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Abstract

This work explains the essentials of the systematic tuning procedure that is used

by the Professor tool. We attempt to reproduce the Pythia6 tune, that was

done 2009 by the Professor development team to get a better understanding of

the e↵ects of di↵erent ways of executing the tuning procedure on the results and

to be able to tune the Whizard shower method confidently. Within the limits

of the uncertainties of the tune, this attempt was successful, but because of the

large uncertainties of some of the tune parameters and the fact that some tune

results are located outside of the ranges of our parameter sampling, the results are

not fully trustworthy and we advise to repeat the tunes with adapted parameter

ranges and a larger amount of parameter points. The analysis of the tune of the

Whizard shower showed even larger errors and therefore, we advise to revise this

tune too.
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1 Introduction

Both in theoretical and experimental particle physics, Monte Carlo event generators
are of particular importance. They can be used to analyse experiments or to make
predictions, that are useful to design future experiments. The necessity of Monte Carlo
simulators arises from the complexity of the final states observed in experiments and the
non-perturbative aspects of QCD at low energies [1].
The main goal of Monte Carlo simulators is to describe the reality correctly and every
physical model that accomplishes this, contains free parameters like, coupling constants.
Furthermore, Monte Carlo event generators have to make use of approximations of the
considered physical models. Therefore, the best fitted values of the exact values of the
contained parameters do not necessarily yield the best description of observables, when
compared to experiments. We are therefore looking for a set of e↵ective values of these
parameters, such that the event generator in question describes the reality best. The
process of finding this set is called tuning and can be systematized, which is e.g. done by
the tuning tool Professor [2]. The subject of my project in the DESY theory group
this summer was to look into the process of tuning the event generator Whizard [3]
and as part of that, to tune for the first time the analytic parton shower together with
Pythia hadronisation in a systematic way.

2 Theory

The Professor tuning system provides a way to systematically tune the parameters of
Monte Carlo event generators to experimental data as opposed to the traditional, labour-
intensive guesswork of manual tuning. The idea is as follows: We sample a su�cient
amount of points in parameter space and run our generator once for each of these points.
The results of the event generations are used to calculate a selection of observables, we
are interested in. Afterwards, we parametrise these observables bin-by-bin, dependent
on our physical parameters and calculate a goodness of fit function (GoF function), yet
to be defined. Finally, we maximise this GoF measure and check, if our result is actually
a global maximum of this measure.
Of course, the above is a sloppy description of the tuning process and the following
treatise will describe the di�culties, that have been neglected so far, in more detail.

2.1 Parametrisation

Our first task is to sample points in parameter space. To do so, we need to specify a
range of possible parameters and a hypercube [p

min

, p
max

] seems convenient. The choice
of boundaries requires physics input, since they should include all thinkable values but
they should also be as narrow as possible so that the parametrisations of the observables
describe the real generator response accurately in the hypercube without needing too
many sample points [2].
The minimum number of samples needed depends on the type of parametrisation of the
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observables. An n-th order polynomial in P -dimensional parameter space requires at
least

N (P )

n = 1 +
nX

i=1

1

i !

i�1Y

j=0

(P + j) (1)

sample points [2]. In the special case of a second order polynomial, which will be our
first choice, the required number is:

N
(P )

2

= 1 + P + P (P + 1)/2 . (2)

The reason, why we choose to parametrise the observable bins, rather than the GoF
function, is the following. We expect the generator response to be much more com-
plicated than the second order polynomial, which is why the parametrisation will be
inaccurate, but the errors of the descriptions of the individual observable bins should be
overall decorrelated. Therefore, we hope, that these errors cancel out to some extent,
when we calculate the GoF function [2].
As another way to account for the complexity of the real generator response, we do not
only sample the minimum amount NP

2

of needed parameter points, but a significantly
bigger amount N

tune

� NP
2

. This enables us to use a more sophisticated method of de-
termining the coe�cients of the polynomials, which represents a least squares fit to the
true generator response. This method is called the pseudoinverse and is implemented
numerically in the Professor tool. As a rule of thumb, N

tune

should be at least twice
as big as NP

2

[2, 4].

2.2 Goodness of fit function

One of the most di�cult tasks of tuning an event generator is the choice of observables
to tune to. This mostly depends on the purpose of the event generator. It can’t possibly
describe every thinkable observable well, so one has to decide which ones are the most
important.
A big advantage of interpolating every observable bin is, that one can assign weights wbO

to them individually, when taken into account in the GoF function. The Professor

system uses a �2 function as a GoF measure and minimises it. It is defined as

�2(p) =
X

O

X

bO

wbO

(f (bO)(p)�RbO)
2

�2

bO

, (3)

where O indicates the observable and bO the corresponding bins, f (bO) is the fit function
of the bin bO and RbO the corresponding reference data and �bO . The total uncertainty
of the experimental reference is �bO and is taken into account, such that bins with a big
uncertainty are of small significance to the fit. In the numerical implementation of the
goodness of fit function, bins with �bO = 0 are excluded, because it usually indicates,
that there is no reference data at all for the bin in question [2].
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A rule of thumb for choosing the observable weights wO is to assign a smaller weight
to observables that belong to a bigger set of observables with similar physical content.
Furthermore, bigger weights can be assigned to observables that are not described well
enough by the tune, which is relevant for reruns of the generator. It is also necessary to
pay attention, that the minimisation result is not too sensitive to the choice of weights.
But overall, there is no such thing as a strict rule to choose the observable weights except
the purpose of the tuning itself, which is to describe reality as good as possible.
Finally, the GoF function has to be maximised or, as in the case of Professor , the
�2 function has to be minimised. It is important to make sure that the result of the
minimisation is not only a local minimum of the �2 function but also the global minimum,
which is not a trivial task because of the complexity of the GoF function.
Another aspect, we have to bear in mind, is that we might have chosen not enough
parameter points for the parametrisation. One way to make up for this is to oversample
even a bit more, perform tunes for several distinct subsets N

tune

of the total sample
N and compare them amongst each other. One should make sure that the subsets are
su�ciently decorrelated, which is why one should usually oversample by approximately
30% [2].

2.3 Factorisation of parameter sets

Given a general purpose event generator, we want to tune a large amount P of param-
eters which might not seem feasible on first sight because the volume of the parameter
space grows exponentially with P and the amount of sample points should grow simi-
larly so that the parametrisations of the observables represent a good description of the
true generator response for the whole parameter space [2]. A good approach to solve
this problem is to factorise the set of tune parameters M = {pi} in decoupled subsets
Ni ⇢ M . In this case, decoupled means that the minimisation result of the GoF measure
�2(N

1

, N
2

, N
3

, . . .) with respect to the parameter set N
1

has to be independent of the
values of the parameters that belong to N

2

, N
3

, . . . and vice versa. The most obvious
case of such a decoupling would be that the observables that are sensitive to the param-
eters N

1

are insensitive to N
2

, N
3

, . . ., etc. [5].
In fact, it is not necessary that the parameters decouple in exactly the sense, described
above, but it is su�cient, if e.g. only the minimisation with respect to N

1

is indepen-
dent of the values of all of the parameters N

2

, N
3

, . . . as opposed to the minimisation of
N

2

, which may depend on the values of N
1

and be only independent of N
3

, . . . and so
forth. In that specific case, the tuning can be parted into several successive stages: In
the first tuning stage, N

1

is tuned, afterwards N
2

, whilst using the tuned values of the
parameters N

1

and so on. Further factorization of the subsets Ni is an option, but only
if the requirements are satisfied.
As a consequence, the tuning of an event generator is normally parted into three succes-
sive stages. First, the final state parameters, i.e. final-state shower and hadronization
parameters are tuned to e+e� observables, since they should be universal between lepton
and hadron collisions and event generators do not need to use initial-state parton shower
parameters to describe the processes in question. Once tuned, the final state parameters
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can be used in the tuning process of the initial-state shower tuning, which is normally
the second stage. Afterwards, multi-parton-interaction parameters and beam remnant
e↵ects are tuned [5].

3 Tuning of the Whizard event generator

The focus of this section is the first stage of the tuning of the Whizard event generator
with the Professor system. The parameters, which are tuned, are the coupling con-
stant of the strong final state interactions ↵

s,f

, the width of the transverse momentum
distribution �q, the a and b parameter of the Lund symmetric fragmentation function,
the Bowler modification factor for b-Quarks rb and the shower cut-o↵. The Whizard

system provides di↵erent ways of handling parton showers: One is to use the internal
implementation of Whizard , the other one is to use an interface that delegates the job
to Pythia . The tune has to be performed for both shower methods. The hard process,
that is used for the tunes, is

e+ + e� ! q + q̄ .

The analysis of the generated events is done with the Rivet tool [6], which calculates
observables of the desired analysis based on the generator output. We consider an
analysis that is already included in Rivet , namely the DELPHI 1996 S3430090 [7]. It
features event shape and charged particle inclusive distributions, which were determined
by analysing measurements of decays of the Z-boson into hadrons, as it was measured
by the DELPHI detector at LEP.
Furthermore, for each shower method, three tunes have to be performed, each of them
representing a di↵erent choice of longitudinal fragmentation function: the Lund symmet-
ric fragmentation function (1), the Lund symmetric fragmentation function for heavy
endpoint quarks, modified according to the Bowler space-time picture of string evolution
(2) and a variation of the latter, which makes it possible to interpolate between Bowler
and Lund separately for c and b quarks (3). The main goal of this work is to understand
the systematic tuning process and the issues that will inevitably come up. Therefore,
the first step is to try to reproduce the results of an established tune of the Pythia

shower method. The tune (3) was performed with and without consideration of photon
emission in the shower evolution and in the former case with and without consideration
of QED initial state radiation. In the following, I will show the tuning process for the
case (3) of the above-mentioned with the Pythia shower method and without any con-
siderations of photon emission exemplarily and afterwards summarise and compare the
results of the other tunes.
The first step of the tuning procedure is to produce envelope plots, which show the range
of the observables that can be calculated, based on the generated events, compared to
the reference data of the considered analysis. These plots represent an easy way to
check, if the scan ranges in parameter space are reasonable for the upcoming interpola-
tion. Two examples of the produced envelope plots are shown in Figure 1. The former
shows 1/Nd�/dpin? plotted against pin? , whereas the latter shows 1/Nd�/d(1�T ) plotted
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Figure 1: Envelope plots of pin? (a) and 1 � T (b). The labels of the y-axes are wrong.
It should be 1/Nd�/dpin? and 1/Nd�/d(1� T ) respectively.

against 1 � T . The cross section is �, pin? is the in-plane p? with respect to the plane
spanned by the major thrust and the minor thrust and T is the thrust. The plots use
the complete envelopes of all runs, since the confidence level is set to 100%. One can see
that concerning pin? the generator response envelopes the experimental data very well,
whereas the description of 1�T causes some problems for T ! 1/2. We can account for
these problems by assigning a higher weight to the 1� T observable, later on. This will
cause the Monte Carlo response in the problematic bins to be as close as possible to the
actual data. Now, we sample subsets of the total amount of parameter points. Each of
these subsets will be used for a distinct tune. By comparing the results of these tunes,
we will be able to tell if the amount of parameter points is big enough to secure good
statistics for our tune. The Professor system provides a way to randomly produce
these run combinations based on how many runs we want to use per combination.
The next step is the bin-by-bin interpolation of the observables that will be performed
for each of the run combinations. Even though a quadratic interpolation is su�cient in
almost any case [2], the Professor system also provides the possibility to perform a
cubic interpolation, but for now, we will stick to the quadratic polynomials. Doing both,
a quadratic and a cubic interpolation and comparing them afterwards is a good way to
validate the parametrisation. Although the observable weights only play a role in the
minimisation of the GoF function during the tuning process, it is already necessary to
specify them to the Professor system before the interpolation, since the weight zero
might be assigned to some of the observables and the generator responses that corre-
spond to these observables do not have to be parametrised. The assigned weights, which
were also used in reference [2], are displayed in Table 1.
After the interpolation, we produce sensitivity plots in order to justify the choice of ob-
servables to tune the parameters to. The sensitivity S

(O)

i of an observable to a parameter
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Observable Weight

pin? w.r.t. thrust axes 1
pout? w.r.t. thrust axes 1
pin? w.r.t. sphericity axes 1
pout? w.r.t. sphericity axes 1
Scaled momentum, xp = |p|/|p

beam

| 1
Log of scaled momentum, log(1/xp) 1
Mean pout? vs. xp 1
Mean p? vs. xp 1
1� Thrust 1
Thrust major, M 1
Thrust minor, m 1
Oblateness, M �m 1
Sphericity, S 1
Aplanarity, A 1
Planarity, P 1
C parameter 1
D parameter 1
Energy-energy correlation, EEC 1
Mean charged multiplicity 160

Table 1: Observable weights for the Q2 ordered shower.

pi can be defined as

S
(O)

i =
@MC(O)(p)

|MC(O)(pt)|+ ✏w
MC

|pt,i|+ ✏wpi

@pi
, (4)

where MC(O)(p) is the generator response to the parameter point p and pt is a typical
set of parameter values. The generator response MC(O)(pt) and @MC(O)(p) have to be
constructed via the interpolation of the generator response, since exact data might not
be available for the necessary parameter points. The ✏-terms have to be introduced
to work around the problematic cases MC(O)(pt) = 0 and @pi = 0 and are set to 1%
of the parameter range, whereas wpi is set to 80% of the parameter range and w

MC

is
constructed out of it [8]. The sensitivity plots of the two above-mentioned, exemplary
observables are shown in Figure 2. Like all the other observables that were considered
in the framework of this tune, our two examples have a high sensitivity with respect to
the strong coupling constant ↵

s,f

and lower but considerable sensitivities with respect to
the other tuning parameters.
Now, we can use the interpolation results to tune our parameters to the reference data.
The minimisation results of the tune are listed in Table 2.
There are several ways to visualize the tuning results. One of them is to look at com-
parison histograms, similar to the envelope plots listed above, but in this case only the
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(a) (b)

Figure 2: Sensitivity plots of pin? (a) and 1� T (b).

Parameter Tune

a 0.2
b 0.4
↵
s,f

0.143
rb 0.8
shower cut-o↵ 1.5
�q 0.33

Table 2: Results of the tune of the Pythia shower with the choice (3) of the longitudinal
fragmentation function and without any considerations of photon emission.

best fit result is compared to the reference data. The comparison plots of our two ex-
emplary observables are shown in the Figures 3a and 3b. One can see an acceptable
agreement and it is also evident that the method of assigning a higher weight to the
problematic observable 1 � T was successful as the error in the description of 1 � T is
now comparable to the one of pin?. The rest of the comparison histograms is listed in
the Appendix together with the comparison histogram of the corresponding tune of the
Whizard shower.
Another way to visualize the tuning results are scatter plots of the optimal parameter
values, that belong to the distinct run combinations, mentioned above. There is one
scatter plot for each tuning parameter, which shows the GoF measure �2 divided by
the number of degrees of freedom N

df

plotted against the optimal value parameter value
of each run combination. We hope to find a narrow scattering of the results, because
otherwise the plots would indicate, that the result is not sensitive to the tune parameters
or there is a systematic error in the procedure. The scatter plots of the considered tune
are shown in Figure 4. It also features the scan ranges to make it easier to get a feeling
for the scale of the resulting scattering. The plots show that quite a lot of the minimi-
sation results for the parameters a and b are located outside of the scan ranges and the
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Figure 3: Comparison plots of pin? (a) and 1� T (b).

scattering of the results of a and the shower cut-o↵ are rather large, which causes the
results to be less trustworthy. Because of this, it is advisable, to repeat the tune with
adapted scan ranges and more parameter points for the parametrisation.
Further, there is the possibility to perform a scan of the �2 function through parameter
space along a line that passes through the minimisation result. You can choose the
line to be oriented along the steepest or shallowest direction of the covariance matrix of
the minimisation result. The Professor tool would then generate equally distributed
parameter points along that line, for which the generator has to be run again. Then,
Professor calculates the �2 of these individual runs, which allows us to compare it to
our best-fit result. This gives us the possibility to check whether our estimation is close
to an actual minimum of the �2 function or if it is completely o↵.
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(a) (b)

(c) (d)

(e) (f)

Figure 4: Scatter plots of the parameters a (a), ↵
f,s

(b), b (c), rb (d), the shower cuto↵
(e) and �q (f).
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4 Comparisons and summary

Our first aim is to reproduce the tuning results which were achieved in Reference [2] with
the Pythia shower method, to be sure that everything concerning the tuning process
is understood well enough. These results are listed in Table 3.

Parameter Tune

a 0.5
b 0.6
↵
s,f

0.143
rb 0.67
shower cut-o↵ 1.65
�q 0.325

Table 3: Tune results of Reference [2].

Considering the uncertainties, that can be observed in Figure 4, the results of the tune
of the previous section are fitting well to the reference tune [2]. In the following sections
we want to investigate the e↵ects of several settings of our generator on the tune results.

4.1 Di↵erent longitudinal fragmentation functions

The tune results for the longitudinal fragmentation functions (1) and (2) look quali-
tatively similar to the tune that was previously discussed. But because of the large
scattering of the tune results of some parameters, and the fact that some of them lie
outside of the tune ranges, they have to be repeated with a larger amount of parameter
points and adapted sampling ranges to gain more confidence in the tune results.
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4.2 QED initial state radiation

Now, we execute a tune based on generator runs, which consider QED initial state ra-
diation. The results are listed in Table 4 and one can see, that they are rather close to
the results of Table 2.

Parameter Tune

a 0.3
b 0.4
↵
s,f

0.142
rb 0.7
shower cut-o↵ 1.5
�q 0.33

Table 4: Results of the tune of the Pythia shower with the choice (3) of the longitudinal
fragmentation function and with QED initial state radiation.

The corresponding result scatter plots are qualitatively identical with Figure 4. There-
fore, the QED initial state radiation does not seem to have any significant influence on
the tune.

4.3 Photon emissions included in the shower evolution, no QED

initial state radiation

The next step is to perform a tune without considering QED initial state radiation but
adding photon emissions in the shower evolution. The results of this tune are displayed
in Table 5.

Parameter Tune

a 0.3
b 0.4
↵
s,f

0.142
rb 0.7
shower cut-o↵ 1.5
�q 0.33

Table 5: Results of the tune of the Pythia shower with the choice (3) of the longitudinal
fragmentation function and considering photon emission, but without QED
initial state radiation.

Like before, the tune values are rather close to the ones shown in Table 2. The result
scatter plots also are qualitatively similar to Figure 4. We conclude that, within the
limits of the uncertainties of the tune, the inclusion of photon emissions in the shower
evolution does not a↵ect the results significantly.
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4.4 The e↵ect of the number of parameter points on the results

We will now examine a tune that takes into account 1000 instead of 100 parameter points
for the interpolation of the observable bins, to study the stability of the tune.
The resulting tune is displayed in table 6.

Parameter Tune

a 0.2
b 0.4
↵
s,f

0.142
rb 0.7
shower cut-o↵ 1.5
�q 0.33

Table 6: Results of the tune of the Pythia shower with the choice (3) of the longi-
tudinal fragmentation function and considering photon emission, but without
QED initial state radiation. About 1000 parameter points were used for the
interpolations.

The corresponding scatter plots are shown in Figure 5. It turns out that the scattering
is now more narrow and therefore it is advisable to also repeat the other tunes with a
larger amount of generator runs. The tune results that are shown in table 6 still agree
with the tune of reference [2]. However, we can still see, that some of the tune results
are located outside of the sampling ranges.
Based on the results, yielded by the considered tunes, it is not possible to decide, which
one fits the reference data the best. The reason for that is, that the scatter plots show
a large scattering of the GoF values of the best fit parameters between the di↵erent run
combinations compared to the di↵erence between the distinct tunes that were performed
for this paper.

The reproduction of the tune [2] was successful, but to get more confidence in the tune,
the issues that were mentioned, namely the fact that some of the tuning results are
located outside of the sampling ranges and that the scattering of the best fits is rather
large, remain to be resolved. One approach to solve this problem is to rerun the generator
with parameter ranges that are adapted to the results of the previous run. Furthermore,
we found that 100 runs do not seem to be su�cient for the tune in some cases, which is
why next time, N & 1000 runs should be used.
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(a) (b)

(c) (d)

(e) (f)

Figure 5: Scatter plots of the parameters a (a), ↵
f,s

(b), b (c), rb (d), the shower cuto↵
(e) and �q (f).
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4.5 Whizard tune

Now, we want to discuss the tunes that were performed for the Whizard shower. We
only consider the case without addition of photon emission to the shower evolution. The
results for the longitudinal fragmentation function (1) are shown in Table 7.

Parameter Tune

a 0.3
b 0.1
↵
s,f

0.103
rb 1
shower cut-o↵ 1.6
�q 0.38

Table 7: Results of the tune of the Whizard shower with the choice (1) of the longitu-
dinal fragmentation function.

The scatter plots are shown in Figure 6. The scattering is in general even larger than
it was observed in the Pythia tune and a lot of the results are located outside of
the sampling ranges. Therefore, the tune has to be repeated with a larger number of
parameter points and adapted sampling ranges.
The results for the longitudinal fragmentation functions (2) and (3) look qualitatively
the same. There is a large scattering and some results lie outside of the sampling ranges
and therefore the tune is untrustworthy. We conclude that the tunes have to be repeated
with more parameter points and adapted sampling ranges.
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(a) (b)

(c) (d)

(e) (f)

Figure 6: Scatter plots of the parameters a (a), ↵
f,s

(b), b (c), rb (d), the shower cuto↵
(e) and �q (f).

17



5 Appendix

5.1 Comparison plots

5.1.1 Pythia shower
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Figure 7: Comparison plots of pout? , w.r.t thrust axes (a), pin? w.r.t. sphericity axes (b),
pout? w.r.t. sphericity axes (c) and rapidity w.r.t thrust axes (d).
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Figure 8: Comparison plots of rapidity w.r.t. sphericity axes (a), xp (b), log(1/xp) (c),
mean pout? , w.r.t thrust axes vs. xp (d), mean p? vs. xp (e) and thrust major
M (f).
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Figure 9: Comparison plots of thrust minor m (a), oblateness M �m (b), sphericity S
(c), aplanarity A (d), planarity P (e) and the C parameter (f).
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Figure 10: Comparison plots of D parameter (a), heavy hemisphere masses (b), light
hemisphere masses (c), di↵erence in hemisphere masses (d), wide hemisphere
broadening (e) and narrow hemisphere broadening (f).
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Figure 11: Comparison plots of total (a) and di↵erence in hemisphere broadening (b),
di↵erential 3-jet rate with Durham (c) and with Jade algorithm (d), di↵er-
ential 4-jet rate with Durham (e) and with Jade algorithm (f).
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Figure 12: Comparison plots of di↵erential 5-jet rate with Durham algorithm (a), di↵er-
ential 5-jet rate with Jade algorithm (b), energy-energy correlation (c) and
asymmetry of the energy-energy correlation (d).
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Figure 13: Comparison plots of pout? , w.r.t thrust axes (a), pin? w.r.t. sphericity axes (b),
pout? w.r.t. sphericity axes (c) and rapidity w.r.t thrust axes (d).
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Figure 14: Comparison plots of rapidity w.r.t. sphericity axes (a), xp (b), log(1/xp) (c),
mean pout? , w.r.t thrust axes vs. xp (d), mean p? vs. xp (e) and thrust major
M (f).
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Figure 15: Comparison plots of thrust minor m (a), oblateness M �m (b), sphericity S
(c), aplanarity A (d), planarity P (e) and the C parameter (f).
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Figure 16: Comparison plots of D parameter (a), heavy hemisphere masses (b), light
hemisphere masses (c), di↵erence in hemisphere masses (d), wide hemisphere
broadening (e) and narrow hemisphere broadening (f).
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Figure 17: Comparison plots of total (a) and di↵erence in hemisphere broadening (b),
di↵erential 3-jet rate with Durham algorithm (c) and with Jade algorithm (d),
di↵erential 4-jet rate with Durham algorithm (e) and with Jade algorithm (f).
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Figure 18: Comparison plots of di↵erential 5-jet rate with Durham algorithm (a), di↵er-
ential 5-jet rate with Jade algorithm (b), energy-energy correlation (c) and
asymmetry of the energy-energy correlation.
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Figure 19: Comparison plots of pin? (a) and 1� T (b).
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