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The amplitudes and cross sections for higgs pair production to gluon fu-
sion are studied analytically and numerically to verify the usability of the
implemented code and to get a deeper understanding for splitting graphs,
which are needed to describe double parton interaction at small transverse
seperation.
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1. Introduction

The interaction between two hadrons at high energies is described by the parton model.
Here all partons, namely quarks and gluons, in the hadron are considered non interact-
ing. So every interaction between two partons is independent of the proton background
and the only non pertubative input is the probability to find a parton ¢ with a cetain mo-
mentum x,, described by parton distribution functions (PDFs), which were for example
measured at Hera (DESY) and are well known.

With the high energies reached by the LHC, more than one parton of one hadron can
have a hard interaction with a parton of the other hadron, producing particles with
large mass or transverse momentum. At small transverse separation this contributions
are double counted with loop level corrections to single parton scattering.

The purpose of my work was to study the amplitudes for gluon fusion into a higgs boson
pair at one loop level given in [5], analytically and numerically, to get deeper insight into
this contributions for double parton scattering (DPS).

In the first part the analytical structure of the imaginary part is studied and an analytical
expression for the small transverse momentum limit is given.

The second part focuses on the numerical evaluation of the transition amplitude. Nu-
merical stability is tested and the implementation is cross checked with the small quark
mass limit given in [4] and the limit for small transverse momentum is given.

2. Theory

2.1. Single and Double Parton Scattering

Making use of the 'Parton Model’ single parton scattering in hadron interactions can be
descibed via the formula

dZJsingle — —
W =F(2y) F(z1)0(21,74),

where F'(z,;) describe the single parton distribution functions (sPDF) and z,,z; the
momentum fractions of the scattering partons. Following this path and assuming fac-
torisation between the two hard scattering events in double parton scattering (DPS) one
arrives at the cross section formula

4 2 - 2 _
d O double . d 01 (.%'1,1'1)(1 %) <x27$2)

2 — —

dr,dz deodz,  ~ dwydig dr,di, / CYF (21,29, 9) F (21, 72,9).
Here F(z,,%4,y) describe double parton distributions (DPD) and can be interpreted
as the probability to find a pair of partons with momentum fraction x; and x5 and a
transverse separation y. xq,x, describe the momentum fractions of the partons in one
hadron and Z, %, the momentum fractions in the other hadron.

The DPD therefore have to include all non pertubative information of parton correlations
inside the proton and are generally not known. To obtain further results simple assump-
tions and approximations can be made. The simplest yields to the 'Pocket Formula’



(a) (b)

Figure 1: Graphical illustration for: a DPS and b DPS at small transverse momentum

for DPS, here it is assumed that the DPD factorises into two sPDF and a transverse
distribution function

F<xlax27y) ~ F($1>F($2)G(y>
Then the DPD cross section can be easily obtained by

4 2 - 2 -
d”o4ouble _ Qd o1 (21,7,) d70q (5, 75)

dr,dz,dzydz, o, dr,dz, dz,dz,

with o4 = 1/ [ d®bG(b) and C' an symmetry factor.

Although this simple approximation is in good agreement with experimental findings and
used in current analysis and background estimations (see i.e. [1]), this approximation
obviously has to break down at some point.

On the one hand the simple factorisation ansatz does not conserve momentum because
it has contributions from x; + z; > 1, on the other hand correlations between partons
can only be neglected for small momentum transfers z,;. Because of the sheer number
of sea quarks and gluons, correlations between two partons have to wash out here. For
a more detailed discussion see for example [3].

2.2. Double Counting Problem

At small transverse separation y the DPD is dominated by the splitting of one parton.
The short distance behaviour of this DPD are proportional to 1/y? and yield therefore
to UV divergent cross sections. This can be understood as a double counting of single
parton scattering at one loop level and DPS with splitting.

A possible solution to this problem is to subtract the double counted contributions. In
order to do this a good understanding of the loop contributions is necessary. Therefore
the next part of this paper focuses on the study of the results of [5] for gluon fusion into
a higgs boson pair. For further studies of DPS a large amount of the results can also be
applied to Z-boson pair production given in [4].



3. Analytical Studies

3.1. Mathematical Tools

To study the analytical expression of the amplitude in [5], the relation
In(y+ie)=In(ly|) +i0(—y)x (3.1)

for the branch cut is important.
Therefore the imaginary part of the dilogarithm

1
Liy (2) = — / =2t (3.2)

2t
0

becomes
Im (Liy (y +ie)) =70 (y — 1) In(y) . (3.3)

For further informations on polylogarithms see [2]. So the imaginary part of the ampli-
tude can be extracted analytically.

3.2. Explicit Imaginary Part

The imaginary part of every 3- and 4-point function can now be evaluated explicitly.
Following every imaginary part is given, the kinematic explanation can be found in B.
Mostly the definitions of [5] are used for kinematic variables, which are also summarised
in A. When other variables are used, they are defined in the text.

C(py,p2):
I 1 1
m (Clpy,p)) 1, (1> (3.4)
T S Z2
with
1 4m?2
g-g(refi-B) aeaeg 03
C(py,p3):
I 1
m (C(py,p3)) _ —In (Zl) (3.6)
™ t— mer <9
with
1 4m?2
Z1:2<1+ 1_m2q>’ Zg=1—-2 (3.7)
H



C(p4,ps) is obtained by exchanging t with w.

C<p37p4):
T s(1+a) Yo — 21 Yo — 21
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Im (D(p1:p3,P2)) _ (”’3+ _22) —ln( = ) ~In (—‘T) (3.9)
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Y24
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D(pq,ps,ps) is obtained by exchanging ¢ with w.

3.3. Small p,-Limit

In [4] the limits for small quark masses m, are given. In the following chapter the
limits for small transverse momentum p; and small quark mass m, are given and it
shown whether this two limits commute or not. The three-point functions C(p;,ps) and
C(p3,p4) do not depend on p;- and are therefore not considered.

1 m2 B s —2m?2, — sv
i lim D - | g 14+ 8 (2222 27
mlqgop;glo (P1,P3,D2) ma ( n (m%{) T o (s—2m%{+sv>)

H

2 1 2 2
+i7r<pT4+ S — 2+pﬂ) (3.11)

6smq smg  smy  Smy
Comparing with

dim m?2
lim lim D(pq,ps, =——In| 3.12
PO M0 (P1,P3,P2) sp%p (p%) ( )



shows that for the crossed box (see figure 2¢) the limits do not commute. This is due to
the dependence on the kinematic variables x,. The term

\/p%w—f-llmg
br

contained in them has obviously completely different limits depending on the succession.
Physically this corresponds to the poles of the propagators occurring at p = 0 for
massless particles, which can both be on shell. This is not possible for the gluon splitting
into two massive particles, resulting in an amplitude without logarithmic divergence.
The crossed box is the only term which has this property. The expressions for the other
functions are

li li =— 1
) lim Re (C(p1:ps)) P (3.13)
2my 2m;g mg 2
_In (o) [ (5) +m (5] + -
S — SU
= lim lim Re(C(py,p3)),
pr—0m —0
. . 27 mz
r}fgo plTHEO Im (C(p1,ps)) = \/W o m2; (3.14)
s—sy1——

= Jimg W{lqlgo Im (C(py,p3)) -
For the straight box D(py, pa, p3) the series in pr and m,, do also commute, because the
only dependence on m, and pr is the kinematic variable Y, which is only dependent on
the product mg - p%, the Mandelstam variables, which have a finite limits for pp — 0
and term like m?2/u(t), for which the limits also commute.

This is also verified in the section 4.2 where the implementation for the m limit gives
good results even for vanishing p.

4. Numerical Studies

4.1. Numerical Stability

To check the usability of the implemented code, it is important to study the numeri-
cal stability, because a number of term in the formulas in [5] can encounter numerical
problems.

To study the stability the 3- and 4-point function were plotted against the ratio :;—25.

H
For this study ng = 10! was chosen and two quark masses were tested. The plots for

the quark mass (2mq /m H)2 = 1072 are shown in figures 3a to 5b and for the smaller



Figure 2: a and b: straight box diagrams; c: crossed box diagram

quark mass (2mq/mH)2 = 10~* are shown in figures 6a to 8b. The scale 4m3/m%{ was
chosen, because many variables and the amplitude itself depends mostly on 4m3, not
only on the factor mg. 4m3 can be understood as the invariant mass of two quarks after
the splitting of a gluon and therefore sets the important scale of this problem.

One can see that the evaluation at p; = 0 is not possible numerically. However it is
possible to go as close to this as desired without numerical problems. First, the end of
the plots at low p; is due to the spacing chosen in p,. Second, ever 3- and 4-point
function saturates for small p and a linear interpolation is possible.

Because the 3- and 4-point functions do not have numerical problems, gauge; is also
well behaved. There is only one term in the amplitude gauge, that is proportional to
1/p2. and can therefore impose problems. For the numerical evaluation factors of mﬁ,
which correspond to the higgs coupling to the quarks in the loop, have been normalized
to unity. To study the numerical stability gauges is divided in an regular term

gauges reqg = 4 (87712 +s— Qm%) (mﬁ [D(p1,p2,p3) + D(pa, p1,p3) + D(py,03,02)]

—C(ps,pq)) —4 [SC(pl,pg) +(t— m%{) C(py1,p3) + (u— m%,) C(FQ»P(:%)] )
4.1

and an irregular term

2
gaugeQ,ireg = piQ (SU (8“7”3 - u2 - mf[l{) D(p17p27p3)
T

+ st (Stmg -2 — m%;) D(ps,p1,p3)
+ <8m(21 +s— Zm%{) (s(s —2m3)C(py,p2)

+ 5(s — 4m3)C(p, pa) + 263 — )C(py, p3) + 2u(m3; — u)C(pa, p3) ).
(4.2)

As one can see in figures 5b and 8b gauges ;,.., shows oscillating behaviour for
P —4
e < 10~* (large quark mass) and

2T <1073 (small quark mass)
mi



because of the division through pZ.

But also in this case it is possible to get close enough to small p, values to see the
saturating effect and extrapolate the behaviour. In section 4.2 it is also shown that this
part of gauge, can also be well approximated for small quark masses.

Thus numerical stability is under good control for the evaluation of these amplitudes.
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4.2. Cross Check with m -Expansion

In this section the implementation of the amplitude is compared with the low m -expansion
found in [4]. Because in section 3.3 it was shown that the expansions in m, and py do
not commute for the crossed box diagram D(pq,ps,ps), the parts of gauge; with con-
tributions from the crossed box are studied separately. For this purpose

gaugey good = 4m2 (87”3 — S Qm%{) (D(p1,p2,p3) + D(p2,p1,P3))
+ 8 + 16m30(p1,p2)

+ § (m3y —4m3) [(t —m3) C(py1,p3) + (u —m3;) Cpa, ps)]
(4.3)

and

gaugey poq = 4m(21 (Smg —5— 2m%{) D(py,p3,p2)
ut —m$

s = (4m3 - m%{) D(py,p3,P2) (4.4)
are introduced. The results for two different quark masses are shown in figures 9 to 16.

Gauge, is split up in his regular and irregular part, because of numerical stability and

because only the irregular part contains contributions from the crossed box.

One can see that the m -expansion does yield to good results for gauge; ;4045 9AUGES ire g
and the real parts of gauge; 3,4 and gauge, ,.. , only the imaginary part of the crossed

box is approximated poorly which leads to seizable deviations in the imaginary parts of

gaugeq pqq and gauges .. ,. This can be explained by the not commutating of the limits

shown in 3.3. Because the crossed box only appears with a factor of mg the implications

on the real part are negligible, but the term proportional to # and # leads to seizable
q q

deviations even multiplied by mg.

Another feature of the m -expansion is the fact that the amplitudes gauge; and gauge,
do not depend on m, any more. This was also tested by comparing the amplitudes at
the small quark mass versus m, set to s. The deviations were of the order 1072 and
therefore negligible, verifying this property.

Also the imaginary part of gauge; in the small m -limit should be dominated by the
logarithmic divergence in the transverse momentum, corresponding to the double parton
singularity. This can be seen in figure 17, where the exact, the m -limit and the leading
term in the m-limit for the imaginary part of gauge; are plotted. One can see that
over a large range of pp the leading term describes the m -limit very well.
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4.3. Cross Check with p,-Expansion

To show the validity of the pp-series for the crossed box given in 3.3 the exact result,
the m -series and the pp-series are shown for the larger quark mass in figure 18a and for
smaller quark mass in figure 18b. One can see that the pp-series gets better with higher
quark masses and describes the crossed box very well in the region where the m -series
cannot describe the exact result.
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Figure 17: Exact, m -limits and leading term of Im(gauge, )
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4.4. Results

After getting a better analytical understanding and validating the numerical result for
the amplitude, the quark mass dependence of the cross section is analysed by evaluating

2 2
lgauge,|” + [gauges|”

which is proportional to the differential cross section [5]. To avoid the numerical insta-
bility of gauges ;,.., the m-series was used for this term, which only leads to small
deviations shown in 4.2. The results are shown in figure 19.

The maximum cross section is always at pp # 0 and is shifted to higher values of p
as m, grows. However the cross section for small transverse momentum increases with
decreasing m, which is natural, because one expects a collinear, logarithmic divergence
at pp = m, = 0. This can also be seen in the linear dependence after the maximum.
The quark mass regulates therefore the logarithmic divergence.
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Figure 19: |gauge, |? + |gauges|? for different quark masses

5. Conclusion

It was shown that the imaginary part of every 3- and 4-point function can be extracted
analytically for higgs boson pair production via gluon fusion. Furthermore it was shown
that the limits for small quark masses and small transverse momentum do not commute
for the crossed box and that one has to be very careful what approximations can be
made in the kinematic region. Also the code implemented to compute the amplitudes
was cross checked with both limits, providing a good verification.

The next step is to integrate the squared amplitude over phase space to get the total
cross section of this process.

In a further study this functions can also be used to evaluate Z boson pair production
via gluon fusion described in [4], which helicity amplitudes depend on the same 3- and
4- point functions.
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A. Kinematic Variables

4 2
a=1-— (1+ 1—mH), (A1)
2me; S
2
! , o
pu— A.2
Yo a+1’ Yo a2 —1 (A.2)
2 2
1 \/Pr +4mg ut —m3
— 14y - 2 — H A3
xi 9 & pT ) pT S ( )
U 4m?
= =—/1—-—£ A4
/81 m%[ —u v S ’ ( )
1 | 4mZp7
ﬂ2:§(1+v) Y = —suy/1+ qu , (A.5)
—u+ X —m2, +mZv—uv+ ¥
Y1+ = 82 ) Yor = 2 IQ_I . (AG)
2(u—m%) 2u —2m3; + 5 — sv
B. Evaluation of the Imaginary Part
To check if
. Yo . (Yo —1
I b =L —L B.1
1 (%) 2 <y0—2> 2 (?Jo_z>7 (B.1)
=(1) =(i1)
with z = —b_aﬁ has a non vanishing imaginary part, one has to check if the real part of

the argument is bigger than one. To do so the following information on the kinematic

variables are necessary

S_ mg) (1—cos2 (0)) € {0, Z - m?q]

uz—%(l—vcos(@))%—m%{ < —m%
t:—g(l—&-vcos(e))—i—m%{ < —m%
p2 = ut—m‘}_l _ (s
aT S 4
a+1 <1
2
042a 1 > 1

Y 2
;:—u\/1—|—4mgi—g:—u (1—1—2m

in leading order in mg. Moreover
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u su su

With this information it is possible to extract if a dilogarithm gets an imaginary part,
the results are shown in table 1.
The results for the

. Yo . Yo — 1 . Yo . Yo — 1
I, (a,b,yy) = Li ( )—Ll ( )—l—Ll < )—Ll ()
2 ( o) 2 Yo — 21 2 Yo — 21 2 Yo — 22 2 Yo — 22

=(1) ~(I1) —(I11) —(IV)

functions, with z; = % (1 +4/1— 4’1?5) and z, = 1 — 2z, are given in table 2.
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Table 1: Summary which term in D(pq, py, ps) leads to an imaginary part. v' stands for
a non-vanishing and x for a vanishing imaginary part.

| () | (D) | (I1) | (1V)
X
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I2(mgau7 _y1+//81)
‘[2<m(21’u7 —Y1-/B1)
I2(m3757/82 +y2+)
12(m338762 +y27>
I2(m37m%{792+/(1 _62»
IQ(mgvm%IaZ/Q—/(l _62»
Ig(mg,m%[,—y%/,@)
I2(m3ﬂm%{7_y27/182)

XIX NI X NN X XSS
XIX|INIX NN X XN S
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Table 2: Summary which term in D(pq, ps, ps) leads to an imaginary part. v stands for
a non-vanishing and x for a vanishing imaginary part.
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