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Abstract

The hard function for gluon fusion Higgs production is extended to N3LO in an
effective one-step matching scheme. Using renormalization group evolution, the con-
vergence of its perturbative series is investigated for different choices of the hard scale
µH . The prescription µH = � imH of ⇡2-resummation is found to be a natural choice,
yielding the fastest convergence. Alternative matching schemes are compared to the
one employed. Extending ⇡2-resummation to most recent N3LO results for the total
cross section, improved estimates for perturbative uncertainties are obtained. For
the Drell-Yan process, ⇡2-resummation of the hard function is observed to slightly
improve its convergence.
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1. Introduction

1. Introduction

With the launch of Run II at the LHC, the properties of the newly discovered Higgs-
like particle [1, 2] are bound to become ever more precisely determined in experiment.
Eventually, the ball will be back in the court of the theorists: In the quest for new
physics, they are challenged to state what the Standard Model actually says about
the properties of the Higgs accessible to experiment. This is by far not an easy
task. The means currently employed to study the innermost “hard” interactions at
the heart of hadron collisions – perturbation theory – are notoriously plagued by the
bad convergence of the perturbative series obtained, mostly due to large logarithms
of scales that intrinsically arise in processes involving multiple scales.

The key approach to resolving this problem is resummation: Consider some ob-
servable X (e. g. a cross section), given by a perturbative series in the strong coupling
constant ↵s,

X = 1 + ↵s (x+ y1) + ↵2
s

✓
x2

2

+ xy1 + y2

◆
+ . . . .

Now assume that some term x is known to appear in a fixed pattern at every order in
perturbation theory – and also known to spoil the convergence of X. Resummation
offers a remedy, by noting that X is nothing but

X = e

↵sx+... Y , Y = 1 + ↵sy1 + ↵2
sy2 + . . . ,

and Y may now be a series converging very neatly. In realistic examples, how-
ever, identifying the pattern becomes the major obstacle. As has been observed
earlier [3], the “culprit” x in our case of gluon fusion Higgs production are logarithms
4CA ln

2
(� imH/µ) ⇡ CA⇡

2, where µ ⇡ mH is the renormalization scale. In order
to correctly extract the perpetrating terms, effective field theories come into play:
They identify parts of the interaction as operators that possess an explicit depen-
dence on µ, something the renormalized Standard Model no longer contains traces
of. What seems like a step backwards, can be turned into a virtue: By solving the
renormalization-group (RG) equations of the effective operators in closed form,1 the
large logarithms can be evaluated at a more convenient scale (say, µH = � imH)
and only afterwards evolved back to the “target” scale µ by the RG flow; the latter
corresponds to exp(↵sx+ . . . ) in the above example. From the aforementioned terms
/ ⇡2, dominant among the ones resummed, this resummation method has come to
be known as “⇡2-resummation” [4].

The aim of this analysis will be to apply ⇡2-resummation to the most recent N3LO
results in perturbative QCD for the total gg ! H cross section [5]. The report is
structured as follows: Some general remarks are made on effective field theories in
section 1.1 and soft-collinear effective theory as a particularly important example

1Or, rather, of the “matching coefficients” that relate them to the interaction terms of the full
model.
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1.1. Effective field theories

in section 1.2. The ingredients needed for the later calculations are presented in
section 2. Also given there are references to the more recent theoretical computations
that allow for extending the approach of [3] to N3LO in the first place. We compare
our matching scheme to the schemes of [6] and [7] in section 4 and proceed to present
our results for the total cross section in section 5. In section 6, ⇡2-resummation for
the Drell-Yan process at N3LO is briefly discussed, extending again considerations
by the authors of [3] at NNLO. We conclude in section 7.

1.1. Effective field theories

Top-down effective field theories (EFTs) are centered around the idea of removing
heavy degrees of a freedom from a full model to simplify it.2 To this end, the full
Lagrangian is expanded in terms of a suitable smallness parameter �,

Lfull =
X

n

L(n)
eff , L(n)

eff / �n . (1.1)

Often, the expansion will only include the leading term and neglect even the first
power-suppressed term O(�). A famous example is Fermi theory: Here, the smallness
parameter is the inverse � = 1/mW,Z of the vector boson masses.3 The leading
interaction term L(0)

int reproduces the well-known four-point interaction of fermions,
as can be expected from approximating s � m2

W ⇡ �m2
W in the W -propagator of

the tree-level diagram in fig. 1. More formally, the vector boson degrees of freedom
can be integrated out explicitly in the functional integral or eliminated from the
Lagrangian directly by means of their equation of motion.

The complexity of the problem increases when loops are admitted: Since it con-
tains an interaction Hamiltonian having mass dimension six, Fermi theory will never
be renormalizable in the traditional sense of introducing a finite set of regulator-
dependent parameters, thereby canceling all divergencies to all orders. (This just
comes to illustrate that the effective theory can not be trusted in the UV-limit. The
same will be the case in the examples of EFTs considered later on.) However, the
effective operator L(0)

int may still be renormalized by a finite set of parameters Zeff
such that divergencies cancel up to a given order in perturbation theory. As usual,
the respective renormalization factor will cancel the dependence of the bare opera-
tor on any regulators; yet, the renormalized operator inherits a dependence on the
renormalization scale µ from its renormalization factor.

Having renormalized the full model to all orders and the EFT as desired, we are
then enabled to match the two: By computing the same amplitudes in both theories
and requiring that they are equal, we can determine the missing factor C between

2This short introduction is entirely owed to the lecture notes by Stewart [8].
3For a dimensionful parameter �, “smallness” and omitting the power-suppressed terms are only

justified a posteriori when computing amplitudes at center of mass energies
p
s ⌧ mW,Z . In

later examples, � will be dimensionless.
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1.2. Soft-collinear effective theory
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Figure 1: The matching necessary between the Standard Model and Fermi theory, at
the example of b-decay (no particular kinematics implied). Note that the matching
coefficient(s) C will receive corrections e.g. from QCD loop diagrams in both models at
higher orders.

the full and the effective operator, called “Wilson” or “matching coefficient”. This
will only at tree-level be a trivial constant, as in the case of the diagrams in fig. 1: At
higher orders, the Wilson coefficient will rather be an involved perturbative series in
couplings giving rise to loops, usually ↵s of QCD. It is of particular importance to our
application that C will in fact be C(µ), canceling the µ-dependence of the effective
field theory matrix element to yield the µ-independent full theory amplitude. If C
satisfies an RG equation

µ
d

dµ
C(µ) = �C(µ) C(µ) ,

the solution in closed form reads

C(µ) = C(µH) UC(µH , µ) , UC = exp

Z µ

µH

dµ0

µ0 �C(µ
0
)

�
.

As hinted at in the introduction, this will enable us to evaluate C(µH) at a “natural”
scale µH leading to an improved convergence. Afterwards, U will be employed to
bridge the gap to the original scale µ, resumming as an exponential the offending
terms in the perturbative series of C(µ).

1.2. Soft-collinear effective theory

Soft-collinear effective theory (SCET) is a rather peculiar EFT, as it does not involve
integrating out an entire particle: Rather, the degrees of freedom present in QCD –
gauge and quark fields – are split into sets of modes, according to their momentum
components in different directions.4 While originally developed to study the decay
of heavy into light quarks [10], SCET soon came to be used for hadron-hadron
collisions and jet physics, too. In all of these applications, light cone coordinates are
introduced: Consider two light-like unit vectors

n2
= 0 , n̄2

= 0 , n · n̄ = 2 .

In hadron-hadron collisions, these may be aligned with the directions of the incoming
hadrons; for a given number of final state jets, we may even choose one set of light-
cone coordinates ni, n̄i aligned along each jet direction. Any momentum p can then

4This section again draws on the very informative lecture notes by Stewart [9].
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1.2. Soft-collinear effective theory

uniquely be decomposed into

p =

�
p+, p�, ~p?

�
,

where p+ = n·p, p� = n̄·p and ~p? is the remaining Euclidean momentum. All modes
in the theory can now be characterized by the scaling of their components: In the
example of a final state jet, we could define a smallness parameter � = �/Q, where
Q is the energy of one of the collimated particles in the jet and � ⌧ Q measures
the slight transverse deviation of its momentum from the jet direction. In short, this
“collinear” scaling law reads

pcollinear / Q
�
�2, 1,�

�
.

Note that � is a generic parameter that can not be given an exact definition – in
particular, the meaning given to it will depend on the process that SCET is applied
to. On the other hand, modes with a homogeneous scaling in all components are
called (ultra-)soft,5

psoft / Q (�,�,�) , pultrasoft / Q
�
�2,�2,�2

�
.

Finally, modes with an invariant mass (read: large off-shellness) / Q2 are deemed
“hard” – we can not expect to observe them in a final state. It is precisely these
modes with large virtualitiy in intermediate states that fall prey to the process of
integrating out, just as the vector bosons of electroweak theory did not make it
into Fermi theory. The remaining degrees of freedom in SCET then are collinear and
(ultra-)soft quark and gluon fields, respectively; to preserve gauge invariance of these
remaining degrees of freedom order by order in �, the fermion fields are dressed with
Wilson lines.

To illustrate the concepts of SCET (and do some conceptional groundwork for
the main part of the analysis), we outline the steps of one example of a matching
calculation, skipping any derivation of the SCET-Lagrangian and all Feynman rules.
Consider the Drell-Yan process in hadron collisions,6 having at its core the hard
interaction qq̄ ! Z/�⇤ ! `+`�. The tree-level matching between full QCD and
SCET is trivial: In both theories, the relevant qq̄ ! Z/�⇤ part of the interaction
simply is a fermion chain with some vertex Dirac structure � in between. Of course,
finding the matching coefficient C relating the two operators at NLO is more involved
(fig. 2, from left to right): In full QCD, a diagram containing an additional gluon
line between the external quark enters; in SCET, two discernible contributions arise.
In one case, the initial state quarks (collinear to either n or n̄) exchange an ultrasoft
gluon before entering the electroweak interaction. The second diagram originates

5This seemingly subtle distinction carries through all the way into theories constructed on the
basis of one of the two cases: Ultrasoft modes (SCET I) have an invariant mass squared scaling
as / �4 and therefore can be distinguished from collinear modes / �2 by their invariant mass
in mass-independent regularization. Soft modes (SCET II), however, also possess an invariant
mass scaling as �2 and can become collinear after a simple boost, making them exponentially
harder to disentangle.

6In [9], the equivalent example of e+e� ! 2 jets is presented in far more detail.
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1.2. Soft-collinear effective theory

�

�!
�

+ 2 ⇥
�

Figure 2: Diagrams required in the NLO matching for the Drell-Yan process. The QCD
diagram on the l. h. s. upon renormalization essentially gives the quark form factor; in
SCET, the exchange of an ultrasoft gluon (in green) and the contraction of one collinear
Wilson line with the respective other collinear quark (all depicted in blue) have to be
considered. See the text for more detail.

from the O(↵s) expansion of the collinear Wilson lines: Since the emission of a
collinear gluon in the opposite direction pushes the emitting quark far off shell, the
gluon in SCET can be considered as emitted from the electroweak vertex directly;
interchanging “emitter” and “receiver” yields an identical contribution from the mirror
diagram.

When actually evaluating the diagrams, a slight twist comes about, depending on
the choice of regulators. In a first scenario, we may choose some off-shellness p2 of
the outer quark legs to regulate IR- and " = (D� 4)/2 to regulate UV-divergencies.
As is well known, the QCD diagram – being essentially the quark form factor –
will still be IR-divergent after wave function renormalization cancels the pole in ".
SCET reproduces precisely the same divergencies in p2, as expected – it contains the
same collinear and soft modes that lead to the IR-divergency in QCD. The matching
coefficient C will therefore be IR-finite. However, the SCET amplitude will contain
additional "-poles. In the spirit of section 1.1, these are removed by a multiplicative
renormalization term ZC for the SCET operator, making C also finite in ", but
dependent on the renormalization scale µ.

In a second case, we may instead opt for pure dimensional regularization, with
an obvious computational advantage: Both SCET diagrams vanish, leaving behind
only one O(↵s)-contribution from the SCET wave function renormalization. Yet, the
IR-divergence of the QCD diagram is now encoded in "-poles: To cancel these and
obtain a finite matching coefficient C, the same multiplicative renormalization by
ZC as above will have to be applied. Note that this means that in MS, we are forced
to reinterpret IR-divergencies of QCD as UV-divergencies of SCET (otherwise we
would not be able to remove them by renormalization), with powerful implications:
The anomalous dimension in the RG evolution of C and the finite terms in C may
be predicted entirely from calculations in pure QCD, either from the IR-poles or the
IR-finite terms. By exploiting these relations, the authors of [11] are able to convert
their dedicated N3LO computations of form factors in QCD into N3LO results for
SCET matching coefficients – results that will repeatedly be used in this analysis.
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2. Ingredients of the gg ! H hard function at N3LO

2. Ingredients of the gg ! H hard function at N3LO

In the following section, we present the ingredients needed to compute the hard
function for gluon fusion Higgs production at N3LO. The hard function encodes
information on virtual contributions to gg ! H which are “hard” in the sense that
they arise from quantum fluctuations in modes & mH . For the purpose of this
analysis, we consider these quantum fluctuations to have two distinct origins: One
is the virtual t-quark running in the famous “top triangle” loop that only allows
for gluon-gluon-Higgs interaction in the first place, also including – at the order in
perturbative QCD we require – the exchange of colored particles within the loop and
between the top and the incoming gluons. The characteristic scale of these dynamics
is the top mass mt. The second origin of virtual corrections is the exchange of hard
(⇡ mH) color-carrying modes between the incoming gluons only. Here, the implicit
assumption is that the top quark is sufficiently heavy to justify the separation of
scales: We formally require mt � mH .

The distinction between two different hard contributions is reflected in the formal
makeup of the hard function we employ. As in ref. [7], we define the hard function
by means of an effective field theory matching coefficient CggH at a renormalization
scale µ,

H(q2;µ) =
��CggH(q2;µ)

��2 (2.1)

where the invariant mass q2 of the Higgs boson (and thus of the WW or photon
pair in viable final states) is always assumed to be q2 = m2

H for an on shell Higgs in
the narrow width approximation. Conforming again with [7], the Wilson coefficient
CggH matches the full Standard Model interactions onto an effective Hamiltonian for
the coupling between the Higgs field H and the collinear gluon field. The latter is
the SCET degree of freedom relevant to our analysis after all of the aforementioned
hard modes have been integrated out. However, in staying true to our assumption
of two distinct types of hard fluctuations, the hard modes are integrated out in two
steps, as in the framework of [6]: In a first step, the full model with nf = 6 quark
flavors is matched onto a nf = 5 model including an effective ggH-vertex. The
Wilson coefficient Ct relating the two interaction terms is introduced in section 2.1,
while fig. 3 illustrates the matching step. Note that we do not include the overall
factor of ↵s from the gluon-quark vertices of the “top-triangle” into Ct. In a second
step performed in section 2.2, we match the remaining interaction term onto the
effective Hamiltonian in SCET via another Wilson coefficient CH . Both sections
essentially extend the NNLO results of [6] to the next order, either relying on the
renormalization-group properties of Ct or on recent N3LO results for CH from the
literature. The total matching coefficient then factorizes into

CggH(m2
H ,m2

t ;µ) = ↵s(µ) Ct(m
2
t ;µ) CH(m2

H ;µ) . (2.2)

Its RG evolution is discussed in section 2.3; comments on the choice of evaluating
both Wilson coefficients in (2.2) at the same scale µ will be deferred to section 4.
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2.1. The top matching coefficient

t

H �! H

↵sCt

Figure 3: The “top triangle” loop diagram and the effective theory diagram it is matched
on to compute Ct. A two-loop contribution at NLO in perturbative QCD is shown in
blue.

2.1. The top matching coefficient

Following the path of [6], the Wilson coefficient Ct of the first step discussed above
is obtained by matching the nf = 6 Standard Model onto an effective interaction
Hamiltonian

Hnf=5
eff = �Ct(m

2
t ;µ)

H

v

↵s(µ)

12⇡
Gµ⌫,aG

µ⌫
a . (2.3)

Here, v = (

p
2GF )

�1/2 ⇡ 246GeV is the Higgs vacuum expectation value, mt is
the top pole mass and Gµ⌫,a still is the full QCD gluon field strength. Since the
renormalized Standard Model interaction term on an imagined “left hand side” of
(2.3) must be independent of the renormalization scale µ, Ct must precisely cancel
the µ-dependence of the mass dimension five operator to its right (including the
overall factor of ↵s). The resulting renormalization-group equation reads [6]

µ
d

dµ
Ct = �tCt , �t(↵s) = ↵2

s

d

d↵s

�(↵s)

↵s
(2.4)

when expressed in terms of the nf = 5 running coupling and its �-function.7 Casting
the anomalous dimension �t in the form (A.2) leaves

�t =
1X

n=0

�tn

⇣↵s

4⇡

⌘n+1
, �tn = �2n · �n . (2.5)

Setting out from (2.4), the fixed order expansion of Ct can readily be predicted to a
great extent: In appendix B, this is done for a more generic Wilson coefficient. Noting
that the anomalous dimension of (2.4) contains no direct logarithmic dependence on
the scale, the top matching coefficient at hand is one of the easiest applications of

7Unless stated otherwise, the strong coupling constant always undergoes three-loop running in
this analysis, assuming nf = 5 quark flavors. Wherever numerical values are displayed, the
boundary condition ↵s(mZ) = 0.117 is employed, consistent with the choice of [5].
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2.2. The SCET hard matching coefficient

the general N3LO expansion in (B.5):

Ct(m
2
t ;µ) = 1 +

↵s(µ)

4⇡
d
(1)
t +

✓
↵s(µ)

4⇡

◆2 h
Lt

⇣
�1 � �0d

(1)
t

⌘
+ d

(2)
t

i

+

✓
↵s(µ)

4⇡

◆3 h
L2
t

⇣
�2
0d

(1)
t � �0�1

⌘
+ 2Lt

⇣
�2 � �0d

(2)
t

⌘
+ d

(3)
t

i
,

(2.6)

where Lt := ln(m2
t /µ

2
) and the constant terms at Lt = 0 through NNLO can be read

off from the results in [6]:

d
(1)
t = 5CA � 3CF ,

d
(2)
t =

27

2

C2
F � 100

3

CACF +

1063

36

C2
A � 4

3

CFTF

� 5

6

CATF � 5CFTFnf � 47

9

CATFnf

The only piece lacking in (2.6) therefore is the constant term d
(3)
t at N3LO. Unfortu-

nately, results for the N3LO contribution to Ct are currently only available in terms
of the MS top mass and the nf = 6 running coupling [12, 13]. If the numerical value
of the constant terms in the results cited (accounting for the decoupling relations in
the same references) can be trusted as an indicator for the size of d(3)t , a numerical
estimate gives |d(3)t | ⇡ 300. This would turn out to be small when compared to the
constant contributions of CH , d(3)H ⇡ �4065.52 at the same order. It is also small
compared to the scale-dependent N3LO terms / L,L2 in (2.6) when µ is set to an
imaginary scale. We set d

(3)
t = 0 in the following but suggest correctly converting

the pole mass results for future investigations at N3LO.

2.2. The SCET hard matching coefficient

In a second step, we match the effective theory with nf = 5 from the preceding
section onto SCET by means of another matching coefficient CH . Following the
notation of [7], the required matching reads

�Gµ⌫,aG
µ⌫
a = CH(q2;µ) q2gµ⌫ Bµ,c

? B⌫,c
? . (2.7)

In the above, Bc is the collinear gluon field, being the sole relevant SCET degree
of freedom for our purposes, assuming that all collinear and soft real radiation has
been factorized into the so-called beam and soft functions [7]. The hard matching
coefficient CH satisfies the RG equation [6]

µ
d

dµ
CH =


�

A
(↵s) ln

�m2
H � i0

µ2
+ �H

�
CH , (2.8)

where �H is called the “non-cusp” and �

A the “cusp” anomalous dimension. Both
have perturbative expansions of the form (A.2) known analytically up to three-loop.8

8Sources cited for the coefficients are compiled in a table in appendix A.
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2.3. Renormalization-group evolution and ⇡2-resummation

While the former is process-dependent, the latter has so far been observed to be
universal for the hard matching coefficients of color-singlet production up to an
overall color factor (“Casimir scaling”).

As hinted at in the introduction, all necessary information about CH can be re-
trieved from calculations of the gluon form factor in pure QCD: The fixed order
expansion of CH is just the IR-finite part of the renormalized gluon form factor,
while the latter’s remaining IR-divergencies return the anomalous dimensions enter-
ing the RG evolution (2.8) of CH .9 For the following computations, we rely on the
full fixed order expansion of CH obtained by the authors of [11]. However, we restrict
ourselves to implementing their constants terms at L = 0 and for the remainder of
the polynomial expressions C

(n)
H (L) in

CH(m2
H ;µ) = 1 +

1X

n=1

✓
↵s(µ)

4⇡

◆n

C
(n)
H (L) , L :

= ln

�m2
H � i0

µ2
(2.9)

make recourse to the general expansion in terms of the anomalous dimensions de-
rived in appendix B. Here, a twofold advantage of the very generic expression (B.5)
becomes apparent: On a more practical side, it greatly reduces the effort of imple-
menting a N3LO Wilson coefficient in numerical computations. Conceptionally, it
makes explicit the connection between coefficients in front of potentially large powers
of logarithms Lm and anomalous dimensions in the very same RGE that is employed
to resum them. As an example, �A controls “Sudakov logarithms” in a rather obvious
sense: Wherever a term ↵n

sL
m,m > n arises in the full expansion (2.9), it receives a

prefactor of (�A
0 )

m�n.

2.3. Renormalization-group evolution and ⇡2-resummation

The relation µ(d↵s/ dµ) = �(↵s) and the RG equations (2.4), (2.8) can be combined
into

µ
d

dµ
CggH =

⇥
�

A · L+ �ggH
⇤
CggH , �ggH = �H + �t +

�

↵s
. (2.10)

As is well established, the above RG equation is solved by

CggH(µ) = exp [L(µH) · ⌘�,A(µH , µ)� 2K�,A(µH , µ) +K�,ggH(µH , µ)]

⇥ CggH(µH) , (2.11)

9On a more subtle note, CH at higher orders also receives cross-terms between the subleading terms
O("n), n > 0 in the form factors and the "-poles contained in the multiplicative renormalization
factor. It is therefore crucial to compute the form factors to a sufficiently high order in ".
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3. ⇡2-Resummed results for the gg ! H hard function

where the functions ⌘�, K� and K� are defined as10

⌘� =

Z µ

µH

dµ0

µ0 �(↵s(µ
0
)) , K� =

Z µ

µH

dµ0

µ0 �(↵s(µ
0
)) ln

✓
µ0

µH

◆
,

K� =

Z µ

µH

dµ0

µ0 �(↵s(µ
0
)) . (2.12)

The pivotal point of ⇡2-resummation now is to analytically continue the r. h. s. of
(2.11) as a function of µH into the complex plane, noting that the l. h. s. remains
unchanged, and to evaluate it at the scale µH yielding the best perturbative con-
vergence of CggH(µH). This also requires us to analytically continue the running
coupling into the complex plane [6]. For all practical considerations, we turn to the
hard function (2.1): After evaluating all the factors of CggH at µH , squaring them
separately and reexpanding the product in ↵s(µH), the resulting hard function can
be RG evolved as

H(m2
H ,m2

t ;µ) = H(m2
H ,m2

t ;µH) UH(µH , µ) , (2.13)

where UH is the absolute value squared of the exponential in (2.11). Figure 6 (a)
shows the procedure and the scales involved.

3. ⇡2-Resummed results for the gg ! H hard function

After the previous section has set the stage, we are enabled to investigate the be-
haviour of the RG evolved hard function for different choices of the hard scale µH

and the real-valued “target” scale µ. Traditionally, µH = µ is set and µ is chosen
such as to partially minimize higher order corrections. We generalize this approach
by adding an additional phase ' 2 [0, 3⇡/4] to µH :

µH = µ e

� i' (3.1)

Note that we still adhere to |µH | = µ: While our framework would easily allow for
simultaneous variation of |µH | and ', we restrict ourselves to varying the latter to
isolate its effects on the perturbative convergence. The relevant values of µ are mH/2
and mH , the same that the authors of [5] focus on.

Figure 4 displays our numerical results for the RG evolved gg ! H hard function
Hres :

= H(µH) UH(µH , µ). Here – as for all following numerical output – we set
mt = 173.5GeV and mH = 125GeV. We vary both the phase ' and the fixed order
at which the expansion of H(µH) is truncated. Regardless of the fixed order chosen,

10For a consistent expansion, the expressions are rewritten as integrals of the running coupling
via dµ/µ = d↵s/�(↵s). (The logarithm in K� is re-expressed as an integral for this purpose.)
Explicit expressions for ⌘�, K� and K� through NNLL can be found in appendix B.3 of [7].
These were also implemented in the existing framework of SCETlib [14] used for our numerical
computations.
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3. ⇡2-Resummed results for the gg ! H hard function

UH is always evaluated at NNLL precision. The main reason for this choice is our
stated objective to study the perturbative convergence of the hard function. This is
obviously facilitated by having all fixed order results undergo RG evolution by the
same factor. While NNLL precision even becomes redundant in the LO and NLO
case, an evolution factor through N3LL would be desirable for a consistent truncation
in the N3LO case. Yet, evaluation of UH through N3LL would require the four-loop
coefficient �

A
3 of the cusp anomalous dimension, unknown to date. We remark that

the NNLL correction already is small but have to leave resummation at N3LL to
future work.

We would like to point out three main observations on the results in fig. 4. First
and foremost, the convergence of the hard function is indeed greatly improved for
' ⇡ ⇡/2 in comparison to fixed order results at ' = 0 (left edge of the plots) as
well as to ' ⇡ 3⇡/4 (right edge): The improvement is remarkable for the NLO
result, almost yielding the N3LO result in the case of µ = mH/2 in fig. 4 (a) and
giving a far better approximation at µ = mH in (b). Similarly, the NNLO correction
is greatly reduced by resummation from roughly 15% to a relative contribution of
 4%. The reduction in the N3LO correction is particularly marked for the case
µ = mH : Turning to the detail plots in the bottom row, we can read off a relative
contribution of ⇡ 0.3%. To further illustrate the improved convergence, we give
numerical values for the normalized fixed order expansions at ' = 0 and ' = ⇡/2
for the example of µ = mH :

H/HLO|µH=mH
= 1 + 0.8099 + 0.3558 + 0.0992 ,

H/HLO|µH=� imH
= 1 + 0.2695 + 0.0417� 0.0033 (3.2)

The contributions at NnLO are roughly cut by a factor of 1/3n, making the per-
turbative series at µH = � imH the one converging the most steadily among the
scales considered here. These large improvements are in fact due to µH = � imH

simultaneously minimizing the NLO through N3LO corrections to the hard matching
coefficient CH . This should not be surprising as CH contains Sudakov logarithms
L2n at all orders NnLO that we expect to be dominant and forcibly eliminate L ! 0

as ' ! ⇡/2. When CH is squared, its perturbative coefficients C
(n)
H mix and con-

tribute to H at different orders. Therefore, a “compromise” for minimizing the higher
order corrections to CH will yield an optimized convergence of H, as in the case of
µH = � imH . For completeness, we give numerical results for CH in a manner
analogous to fig. 4 in appendix C, fig. 12.

Second, we observe that the newly available N3LO results are remarkably stable
under variations of the phase,11 with maximum deviations of ⇡ 1%. This indicates
that at N3LO, the hard function is already very close to satisfying the all-orders
expression (2.13) we employ to resum it. However, it also emphasizes the need to
include the N3LO results, as lower orders would lead to larger uncertainties from
variation of '. Lastly, some insight can be gained from the behavior of the LO
11The remaining discrepancy between the absolute values at µ = mH/2 and mH is due to RG

evolution along the real axis.
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3. ⇡2-Resummed results for the gg ! H hard function
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Figure 4: Numerical results for the RG evolved hard function Hres = H(µH) UH(µH , µ)
as a function of ', µH = µ e

� i', where (a) µ = mH/2 on the left and (b) µ = mH

on the right. The fixed order expansion of H(µH) is truncated at the order indicated
by the colors, with darker colors corresponding to higher orders. The evolution factor
UH is evaluated at NNLL precision throughout. In the top row, absolute values are
displayed. The bottom row (detail) shows the relative deviation from the N3LO value
H⇤ at ' = ⇡/2 for each value of µ respectively.
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Figure 5: The RG evolved hard function Ht,res = Ht(µH) UH(µH , µ), including independent
running of Ct and internal resummation by Ut. The specifics of the figure are identical
to the detail plots in the bottom row of fig. 4 above: Colors again indicate fixed orders;
we vary the phase ' of µH , while µt = mt is fixed; given here is the relative deviation
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corresponding parts of fig. 4.
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4. Comparison of matching schemes

(a)

µ

µH

UH

H = |↵sCtCH |2

H(µ)

(b)

µ

µH

µt

UHt = UH
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Figure 6: Viable matching schemes for resummation in gg ! H: (a) the effective one-step
scheme used in this analysis, (b) two-step matching including Ut-resummation and (c)
pure one-step matching with finite top mass terms. While the makeup of H in (a) is
discussed in detail in section 2, comparisons to the schemes (b) and (c) can be found in
section 4.

results. Since UH also evolves the overall factor of |↵s(µH)|2 back to the real scale,
relative changes of the LO term return the RG evolution of |Ct · CH |2 along the arc
µ e

� i'. We observe that this evolution factor varies very little in a neighborhood
of ' = ⇡/2, with the maximum precisely coinciding with µH = � iµ in the case of
µ = mH . Knowing that the final N3LO result is “flat”, this again points at µH = � iµ
being a natural scale of the hard function – by a reversed argument: As the evolution
factor attains its maximum, most of the higher order corrections are resummed and
collectively become minimal.

4. Comparison of matching schemes

In section 2, we chose to evaluate both CH and Ct at one single hard scale µH . This is
not necessarily a natural choice, given our assumption of scale separation between the
dynamics of the “top triangle” and the remaining hard virtual corrections: Rather,
we should be tempted to evaluate Ct and CH at the scale intrinsic to each. This is
precisely the approach of [6], sketched in fig. 6 (b): By setting up an independent
RG evolution Ut for Ct, Ct can be evaluated e. g. at µt = mt and then RG evolved
to µH , resumming along the way logarithms Lt, L

2
t in the expansion (2.6) of Ct. A

numerical comparison of this scheme to our results is performed in section 4.1.

There are two main reasons for us to refrain from using the two-step scheme
of [6] and to adopt instead the effective one-step scheme in fig. 6 (a): For one, the
logarithms / Ln�1

t at NnLO in Ct are not large compared to the Sudakov logarithms
/ L2n in CH . We therefore focus on resumming the latter under “adverse conditions”:
Lt will become numerically larger as ' ! ⇡/2. On the other hand, these “adverse
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4.1. Two-step matching

conditions” are not arbitrary. An alternative matching scheme exists [7] where the
full nf = 6 Standard Model is directly matched onto SCET by means of a single
matching coefficient CH,F , fig. 6 (c). The obvious advantage is that CH,F will contain
the correct dependence on the finite ratio mt/mH , currently known through NNLO
[15, 16, 17, 18]. The drawback is that logarithms Lt = ln(m2

t /µ
2
) still appear in

CH,F : As the independent running of Ct is lost, there is no way to resum them by
RG evolution. These are precisely the conditions under which ⇡2-resummation is
brought to the test in the present analysis: In section 4.2, we check that our effective
one-step scheme (a) is consistent with the finite top mass scheme (c) in the limit
of solely logarithmic dependence on the top mass. Since we only intend to resum
cross sections computed in the infinite top mass limit [5], our framework will be
sufficient. We stress that resummation of more precise results to come will require
correct treatment of a finite top mass in the hard function as well. Nonetheless,
resummation of the selfsame Sudakov logarithms in CH,F as in CH will proceed
along the steps outlined here and should yield similarly improved convergence of the
hard function.

4.1. Two-step matching

The two-step matching scheme in [6] takes into account the independent RG evolution
of Ct, driven by its anomalous dimension �t. There, an all-orders expression for the
evolution factor Ut is given. For comparison, we truncate it at a logarithmic order
consistent with the NNLL counting in the main evolution factor UH . Since Ct has
no cusp anomalous dimension and �t0 = 0, the evolution factor simply reads

Ut(µt, µ) =
Ct(m

2
t ;µ)

Ct(m2
t ;µt)

= exp

⇥
K�t(µt, µ)

⇤ NNLL
= exp


�↵s(µt)

4⇡

�t1
2�0

(r � 1)

�
, (4.1)

where r :

= ↵s(µ)/↵s(µt). On the basis of Ut, we define a modified hard function Ht

that internally evolves Ct from µt to the hard scale:

Ht(m
2
H ,m2

t ;µH) =

��↵s(µH)

�
Ct(m

2
t ;µt) Ut(µt, µH)

�
CH(m2

H ;µH)

��2 . (4.2)

Note that the anomalous dimensions of the factors are unchanged. Thus, Ht will still
undergo RG evolution by UH . We now can repeat the numerical calculations of the
previous section for Ht. Here, we set µt = mt in order to eliminate (read: resum) all
logarithms Lt = 0 from Ct(µt). The absolute values of the fixed order expansions at
N3LO vary very little:

(Ht �H) /H|µH=mH
= +0.08% ,

(Ht �H) /H|µH=� imH
= �0.17% (4.3)

We therefore can concentrate on the convergence of Ht. To this end, detail plots
are presented in fig. 5 (a) for µ = mH/2 and in (b) for µ = mH . Comparing these
results to the detail plots in fig. 5, we observe a slightly reduced N3LO correction
at µ = mH . The effect is more pronounced in the case of µ = mH/2, where both
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4.2. One-step matching with a finite top mass

the NNLO and N3LO corrections are roughly cut down to half. This is as expected,
since Ut also resums the real parts of Lt that are enhanced by 2 ln 2 in the case
µ = mH/2. The results including “internal resummation” also are slightly more
stable against variation of the phase around ' = ⇡/2. Yet, both effects are relatively
minor, providing evidence that the logarithms Lt are in fact not “large” – even when
evaluated in the complex plane at µ = � imH . It therefore seems safe to forfeit the
additional resummation by Ut and the slight benefits it brings to convergence.

4.2. One-step matching with a finite top mass

For pure one-step matching schemes as in fig. 6 (c), the matching coefficient CH,F is
known through NNLO. It receives scale-independent contributions F (n)

(mt, z) due
to the finite top mass at NnLO [7], where z :

= m2
H/(4m0

t
2
) < 1 for the experimentally

observed Higgs-like particle. Here, F (2) contains a logarithmic dependence / lnmt.
Both F (1) and F (2) contain finite terms f (1,2)

(z) ! 0 as m0
t ! 1.12 Note that

we need to differentiate between the actual top mass mt, contributing as lnmt,
and a fictitious top mass m0

t � mt that we are free to adjust in order to give a
sensible infinite top mass limit to CH,F (and our own hard function / |Ct(µH)|2).
Additionally, an overall factor of

F (0)
(z) =

3

2z
� 3

2z

����1�
1

z

���� arcsin
2
(

p
z)

m0
t!1�! 1 (4.4)

encodes the leading order dependence of CH,F on the top mass and enters the hard
function HF (µH) = |↵s(µH) CH,F (µH)|2 as

���F (0)
(z)

���
2
= 1.065 02 for m0

t = mt . (4.5)

As in section 4.1, the total anomalous dimension of the hard function is unchanged
– HF still undergoes RG evolution by UH . The authors of [7] worked in the same
framework of SCETlib [14] that we used for numerical computations. Conveniently,
f (1) was implemented through O(z4) in the framework, while f (2)

= f (2)
(z = 0) +

O(z) = 0 was kept for simplicity. This allows for a direct numerical comparison
between the matching schemes through NNLO. In fig. 7, the fixed order expansions
of H and HF at µH = mH are compared at NLO and NNLO as a function of
x = mt/m

0
t. Here, m0

t enters f (1) and the overall factor of |F (0)|. By removing the
latter from HF , we compare normalized hard functions. The actual value mt of the
top mass is used for the logarithmic terms both in our top matching coefficient Ct

and in F (2). A realistic value of m0
t is assumed for x = 1 at the right edge of the

plot, whereas x ! 0 as m0
t ! 1 (on the left).

We observe that the deviations between the schemes vanish in the infinite top
mass limit x ! 0 as they should. This indicates that our effective one-step scheme
becomes in fact equivalent to a proper one-step scheme after reexpanding Ct and
12In [7], F (2) is also defined to include all scale-independent terms at NNLO.
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5. ⇡2-Resummation of the gg ! H inclusive cross section
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Figure 7: Relative deviation of the pure one-step hard function HF from the hard function
as defined in section 2. Both expansions are truncated at the order indicated by the colors.
To compare normalized perturbative expansions, the LO top mass dependence |F (0)|2 is
removed from HF . All logarithmic dependencies on the top mass are computed at mt;
all finite terms in CH,F that are due to a finite top mass are evaluated at m0

t = mt/x.
Hence, x = 1 corresponds to a realistic setting for the top mass, while x ! 0 as m0

t ! 1.

CH against each other.13 Yet, fig. 7 also strongly indicates the need to correctly
handle finite top mass effects f (1,2)

(z) in future resummation of fixed order results.
The deviation in the normalized hard function – due to f (1) alone – is at ⇡ 1% for
the physical value of the top mass x = 1, already exceeding typical resummed N3LO
corrections brought forth in this analysis (s. fig. 4). On the other hand, the sizable
contribution from the LO factor of F (0) is irrelevant for the purpose of resumming
cross sections: Here, only normalized hard functions enter.

5. ⇡2-Resummation of the gg ! H inclusive cross section

Having analyzed the behavior of the resummed hard function in detail, we now
proceed to resum the pertubative series of an actual physical observable – the inclu-
sive gg ! H cross section. We derive our resummation scheme in section 5.1. In
section 5.2, we give a rough overview how the cross section “behaves” under resum-
mation. We then proceed to present our numerical results and improved uncertainty
estimates.

5.1. Resummation scheme

To set up our resummation scheme, we resort to a normalized hard function

h(µ) =
H(µ)

|↵s(µ)|2
fixed order

= 1 + h(1)(µ) + h(2)(µ) + . . . . (5.1)

13This equivalence also holds for other choices of the hard scale than the one employed here. For
reference, fig. 13 in appendix C contains an analogous plot for µH = � imH .
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5.1. Resummation scheme

Its evolution factor is given by

Uh(µH , µ) =

����
↵s(µH)

↵s(µ)

����
2

UH(µH , µ) = 1 + u(1)(µH , µ) + u(2)(µH , µ) + . . . (5.2)

in an enhanced expansion in both ↵s(µ) and ↵s(µH).14 For brevity, we omit the
arguments of Uh and u(n) in the following. The coefficients of the expansion are
fixed by the defining property h(µ) = h(µH) Uh(µH , µ) through N3LO as

u(1) = h(1)(µ)� h(1)(µH) ,

u(2) = h(2)(µ)� h(2)(µH)� h(1)(µH)u(1) ,

u(3) = h(3)(µ)� h(3)(µH)� h(2)(µH)u(1) � h(1)(µH)u(2) . (5.3)

Assume we are given the fixed order perturbative series �FO(µ) of the inclusive cross
section up to some fixed order NnLO. It will have a residual dependence on the
renormalization scale µ that only vanishes for the all-orders result n ! 1. We
would now like to resum it in a way analogous to the hard function:

�FO = �(0)
⇣
1 + �̃

(1)
FO + · · ·+ �̃

(n)
FO

⌘
,

�res = Uh �(0)
⇣
1 + �̃(1)

res + · · ·+ �̃(n)
res

⌘
(5.4)

To this end, we determine the coefficients �̃
(m)
res for m  n by having them satisfy

the all-orders condition � = �res = �FO at all orders up to NnLO. This amounts to
retroactively “correcting the error” introduced by Uh. Through N3LO, the resulting
expressions have the iterative form

�̃(1)
res = �̃

(1)
FO � u(1) ,

�̃(2)
res = �̃

(2)
FO � u(2) � �̃(1)

resu
(1) ,

�̃(3)
res = �̃

(3)
FO � u(3) � �̃(2)

resu
(1) � �̃(1)

resu
(2) . (5.5)

Here, the coefficients �̃(m)
res inherit the dependence of �̃(m)

FO on µ. However, they receive
an additional dependence on the “internal” hard scale µH via the coefficients of Uh.
Through this, we will be able to repeat our analysis of suitable phases ' of the hard
scale µH for the resummed cross section in section 5.2.

However, before we turn to numerical results, we still need to justify our choice
of resumming the cross section � via the RG evolution of the hard function H
(or h). The fundamental connection between cross sections and hard functions are
factorization theorems that can be proven in the framework of SCET. Relevant for
our case is the factorization theorem derived in [4]: Consider a central jet veto,
imposed by a cut pcut on the transverse momentum p :

= pjet
T of final state jets. The

14Note that removing the running of the overall factor of |↵s|2 from the evolution factor is necessary
to write down an expansion 1+ . . . . In fact, a tiny numerical difference enters here as ↵s is run
at three-loop in closed form, while it is run by the approximate NNLL expression for K� when
included in the non-cusp anomalous dimension of CggH .
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5.2. Numerical results and uncertainties

cumulant of the cross section up to pcut can then be divided into a singular part
(containing IR-poles that cancel against each other) and a non-singular remainder
that vanishes linearly as pcut ! 0. Thus, the total cross section reads

� = �s(pcut) + �ns(pcut) +

Z 1

pcut

dp
d�

dp
. (5.6)

Glossing over most of the technicalities,15 the singular cross section factorizes into

�s(pcut) = �B ·H(µ) ·
Z
dY B(pcut, µ, xa) ·B(pcut, µ, xB) · S(pcut, µ) , (5.7)

xa,b =
mH

Ecm
e

±Y ,

where �B is the Born cross section, H is the hard function and Y is the pseudo-
rapidity of the Higgs. Furthermore, the “beam function” B encodes radiation collinear
to the incoming hadrons; B is given by a convolution of regular gluon PDFs and per-
turbatively accessible matching kernels. Finally, S is a “soft function” representing
soft real radiation and is defined as a matrix element of soft Wilson lines.

The connection between the hard function and the non-singular cross section is
less clear, on the other hand. Here, only a heuristic argument can be given: As the
cut is lifted, pcut ! 1, both �s and �ns diverge and the two must cancel to produce
a finite total cross section �. In order for this cancellation to work, �ns(pcut ! 1)

must have a similar makeup as �s. We therefore can make the simplified assumption
that the fixed order cross section is approximately given by a product,

�FO ⇡ H(µ) ·R(µ) = �(0)
⇣
1 + h(1)(µ) + . . .

⌘⇣
1 + r(1)(µ) + . . .

⌘
, (5.8)

where the scale dependence of H and R has to cancel when �FO ! � is evaluated
to all orders. In this scenario, it is entirely natural to resum �FO by means of Uh:
Resumming the perturbative series of the first factor leaves just

�res = Uh �(0)
⇣
1 + h(1)(µH) + . . .

⌘⇣
1 + r(1)(µ) + . . .

⌘
. (5.9)

We therefore can expect the resummation by Uh to improve the convergence of �,
as well, if we chose µH such as to minimize the perturbative corrections h(m)

(µH).
Note that the resummation may still lead to naught, if a large cancellation between
h(m) and r(m) (and their cross terms) “secretly” occurs in the expansion of �FO.

5.2. Numerical results and uncertainties

On the grounds of the resummation scheme (5.3), (5.4), (5.5) presented in the pre-
vious section, we now give numerical results for the resummed cross section after a
rough overview of its behavior. We use the fixed order results for the inclusive cross
15And the fact that beam and soft functions will depend on another “rapidity scale” ⌫.
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5.2. Numerical results and uncertainties
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Figure 8: The resummed inclusive cross section �res in (5.4) for different values of ',
µH = µ e

� i'. As above, colors indicate the order at which �res is truncated; darker
colors correspond to higher orders.

section at a renormalization and factorization scale µ = mH/4,mH/2,mH , 2mH ob-
tained in [5].16 Since they assume an infinitely heavy top quark (and consequently
omit the leading order factor of |F (0)|2 in the cross-section, too), our framework of
effective one-step matching is sufficient to attempt a resummation. Like the original
results, our results are valid for a hadronic Ecm = 13TeV. Figure 8 shows the re-
summed cross section at different values of the phase ' of the internal resummation
scale µH . Here, the evolution factor Uh in (5.4) is evaluated at NNLL precision
throughout. The resummed series of �res is truncated at the order indicated by the
colors. At ' = 0, the original fixed order results are reproduced as Uh = 1.

Key observations made on the resummed hard function in section 3 are repro-
duced here for the cross section: Again, the convergence of the perturbative series
is markedly improved by the resummation around ' ⇡ ⇡/2: The improvement is
entirely unambiguous in the case of µ = mH in fig. 8 (b), leaving the N3LO cor-
rection almost obsolete. For µ = mH/2, the NNLO correction decreases strongly
as ' ⇡ ⇡/2, making the coveted smallness of the N3LO correction at ' = 0 appear
rather accidental. The N3LO results apparently inherit their stability under varia-
tions of ' from the hard function. More generally speaking, there is a close similarity
in behavior to the hard function when undergoing resummation. This is compelling
evidence that the large logarithms in the hard function are the same that obstruct
the convergence of �FO. Put differently, it indicates that the cross section contains
no “secret cancellation” between said logarithms and competing terms.

By means of our resummation scheme, improved and more reliable estimates for
16Unfortunately, genuine numerical values could not be retrieved from the authors of [5] for lack

of time. We therefore have to rely on numerical values extracted from their fig. 2 for all scales
and orders except for µ = mH/2 and mH at N3LO. (For these, numerical values are given in
tabular form.)
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5.2. Numerical results and uncertainties
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Figure 9: Variation schemes used to estimate uncertainties. In (a), the phase of the hard
scale is fixed at ' = ⇡/2, µH = � iµ, while µ is varied by a factor of 2 from a central
scale µc to estimate �µ. In (b), |µH | = µc is fixed, but a scan in ' over [⇡/4, 3⇡/4],
µH = µc e

� i', is performed to estimate �'. A possible path of the RG evolution used
for resummation is indicated in grey.

the perturbative uncertainties of � can also be obtained. To arrive at this core re-
sult of our analysis, we first define the relevant uncertainties and then give detailed
numerical results. Consider the resummed cross section �res for the most relevant
choice of the hard scale, ' = ⇡/2, µH = � iµ. Two independent sources of un-
certainty can be made out for �res: First, the all-orders result for the cross-section
has to be independent of the renormalization scale µ. The residual dependence on
µ therefore is an indicator of how reliable the perturbative result already is. For
a given central scale µc, we estimate this uncertainty �µ by setting µ = µc/2 and
µ = 2µc and computing the maximum deviation from the value of �res at µc. The
resummation scale µH is kept at µH = � iµ throughout, i. e. varied simultaneously
with µ. Figure 9 (a) shows a sketch of the variation scheme. When applied to the
original fixed order results at ' = 0, �µ will reproduce the maximum of the upper
and lower uncertainties given in [5].17

Second, we also take into account possible uncertainties due to the additional scale
µH we introduce. Uncertainties due to |µH | are already covered by the simultaneous
variation in �µ. To estimate the uncertainty �' induced by ' for a given central
scale µc, we let the hard scale µH sweep the arc µc e

� i', ' 2 [⇡/4, 3⇡/4] as in
fig. 9 (b) and compute the maximum deviation from �res at ' = ⇡/2 along the entire
arc. An estimate of the total uncertainty � of �res is then obtained as

�

2
= �

2
' +�

2
µ . (5.10)

Figure 10 shows our results for the resummed cross section at µ = mH/2 and
µ = mH in direct comparison to the original results from [5]. Uncertainties for the
fixed order results (on the left) essentially are maximal symmetric uncertainties from

17In [5], the uncertainties are estimated by a full scan over the interval µ 2 [µc/2, 2µc]. However,
one of the boundaries of the interval is almost sure to coincide with the maximum deviation.
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5.2. Numerical results and uncertainties
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Figure 10: Results for the inclusive cross section. Shown in (a) are the original fixed order
results [5] with maximal symmetric uncertainties; (b) shows our resummed results with
uncertainty estimates as in (5.10). As usual, darker colors correspond to higher orders
in the perturbative series. The dashed line indicates our best resummed N3LO estimate
�⇤

res at µ = mH .

the original reference. The uncertainties � for our results (right) are computed as
outlined above. They are broken down into the contributions from �µ and �' in
table 3 and table 4, respectively. Table 2 in appendix C contains the numerical values
for fig. 10, presenting relative uncertainties.

We can waive pointing out the improved convergence (already discussed above) and
focus immediately on the uncertainties, in particular on those of the ⇡2-resummed
results at µ = mH . Here, both the NLO and NNLO uncertainty estimates contain
all higher order results, giving evidence that they reasonably cover the uncertainty
from missing higher order. This overlap is present in the original fixed order results
only at NNLO, with similar sizes of the uncertainties. While it can also be observed
for the resummed result at µ = mH/2, it comes at the cost of higher uncertainties.
It is remarkable that the resummed N3LO result at µ = mH can be estimated down
to a very narrow band of ±1.1%, demonstrating all over again that µH = � imH is
in fact a natural choice of scale. Yet, this narrow band still contains the resummed
result at µ = mH/2 and the best original estimate at the scale µ = mH/2 favored
by the authors.

This sizable reduction in uncertainty at N3LO can to a great extent be attributed
to a reduced uncertainty from µ. This can be observed directly in fig. 10, where
the resummed values at N3LO differ slightly less from each other than the original
results. On the other hand, uncertainties from ' are substantially smaller than the
ones originating in variation of µ at N3LO. Polemics could also claim that the NNLO

23



6. Outlook on the N3LO Drell-Yan hard function

result �res at µ = mH already matched the best N3LO estimate, making it a futile
task to implement the hard function through N3LO. We now see that this is not
quite true: At lower orders, �' becomes sizable and contributes roughly as much
as �µ (table 3, table 4). Thus, the improved estimate for the N3LO uncertainty at
µ = mH is at least in part owed to the fact that only at N3LO, the hard function
becomes sufficiently stable under variation of '.

6. Outlook on the N3LO Drell-Yan hard function

As another process where a color singlet is produced, we can consider the Drell-Yan
case. The hard function in this case only consists of one single Wilson coefficient CH

matching full QCD on SCET,

HDY(Q
2
;µ) =

��CH(Q2
;µ)

��2 , (6.1)

where Q2
= q2 is the invariant mass of the intermediate photon or Z boson. The

calculation of CH at NLO has been sketched in section 1.2. At N3LO, it can be
obtained in a way similar to the gg ! H hard matching coefficient from the quark
(instead of the gluon) form factor in QCD. Again, IR-poles in the form factor are
reinterpreted as UV-divergencies of SCET and removed by a multiplicative renor-
malization. The IR-finite terms of the form factor yield the boundary condition of
the resulting RGE:

µ
d

dµ
CH =


�

F
(↵s) ln

�m2
H � i0

µ2
+ �DY

�
CH , (6.2)

where �

F
= (CF /CA) · �A due to Casimir scaling at all orders known so far.18

To implement the perturbative series, we make good use of the generic expression
(B.5) derived in appendix B:

CH(Q2
;µ) = 1 +

1X

n=1

✓
↵s(µ)

4⇡

◆n

C
(n)
H (L) , L :

= ln

�Q2 � i0

µ2
(6.3)

Here, the boundary conditions d
(n)
H at L = 0 were again read off from the results in

[11]. At N3LO, i. e. in d
(3)
H , the authors of [11] also include a contribution / NF,V

from diagrams without direct coupling of the intermediate boson to the initial state
quarks qq̄. However, we choose to omit the term, since in the same reference a full
expression for NF,V is only provided assuming purely electromagnetic interaction.
(As contributions from an on-shell Z will be dominant, this assumption can not be
valid.) When evaluated for q = u (d) the purely electromagnetic contribution is
�2.97 (5.94) compared to a numerical value of d(3)H = �1386.71 and would in fact be
negligible when entering the hard function with a factor of 2Re (↵s/4⇡)

3 in front.
18Sources cited for the anomalous dimensions are compiled in appendix A.
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6. Outlook on the N3LO Drell-Yan hard function
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Figure 11: The RG evolved hard function Hres for the Drell-Yan case as a function of
', µH = µ e

� i', where (a) µ = Q/2 on the left and (b) µ = Q on the right. Colors
correspond to the fixed order truncation. The bottom row (detail) again shows the
relative deviation from the N3LO value H⇤

DY at ' = ⇡/2.

Note that we normalize the LO contribution in (6.3) to 1. We correspondingly do
not include overall factors that would account for the electro-weak coupling of the
incoming quarks or the Z propagator. For this reason, CH and HDY only depend
on the ratio µ/Q. We note in passing that when restricted to µ 2 R and expressed
in terms of LQ :

= ln(µ/Q), L = i⇡ � 2LQ, our result for the N3LO hard function
is in perfect numerical agreement with [19], corroborating the validity of the generic
expression (B.5).

In a manner completely analogous to the gg ! H hard function, HDY can be
evaluated at a scale µH in the complex plane and then RG evolved back to a real-
valued scale µ. For our numerical results, we again vary the phase of µH as µH =

µ e

� i'. The results of the procedure are shown in fig. 11 (a) for µ = Q/2 and in
(b) for µ = Q; the evolution factor is evaluated at NNLL precision. We observe
that while the convergence of the perturbative series at ' = ⇡/2 is slightly improved
by resummation for both cases, the effect is nowhere near the vast effect observed
for gluon fusion. In particular, the series converges remarkably well even before
resummation, with N3LO corrections amounting to less than 1%. Numerical values
of the normalized hard function to illustrate this further are

HDY/HDY,LO|µH=Q = 1 + 0.08726 + 0.03115 + 0.00726 ,

HDY/HDY,LO|µH=� iQ = 1� 0.14935� 0.00125� 0.00099 (6.4)

As noted in [3], this is mostly due to the numerically smaller cusp anomalous dimen-
sion in the Drell-Yan case, �F /�A = CF /CA = 4/9. Hence, the leading ⇡2-enhanced
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7. Conclusions

terms L2n at NnLO in the fixed order expansion at a real-valued scale are also
suppressed by (4/9)n, leaving less room for improvement of the convergence by re-
summation. Furthermore, we remark that the choice µH = � iQ, L = 0 is not as
clearly superior to µH = � iQ/2 as in the gluon fusion case. In fact, the convergence
of HDY at the latter scale even is slightly better, further indicating that CH is not
entirely dominated by the Sudakov logarithms L2n. Rather, the additional real part
of 2 ln 2 seems to move L closer to a “compromise” between the roots of C(n)

H .

7. Conclusions

We have extended the hard function for gluon fusion Higgs production to N3LO
in an effective one-step matching scheme. Evaluating the hard function at an ad-
ditional scale µH and subsequently RG evolving it at NNLL, we have been able
to resum its perturbative series. After direct comparison between different values
for ' = � argµH , our results strongly suggest the prescription µH = � imH of
⇡2-resummation as a natural scale for the hard function: By this choice, the con-
vergence of its perturbative series is vastly improved, as leading Sudakov logarithms
will be resummed completely. The benefits of two-step matching schemes [6] have
been found to be minor. On the other hand, we expect finite top mass effects from
pure one-step matching [7] to become relevant in further analyses. Through NNLO,
we have demonstrated that our matching scheme reproduces the infinite top mass
limit of pure one-step matching.

By applying the same resummation scheme to the total cross section for gluon fu-
sion at fixed order N3LO [5], we have demonstrated that here as well, ⇡2-resummation
at µH = � imH will yield the fastest convergence of the perturbative series. By
varying both ' and the renormalization and factorization scale µ, we have arrived at
improved estimates for the perturbative uncertainties of the cross section. Our best
estimate for the N3LO total cross section for gluon fusion at Ecm = 13TeV is

�gg!H = 44.27 pb ±µ 1.03% ±' 0.31% = 44.27 pb ± 1.08% .

To further improve this estimate, we endorse extending the evolution factor to N3LL
as soon as the necessary four-loop cusp anomalous dimension becomes available.
Accounting for the uncertainties of ↵s in a more elaborate variation scheme may also
be in order.

In the case of the Drell-Yan process, we observe a slightly improved convergence of
the hard function after ⇡2-resummation at N3LO. The effect is much less pronounced
than in the gluon fusion case, as was observed at lower orders before [3]. Whether
the slight improvement carries through to cross sections and rapidity spectra could
be subject to further investigation.
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A. Anomalous dimensions

A. Anomalous dimensions

The �-function of QCD is expanded as

µ
d↵s

dµ
= �(↵s) = �2↵s

1X

n=0

�n

⇣↵s

4⇡

⌘n+1
. (A.1)

All cusp and non-cusp anomalous dimensions throughout the text are expanded as

�(↵s) =

1X

n=0

�n

⇣↵s

4⇡

⌘n+1
, �(↵s) =

1X

n=0

�n

⇣↵s

4⇡

⌘n+1
. (A.2)

Sources cited for particular coefficients are compiled in table 1 below.

�n consistent with [7], [11]
�tn cited from [6]
�Hn cited from [6] given there as �Sn
�

A,F
n cited from [7] given there as �

g,q
n

consistent with [11] given there as �cusp
n · CA,F

�ggHn by (2.10) consistent with [7] given there as �gH n

by (2.10) consistent with [11] given there as 2�gn

�DY
n cited from [11] given there as 2�qn

Table 1: Sources cited and cross-checked for the coefficients of various anomalous dimen-
sions. For definitions of the anomalous dimensions, see the text. All consistency checks
have been performed up to 3-loop (n = 0, 1, 2). The factor of 2 in the Drell-Yan case is
checked implicitly by comparing the hard function constructed from �DY against [19].

B. Generic fixed order expansion of matching coefficients

Consider a matching coefficient C satisfying a generic RGE

µ
d

dµ
C(µ) = [�(↵s(µ)) · L+ �(↵s(µ))]C(µ) , (B.1)

where � and � are its cusp and non-cusp anomalous dimensions, respectively, and
L = ln(M2/µ2

) is a logarithm of the renormalization scale µ and some characteristic
mass scale M .19 The coefficients C(n) in the fixed order expansion

C =

1X

n=0

✓
↵s(µ)

4⇡

◆n

C(n) (B.2)

19Note that an imaginary-valued M = � iQ as for the SCET hard matching coefficients CH in both
Higgs production and the Drell-Yan case does not affect the derivation presented here. In these
cases, a prescription of (� i )2 = �1� i0 is understood.
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B. Generic fixed order expansion of matching coefficients

then satisfy a set of coupled differential equations: Expanding the left hand side of
(B.1) in powers of ↵s = ↵s(µ) leads to

l. h. s. =
1X

n=0

⇣↵s

4⇡

⌘n
µ

d

dµ
C(n) � 2

1X

n=1

n
1X

m=0

�m

⇣↵s

4⇡

⌘n+m+1
C(n)

=

1X

n=0

⇣↵s

4⇡

⌘n
µ

d

dµ
C(n) � 2

X

n=2

⇣↵s

4⇡

⌘n
n�1X

m=1

m�n�m�1C
(m)

after inserting µ(d↵s/ dµ) = �(↵s) as expanded in (A.1) and a simple index shift.
On the other hand, expanding the right hand side leaves

r. h. s. =
1X

n=1

⇣↵s

4⇡

⌘n
n�1X

m=0

[�n�m�1 · L+ �n�m�1]C
(m) .

Comparing the two expansions order by order results in

µ
d

dµ
C(0)

= 0 ,

µ
d

dµ
C(n)

=

n�1X

m=0

[�n�m�1 · L+ �n�m�1 + 2m�n�m�1]C
(m) , n > 0 . (B.3)

Let now d(n) be the expansion coefficients of C at L = 0,

C|L=0 =

1X

n=0

✓
↵s(µ)

4⇡

◆n

d(n) . (B.4)

Setting d(0) = 1 for simplicity and recalling µ(d/ dµ) = �2 d/ dL, (B.3) can be
integrated iteratively to obtain the full scale dependence of C. Through N3LO, the
resulting polynomials in L require the three-loop coefficients of � and � (as well as
d(n) up to N3LO, of course) and read

C(0)
= 1 ,

C(1)
= d(1) � L

2

�0 �
L2

4

�0 ,

C(2)
= d(2) +

L

2

⇣
�2d(1)�0 � d(1)�0 � �1

⌘

+

L2

8

⇣
2�0�0 + �20 � 2d(1)�0 � 2�1

⌘

+

L3

24

�0 (2�0 + 3�0) +
L4

32

�

2
0 ,

C(3)
= d(3) +

L

2

⇣
�4d(2)�0 � 2d(1)�1 � d(2)�0 � d(1)�1 � �2

⌘

+

L2

8

⇣
8d(1)�2

0 + 6d(1)�0�0 + 2�1�0 + d(1)�20 + 4�0�1

+ 2�0�1 � 2d(2)�0 � 2d(1)�1 � 2�2

⌘
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+

L3

48

⇣
� 8�2

0�0 � 6�0�
2
0 � �30 + 16d(1)�0�0 + 4�1�0

+ 6d(1)�0�0 + 6�1�0 + 8�0�1 + 6�0�1

⌘

+

L4

96

�0

⇣
�4�2

0 � 10�0�0 � 3�20 + 3d(1)�0 + 6�1

⌘

+

L5

192

�

2
0 (�4�0 � 3�0)�

L6

384

�

3
0 . (B.5)

Note that d(0) 6= 1 can easily be taken care of: At each order, C(n) is the integral
of lower order coefficients with a boundary condition linear in d(n). By induction,�
d(0), . . . , d(n)

�
7! C(n) is a linear map onto the polynomials in L at any order.

Accounting for d(0) 6= 1 just amounts to inserting d(0) in all terms of (B.5) that do
not yet contain d(1), d(2), d(3), thereby restoring linearity.

C. Further numerical results
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Figure 12: Numerical results for the RG evolved matching coefficient CH,res =

CH(µH) UC(µH , µ) as a function of ', µH = µ e

� i'. As usual, colors indicate the
order at which CH(µH) is truncated; darker colors correspond to higher orders. The evo-
lution factor UC of CH is obtained from its RGE (2.8) by means of the helper functions
⌘�, K�, K� (2.12) and evaluated at NNLL precision. The top row contains absolute
values: The difference in the N3LO result between the cases (a) and (b) is due to RG
evolution along the real axis. The bottom row displays the relative deviation from the
N3LO value C⇤

H at ' = ⇡/2.
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Figure 13: Relative deviation of the pure one-step hard function HF (section 4.2) from our
hard function as defined in section 2. Here, x ! 0, m0

t ! 1 corresponds to the infinite
top mass limit where the two hard functions should coincide. The factor of |F (0)|2 is
removed from HF to compare normalized hard functions. The plot above is completely
analogous to fig. 7. The only difference is the choice of µH = � imH to evaluate the hard
functions (instead of µH = mH in fig. 7.)

� [pb] µ LO NLO NNLO N3LO

�FO mH/2 15.09 ±16.24% 34.53 ±19.53% 43.36 ±8.69% 44.31 ±2.64%

�FO mH 12.95 ±16.50% 29.56 ±16.80% 39.59 ±9.51% 43.14 ±4.47%

�res mH/2 26.30 ±23.58% 44.49 ±17.15% 45.37 ±2.95% 43.81 ±2.69%

�res mH 22.70 ±20.59% 39.54 ±14.96% 44.19 ±5.01% 44.27 ±1.08%

Table 2: Numerical values and relative uncertainties for the inclusive gg ! H cross sections
in fig. 10. The two top rows contain the original values for the fixed order cross sections
from [5], where µ is both the factorization and renormalization scale. The bottom rows
show our resummed results, where the uncertainties are estimated by contributions from
varying both µ and ' according to (5.10).

�µ (rel.) LO NLO NNLO N3LO

µ = mH/2 13.69% 14.15% 2.59% 2.51%
µ = mH 15.87% 12.52% 4.59% 1.03%

Table 3: Contributions �µ to the relative uncertainty of the resummed cross section. For
this estimate, we vary µ by factors of 2 and compute the maximum deviation. The
variation scheme is described in section 5.2 and drawn in fig. 9 (a).

�' (rel.) LO NLO NNLO N3LO

µ = mH/2 19.20% 9.70% 1.40% 0.98%
µ = mH 13.12% 6.17% 2.02% 0.31%

Table 4: Contributions �' to the relative uncertainty of the resummed cross section. Here,
we vary ' along the arc [⇡/4, 3⇡/4] and compute the maximum deviation. The variation
scheme is drawn in fig. 9 (b).

30



References

References

[1] G. Aad et al., ATLAS Collaboration. “Observation of a new particle in the
search for the Standard Model Higgs boson with the ATLAS detector at the
LHC.” Phys. Lett. B716 (2012), pp. 1–29. arXiv: 1207.7214 [hep-ex].

[2] S. Chatrchyan et al., CMS Collaboration. “Observation of a new boson at a
mass of 125 GeV with the CMS experiment at the LHC.” Phys. Lett. B716
(2012), pp. 30–61. arXiv: 1207.7235 [hep-ex].

[3] V. Ahrens, T. Becher, M. Neubert, and L. L. Yang. “Origin of the large
perturbative corrections to Higgs production at hadron colliders.” Physical
Review D 79 (3 2009). arXiv: 0808.3008 [hep-ph].

[4] I. W. Stewart, F. J. Tackmann, J. R. Walsh, and S. Zuberi. “Jet pT resumma-
tion in Higgs production at NNLL0

+NNLO.” Physical Review D 89 (5 2014).
arXiv: 1307.1808 [hep-ph].

[5] C. Anastasiou, C. Duhr, F. Dulat, F. Herzog, and B. Mistlberger. “Higgs Boson
Gluon-Fusion Production in QCD at Three Loops.” Physical Review Letters
114 (21 2015). arXiv: 1503.06056 [hep-ph].

[6] V. Ahrens, T. Becher, M. Neubert, and L. L. Yang. “Renormalization-group
improved prediction for Higgs production at hadron colliders.” The European
Physical Journal C 62 (2 2009), pp. 333–353. arXiv: 0809.4283 [hep-ph].

[7] C. F. Berger, C. Marcantonini, I. W. Stewart, F. J. Tackmann, and W. J.
Waalewijn. “Higgs production with a central jet veto at NNLL+NNLO.” Jour-
nal of High Energy Physics 2011 (4 2011). arXiv: 1012.4480 [hep-ph].

[8] I. W. Stewart. Effective Field Theory. Lecture Notes. Massachusetts Institute
of Technology, 2014. url: https://courses.edx.org/c4x/MITx/8.
EFTx/asset/notes_EFT.pdf.

[9] I. W. Stewart. Lectures on the Soft-Collinear Effective Theory. Massachusetts
Institute of Technology, 2013. url: http://ocw.mit.edu/courses/
physics/8-851-effective-field-theory-spring-2013.

[10] C. W. Bauer, S. Fleming, D. Pirjol, and I. W. Stewart. “An effective field
theory for collinear and soft gluons: Heavy to light decays.” Physical Review
D 63 (11 2001). arXiv: hep-ph/0011336.

[11] T. Gehrmann, Glover, E. W. N., T. Huber, N. Ikizlerli, and C. Studerus. “Cal-
culation of the quark and gluon form factors to three loops in QCD.” Journal
of High Energy Physics 2010 (6 2010). arXiv: 1004.3653 [hep-ph].

[12] Y. Schröder and M. Steinhauser. “Four-loop decoupling relations for the strong
coupling.” Journal of High Energy Physics 2006 (01 2006), p. 51. arXiv: hep-
ph/0512058.

[13] K. G. Chetyrkin, J. H. Kühn, and C. Sturm. “QCD decoupling at four loops.”
Nuclear Physics B 744 (1-2 2006), pp. 121–135. arXiv: hep-ph/0512060.

31

http://arxiv.org/abs/1207.7214
http://arxiv.org/abs/1207.7235
http://arxiv.org/abs/0808.3008
http://arxiv.org/abs/1307.1808
http://arxiv.org/abs/1503.06056
http://arxiv.org/abs/0809.4283
http://arxiv.org/abs/1012.4480
https://courses.edx.org/c4x/MITx/8.EFTx/asset/notes_EFT.pdf
https://courses.edx.org/c4x/MITx/8.EFTx/asset/notes_EFT.pdf
http://ocw.mit.edu/courses/physics/8-851-effective-field-theory-spring-2013
http://ocw.mit.edu/courses/physics/8-851-effective-field-theory-spring-2013
http://arxiv.org/abs/hep-ph/0011336
http://arxiv.org/abs/1004.3653
http://arxiv.org/abs/hep-ph/0512058
http://arxiv.org/abs/hep-ph/0512058
http://arxiv.org/abs/hep-ph/0512060


References

[14] F. Tackmann et al. SCETlib – A C++ package for numerical computations
in QCD SCET. 2015 (under construction, not yet public). url: https:
//confluence.desy.de/display/scetlib.

[15] R. V. Harlander and P. Kant. “Higgs production and decay: analytic results at
next-to-leading order QCD.” Journal of High Energy Physics 2005 (12 2005),
p. 15. arXiv: hep-ph/0509189.

[16] C. Anastasiou, S. Beerli, S. Bucherer, A. Daleo, and Z. Kunszt. “Two-loop
amplitudes and master integrals for the production of a Higgs boson via a
massive quark and a scalar-quark loop.” Journal of High Energy Physics 2007
(01 2007), p. 82. arXiv: hep-ph/0611236.

[17] R. V. Harlander and K. J. Ozeren. “Top mass effects in Higgs production
at next-to-next-to-leading order QCD: Virtual corrections.” Physics Letters B
679 (5 2009), pp. 467–472. arXiv: 0907.2997 [hep-ph].

[18] A. Pak, M. Rogal, and M. Steinhauser. “Virtual three-loop corrections to Higgs
boson production in gluon fusion for finite top quark mass.” Physics Letters B
679 (5 2009), pp. 473–477. arXiv: 0907.2998 [hep-ph].

[19] R. Abbate, M. Fickinger, A. H. Hoang, V. Mateu, and I. W. Stewart. “Thrust
at N3LL with power corrections and a precision global fit for ↵s(mZ).” Physical
Review D 83 (7 2011). arXiv: 1006.3080 [hep-ph].

32

https://confluence.desy.de/display/scetlib
https://confluence.desy.de/display/scetlib
http://arxiv.org/abs/hep-ph/0509189
http://arxiv.org/abs/hep-ph/0611236
http://arxiv.org/abs/0907.2997
http://arxiv.org/abs/0907.2998
http://arxiv.org/abs/1006.3080

	Introduction
	Effective field theories
	Soft-collinear effective theory

	Ingredients of the ggH hard function at N3LO
	The top matching coefficient
	The SCET hard matching coefficient
	Renormalization-group evolution and Pi2-resummation

	Pi2-Resummed results for the ggH hard function
	Comparison of matching schemes
	Two-step matching
	One-step matching with a finite top mass

	Pi2-Resummation of the ggH inclusive cross section
	Resummation scheme
	Numerical results and uncertainties

	Outlook on the N3LO Drell-Yan hard function
	Conclusions
	Anomalous dimensions
	Generic fixed order expansion of matching coefficients
	Further numerical results
	References

