical cut through the autocorrelation
function.

Figure 17: Horizontal and vertical cut through the autocorrelation function.

In the horizontal cut a clear peak is present. The peak in the autocorrelation of a speckle
distribution takes the form of a Lorentzian, while some incoherent scattering which might
be present increases the correlation at very low �x [15]. Limiting the discussion to the
signal region (�x = [�11, 11]), using the model of a Lorentzian peak and excluding the
data at �x = 0,±1, the correlation function was fitted. The result is plotted in figure
18a. The fit suggests a horizontal speckle size of �x = (7.70± 0.62) px corresponding to
an e↵ective lateral scattering region of (5.5± 0.5)mm.
In the vertical cut, the e↵ect of the fringes is imminent. Therefore it is not possible to
determine the vertical speckle size by a fit to the data. To minimise the influence of the
fringes, only single speckles are considered in the following, by defining an appropriate
region of interest (ROI) in the speckle patterns. For this single speckle the autocorrela-
tion function is computed again and the vertical and horizontal cut plotted, as shown in
figure 18 for the previously considered example of 4.5 µm spheres and an angle of 15�.
As can be seen in figure 18, the Lorentzian model (with the central points already
excluded) is still not able to describe all features of the data, especially for the vertical
cut. However the fit results can at least give an estimate of the speckle size. To improve
the estimate, instead of one, ten ROIs are defined and for each of them the speckle size
is determined individually. In the end the average is taken. The results, for each angle
and both samples, are summarised in table 6. For each angle the horizontal speckle size
in once determined by a fit to the cut through the full autocorrelation function and, as a
crosscheck, by the average of ten di↵erent single speckle sizes as explained above, while
for the vertical speckle size only the latter method is possible11.

11Note that a proper fit was not possible for single speckles in horizontal direction at an angle of 50�

using the 4.5 µm spheres.
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(a) Horizontal cut through the autocorrela-
tion function with a fit to the data using
a Lorentzian model.

(b) Vertical cut through the autocorrelation
function with a fit to the data using a
Lorentzian model.

Figure 18: Horizontal and vertical cut through the autocorrelation function of a single
speckle.

hor. full autocor. hor. ROI vert. ROI

2 µm

15� (8.927± 1.715) px (9.290± 1.051) px (58.9± 10.3) px
20� (6.639± 0.423) px (7.810± 0.838) px (60.0± 10.5) px
25� (5.452± 0.267) px (6.042± 0.961) px (60.9± 9.0) px
30� (4.284± 0.244) px (5.578± 0.808) px (60.2± 3.0) px
35� (2.960± 0.504) px (5.019± 0.765) px (60.1± 6.4) px
40� (2.806± 0.392) px (5.315± 0.975) px (58.3± 8.5) px
50� (0.516± 0.058) px (4.341± 1.256) px (57.8± 6.2) px

4.5 µm

15� (7.693± 0.617) px (8.631± 0.669) px (56.6± 12.9) px
20� (5.805± 0.197) px (7.485± 1.132) px (59.5± 6.9) px
25� (4.022± 0.234) px (5.804± 0.736) px (51.2± 9.9) px
30� (3.134± 0.219) px (5.209± 0.940) px (55.9± 7.6) px
35� (4.097± 0.146) px (4.295± 0.838) px (55.0± 9.3) px
40� (3.334± 0.266) px (4.761± 0.917) px (57.0± 5.4) px
45� (3.097± 0.327) px (4.433± 0.591) px (62.1± 7.7) px
50� (2.14± 0.26) px — (59.2± 6.5) px

Table 6: Lateral speckle sizes determined by a fit to the cut through the autocorrelation
function of the full image in horizontal direction, and several ROIs in horizontal
and vertical direction.

28



As expected, the vertical speckle size is, within its error, the same for all angles. Because
the size coincides for both sphere sizes as well, it can be concluded that multiple scatter-
ing is negligible for the (in principle slightly opaque) 4.5 µm PS DL0 sample. The results
are plotted in figure 19b, where the average, and the standard deviation are indicated as
well. The vertical speckle size was determined to be �y = (58.2± 2.8) px corresponding
to a vertical e↵ective scattering region of

D = (0.72± 0.04)mm.

(a) Horizontal speckle sizes for both samples. (b) Vertical speckle sizes for both samples.

Figure 19: Horizontal and vertical speckle sizes.

The results from the determination of the horizontal speckle size for the di↵erent meth-
ods are plotted in figure 19a where a clear trend of decreasing speckle size with increasing
angle is visible. It has to be taken into consideration that for wider angles the speckle
extension is on the order of a single pixel and the reliability of the fits has to be doubted.
At least for small angles the results from the di↵erent methods and samples are compa-
rable although the fit to single speckles gives a larger speckle size in general. This might
be because of poor separation of speckles in horizontal direction. Although the trend
of decreasing speckle size is clear a determination of the horizontal e↵ective scattering
region according to equation 44 is not possible, due to a too large spread of the data.

4.2.2 Dynamics

Similar to the method using a point detector described in section 4.1, it is possible to
determine the g2-function using CCD data. To this end a sequence of images with a
certain framerate is recorded. As a next step each pixel is correlated with the same pixel
some time step ⌧ later and the average over all pixels is taken. The result is the so-called
two-times correlation function

C

I

(q, t, ⌧) =
hI

px

(q, t)I
px

(q, t+ ⌧)i
px

hI
px

(q, t)i
px

hI
px

(q, t+ ⌧)i
px

. (46)

29



To arrive at the g2-function, the time average is taken

g2(q, t) = hC
I

(q, t, ⌧)i
t

. (47)

The advantage of using a two-dimensional detector compared to a point detector are
the significantly larger statistics with a single measurement, since an average over many
pixels (1024x1024 in this case) is taken. However, it is not possible to probe very
fast dynamics, since the CCD framerate is limited to 120 fps. The advantages and
disadvantages will be illustrated in the following.
Due to technical limitations it is only possible to take 100 consecutive images with the
CCD camera in use. Therefore, for each angle and sample, two separate measurements
are performed to cover the whole time range of interest. 100 pictures are taken with a
framerate of 119.8 fps and another 100 with a framerate of 20.0 fps. The exposure time
of a single image is 2000 µs in both cases. The e↵ect of a finite integration time - as long
as it is much smaller than the relaxation time - was shown to not a↵ect the form of the
g2-function, although slightly altering the contrast [16].
The resulting g2-functions (the 120 fps and the 20 fps measurements already combined)
are plotted and fitted by the same exponential model used for the point detector data.
In figure 20, as an example, the plots for di↵erent angles are shown for both samples.
For comparison the data from the point detector is plotted as well and the constant
background is subtracted for both data sets.
As expected, there are significantly less fluctuations at larger delay times (⌧ & 10�1 s)
due to the better statistics. On the contrary, caused by the limited framerate, only delay
times ⌧ & 10�2 s are probed. Furthermore, the contrast determined by the fit varies
significantly between the point detector and the CCD data, where the time resolution
in not good enough to see the ’plateau’ at small delay times. This has the e↵ect that g2-
curves describing the same relaxation rate (within its error) might look quite di↵erent
as is the case in figure 20b. The contrast will be discussed further in section 4.2.3.
While the relaxation rates for the 2 µm spheres appear to be of the same order for
both measurements, for the larger 4.5 µm spheres the relaxation rate determined by the
CCD methods is in general faster than the rate determined with the point detector.
Furthermore, for the delay times considered here and slower dynamics probed (that is a
lower wavevector transfer and therefore a smaller angle) the data is not fully described
by a single exponential (see figure 20c). In contrast to the data taken by the photo-
diode the two-dimensional data o↵ers an additional possibility to check whether the
time averaging leading to the g2-function is valid, or whether additional dynamics, not
described by the current approximation scheme, are present. To this end the two-times
correlation function is plotted for both samples and an angle of 15� in figure 21.
The g2-function corresponds to an averaging of diagonal cuts through the C

I

-function.
The figure shows that a proper determination of the g2-function is problematic in both
cases, since there are additional dynamics present. The e↵ect is clearly stronger for
the 4.5 µm spheres, however. The modulations are an indication for additional non-
equilibrium processes, like for example sedimentation of the spheres, or vibrations in the
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(a) 2 µm sample at 25� (b) 2 µm sample at 30�

(c) 4.5 µm sample at 25� (d) 4.5 µm sample at 50�

Figure 20: g2-function of both samples determined with the CCD detector and the APD
at di↵erent angles.
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(a) C
I

-function of 2 µm spheres at 15�. (b) C
I

-function of 4.5 µm spheres at 15�.

Figure 21: Two-times correlation function for both samples at an angle of 15�. For
clarity, the images were extended to negative time delays ⌧ by mirroring
them at the diagonal.

setup 12. Note that these e↵ects cannot be identified by a point detector alone.
In figure 22 the determined relaxation rates are plotted against the corresponding wavevec-
tor transfer. The corresponding data from the point detector is plotted for reference as
well.
Note that the uncertainty on the relaxation rate for the smaller particles at angles is
quite high, since the laser beam was strongly attenuated to be able to cover the full
angular range covered by the CCD.
For the 2 µm spheres the resulting hydrodynamic radii are determined to be

R

h

= (0.95± 0.05) µm

using the CCD camera and
R

h

= (1.10± 0.11) µm

using the photodiode. This has to be compared to the previous measurement using the
photodiode yielding a radius of

R

h

= (1.03± 0.03) µm

and the actual sphere radius of

R = (0.97± 0.03) µm.

All radii are compatible within their errors, while the radius determined in 4.2.2 has the
highest uncertainty due to the aforementioned low intensity at wide angles.

12The e↵ects from vibrations might be enhanced by the resulting oscillations of the interference fringes
present on the images.
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(a) � plotted against q2 for 2 µm spheres. (b) � plotted against q2 for 2 µm spheres.
Zoom to low q2.

(c) � plotted against q2 for 4.5 µm spheres. (d) � plotted against q2 for 4.5 µm spheres.
Zoom to low q2.

Figure 22: Relaxation rate plotted against the squared wave vector transfer. Data from
both the CCD camera and the APD is shown. The data were fitted using a
linear model.
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For the 4.5 µm spheres the resulting hydrodynamic radii are determined to be

R

h

= (1.94± 0.10) µm

using the CCD camera and
R

h

= (2.56± 0.13) µm

using the photodiode. This has to be compared to the previous measurement using the
photodiode yielding a radius of

R

h

= (2.54± 0.11) µm

and the actual sphere radius of

R = (2.26± 0.08) µm.

The two measurements with the APD coincide with each other and are compatible with
the actual radius within the 3� range as stated before. The radius determined by the
CCD data is smaller than the other radii. As stated before, all those results for the
4.5 µm spheres have to be treated with care.

4.2.3 Contrast

The contrast � gives information about the coherence of the light source and the optics
used. In the case considered here, where a laser in the visible range is used, it can
be assumed that the laser is fully coherent and the significant part of the incoherent
radiation is due to the optics. Sources of incoherence could be dust and dirt on some
optical components, their finite aperture or stray light. Nevertheless a high contrast is
to be expected.
It is possible to extract the contrast from the fitted g2-function. Because of the larger
statistics the data taken with the CCD is better suited to this end, since in the case
of a point detector parasitic scattering may lead to fluctuations of the contrast (even
a - in principle unphysical - contrast larger than one is possible, see section 4.1). The
fluctuations are less present when using CCD data. With the data and the fits illustrated
in the previous section 4.2.2 a contrast of

� = 0.83± 0.02

is obtained, assuming that the contrast is independent of angle and particle size. Usually,
another possibility to determine the contrast is by making use of equation 37 stating
that the contrast is given by the quotient of standard deviation of the intensity and its
mean value. However, this method is not well suited for low intensity speckles where the
non-continuous intensity scale can strongly e↵ect the outcome. Therefore the contrast
was not determined using this method in this work. Finally, the probability distribution
of the intensity P (I) given by equation 36 is dependent on the number of coherence
volumes M and therefore, related by equation 39, the contrast.
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(a) 2 µm spheres and ⇥ = 15�. (b) 2 µm spheres and ⇥ = 40�.

(c) 4.5 µm spheres and ⇥ = 15�. (d) 4.5 µm spheres and ⇥ = 40�.

Figure 23: Measured intensity distribution for both samples and di↵erent angles together
with theoretical curves corresponding to di↵erent values of M .
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Figure 23 shows the distribution of the intensities for both samples for angles of 15�

and 30�. The theoretical curves for full coherence (M = 1) and a contrast of 70%-
85% (M = 1.1765 � 1.4286) are shown as well. The distribution mostly follows the
exponential (i.e. full coherence) curve with the exception, that the pixel value of zero
is strongly suppressed and intensity shifted to a value of 1. With the dark-field already
subtracted, this might be a remaining noise e↵ect. A meaningful fit to the data is not
possible due to this reason. However, the data supports in principle a higher contrast
close to 1 rather than the 83% determined by the fits to the g2-function.

4.2.4 Comparison

As illustrated before, the clear advantage of using a CCD detector is the better statistics
and therefore less noise. Furthermore this has the consequence of reduced measuring
times. The intensity correlation was recorded with the photodiode for 60 s for each angle
while the CCD images where taken within approximately 6 s (100 images with 120 fps
and 100 images with 20 fps). Therefore the bare measuring time is reduced by a factor
of 10. Apart from the time savings this has the advantage of being less influenced by
long timescale e↵ects, like the sedimentation of the spheres. Furthermore, with a space
resolved detector it is possible, if needed, to observe spatial correlations in addition to
temporal ones.
Disadvantages of using a CCD detector are the restrictions to slower dynamics and due
to the lower dynamical range of the CCD to a smaller angular range. Typical dynamics
for the microspheres at these low angles have a relaxation rate on the order of � =
1 s�1 to 30 s�1 which can be partly, but not fully, resolved, as can be seen in figure 20.
Wider angles and therefore faster dynamics cannot be covered properly for this reason.
In principle it would be possible, though, to decrease the relaxation rate by replacing
the water by another solvent having a larger viscosity (e.g. glycerol) and thus decreasing
the dynamics.
For the 2µm spheres considered here the use of an APD as a detector showed to be
fully su�cient and due to the larger angular range covered and the possibility to use
lower concentrated samples the preferable method. Nevertheless using a CCD detector
is possible as well and gives, in addition to some information on the contrast and the
scattering volume, compatible results. DLS methods are not fully suited to characterise
the 4.5 µm spheres. The data taken with the CCD is an important crosscheck to arrive
at this conclusion.
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5 Summary and Conclusion

In this work, microspheres were characterized by DLS methods. The methods and the
corresponding approximation schemes are originally designed for smaller nanoparticles.
Therefore the samples containing polystyrene spheres close to the very edge of the ap-
plicability of DLS. For this reason, crosscheck measurements using a CCD detector were
conducted in addition to the usual point detector measurements. While for the smaller
2 µm spheres all relevant approximations seem to hold (at least approximately) and it
was still possible to determine the hydrodynamical radius, for 4.5 µm spheres the appli-
cability of DLS methods were shown to be very limited. Nevertheless, at least a rough
estimate of the particle size was determined. Furthermore advantages and disadvantages
of di↵erent time-correlation methods were discussed.

37



References

[1] Berne, B. J., and Pecora, R. Dynamic light scattering: with applications to chem-
istry, biology, and physics. Dover Publications, Mineola (2000).

[2] Kotlarchyk, M., Sow-Hsin Chen, and Shoji Asano. Accuracy of RGD approximation
for computing light scattering properties of di↵using and motile bacteria. App. opt.,
18.14 (1979).

[3] Schmitz, K. S. An introduction to dynamic light scattering of macromolecules. Aca-
demic Press Inc., San Diego (1990)

[4] Schaefer, D. W., and Berne, B. J. Light scattering from non-Gaussian concentration
fluctuations. Phys. Re. Lett., 28.8 (1972).

[5] Nolting, W. Grundkurs Theoretische Physik 7. Springer, Heidelberg (2005).

[6] Schroer, M. A. Small angle X-ray scattering studies on proteins under extreme
conditions. Diss., TU Dortmund (2011).

[7] Lang, P. Scattering Methods: Basic Principles and Application to Poly-
mer and Colloidal Solutions. Lec. Notes, HHU Düsseldorf (2011): http:

//www.fz-juelich.de/SharedDocs/Downloads/ICS/ICS-3/EN/Lang_002.pdf?

__blob=publicationFile, as of September 2015

[8] Pecora, R. Basic concepts. Scattering and time correlation functions. In: Soft Mat-
ter Characterization. Springer, New York (2008).

[9] Chu, B. Dynamic light scattering. In: Soft Matter Characterization. Springer, New
York (2008).
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