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Abstract

An analysis in the intend to set an expected upper limit to the branching ratio

of the rare B-meson decay into a K-meson and two ⌧ leptons was performed to

study flavor changing neutral currents b ! sll on o�cial Belle monte carlo data.

An expected upper limit of B(B± ! K±⌧⌧)  1.19 · 10�3
was found.

This limit was found using multivariate analysis methods to perform a counting

experiment on simulated data.
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1 Introduction

This is a monte carlo study of the expected branching ratio of the process B± ! K±⌧⌧
in the context of the DESY Summerschool. This analysis was performed on o�cial Belle
monte carlo data.
The decay is aimed at flavor changing neutral currents which are forbidden in the stan-
dard model on tree level. Yet they exist in higher order loop diagrams and are therefore
strongly suppressed.
This decay in particular is interesting as deviations of 3.7� from the Standard Model
(SM) have been observed in an angular analysis of the decay of B mesons to a Kaon and
two leptons B ! K⇤ll [1], a small anomaly has recently been found in the angular analy-
sis of B ! K⇤µ+µ� [2] and the analysis of the ratio R

K

= B(B+ ! K+µ+µ�)/B(B+ !
K+e+e�) as well showed a discrepancy of 2.6� to SM calculations. According to [3]
this might hint for physics beyond the SM. The decay B± ! K±⌧⌧ has not been
deeply analyzed in this context and might therefore give new insight to the meaning
of these deviations. A short investigation at the BaBar experiment resulted in a limit
of B(B± ! K±⌧⌧)  3.3 · 10�3 [4]. Hence it is interesting to study the sensitivity of
experiments like Belle and Belle 2 to such processes.

2 The Belle experiment

The Belle experiment is located in Tsukuba, Japan at KEK. It collected a total integrated
Luminosity of 710 fb�1 while running on the ⌥(4S) resonance. This corresponds to
771 · 106 produced BB̄ pairs. The ⌥(4S) resonance decays with > 96% chance into
BB̄ which is why experiments running on this resonance are called B-factories. These
B-mesons can then be used for high precision measurements.

3 Decay Channels

There are di↵erent possibilities for b ! sll, penguin diagrams and box diagrams. They
are depicted in the Feynman Graphs in figure 1. The decay rate into the final state is
sensitive to the existence of new gauge bosons mediating the decay, as for example the
existence of charged Higgs bosons depicted in figure 1 (d).

4 Statistical methods

4.1 Upper Limit calculation

Upper limits are calculated in dependency of a certain degree of confidence. In the case
of absent backgrounds they can be found from the equation:

1� ↵ =
nX

k=0

P (k;µ) (1)
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Figure 1: Penguin diagrams (a) and (b), and box diagrams (c) and (d) of the B-meson
decay to two leptons and a K-meson in the final state. Diagram (a), (b) and
(c) are possible from SM calculations, while (d) is only possible in beyond
standard model models containing at least 2 charged Higgs-bosons.

Where ↵ is the chosen confidence limit, 1 � ↵ = 90% in our case, n is the number
of observed events, µ is the unknown true expectation value and P is the underlying
probability density function.
Thus for an expected n = 0 and an underlying Poisson distribution, a confidence limit
of CL = 90% would yield an upper limit for µ  2.3. This means the true value of µ
could still be  2.3 at CL = 90% confidence even thought it was measured to be zero.
In the case of present background the picture becomes more complicated. Downward
fluctuations of the background could hide signals and upward fluctuation could mimic
them. This is even more problematic as the expected number of signal events in our case
is zero, while the expected background is large and gaussian. To handle this, the method
suggested by W.Rolke [5] is used, as it is implemented in the ROOT class TRolke.
The likelyhood function used to model a gaussian background and a poissonian signal
is:

L(µ, b, �|x, y) = (µ+ b)x

x!
· exp (�(µ+ b))

1p
2⇡�

· exp
 

�(y � b)2

2�

!

(2)
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Here µ denotes the signal ratio, b the background ratio, � the uncertainty on b and (x, y)
are observed values for background and signal. The maximum likelyhood estimators
(µ̂, b̂) can be calculated by maximizing L(µ, b, �|x, y) with respect to µ and b. It is
assumed that the log-likelyhood distribution �2 log � with :

�(µ|x, y) = L(µ, b̂(µ)|x, y)
L(µ̂, b̂|x, y)

(3)

follows a �2-distribution. The limits can then be extracted by minimizing this function.
Moving left and right with respect to the minimum of the resulting distribution, one
can find the points where the function increases by the given ↵ percentile. A confidence
limit of 1� ↵ = 90% corresponds to an increase of this function by 2.706.

4.2 Branching Ratio

The branching ratio depends on the true number of decays NB

±!K

±
⌧⌧

true

in the observed
channel and the total number of decaying B-meson pairs NBB

true

by the relation:

B(B± ! K±⌧⌧) =
NB

±!K

±
⌧⌧

true

NBB

true

. (4)

Since NB

±!K

±
⌧⌧

true

is intrinsically unknown it has to be replaced by the upper limit num-
ber on the observable events NB

±!K

±
⌧⌧

obs,UL

and the e�ciency ✏ of the classifier to gain an
upper limit of B as:

B(B± ! K±⌧⌧)UL 
NB

±!K

±
⌧⌧

obs,UL

✏ · 2 · f+ ·NBB

true

. (5)

The e�ciency depends on the classifier fitting and has to be calculated on MC by:

✏ =
NB

±!K

±
⌧⌧

obs

NB

±!K

±
⌧⌧

true

. (6)

The factor f+ = 0.51 is used to account for the number of charged B-Mesons from the
⌥(4s) decay.

4.3 Boosted Decision Trees

Decision Trees are used to model a chain of multiple if-else decisions. A node in a tree
resembles a certain decision if an input is member of a class A or B. Using several nodes
a whole tree of decisions can be modeled. The classes of the lowest level of the graph
are called leafs. These give the final decision if a processed data point is member of a
certain class, embodied by the leaf it was associated with.
The decision tree is feed by a set of variables and evaluates their importance based on
their entropy and possible information gain. The most important ones are then taken
as nodes of the tree, where if-else conditions are used to navigate through the tree.
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Boosted Decision Trees (BDT) are strong classifiers. They rely on an ensemble of weak
classifiers. These give a vote if a data point is member of a certain class. By evaluation
of the votes of a large number, typically 100, of weak classifiers, a strong classifier is
constructed. The BDT uses a technique named boosting to generate these classifiers. A
BDT is trained on a data set. After an initial fitting an evaluation of the discrimination
power of the created classifier is done. Those data points which were wrongly classified
gain an increased weight in the next training such that the next classifier created by
an additional fitting has a higher focus on these points. This process is repeated until
a maximum number of n iterations is reached and n classifiers are created. The final
classification of a data point is then done as a weighted vote by these n weak classifiers
and is normalized to an output x 2 [0, 1], such that x can be interpreted as a degree of
belief that a certain object is member of a certain class.
Standard decision trees are very susceptible for overfitting as their number of degrees of
freedom (= the depth of the tree) is generally arbitrary. BDT are less susceptible for
overfitting because they rely on weak classifiers who themselves have a small number of
degrees of freedom and a fixed depth of usually approximately 4 layers.

4.4 Full reconstruction

In order to probe invisible final states like for example those containing neutrinos, a
full reconstruction of one of the B-mesons is performed. This was done using a neuron
network - NeuroBayes - to classify candidates events.
Since the center of mass energy of the event corresponds to the mass of the ⌥(4s)
resonance, the initial state is known very well and it is easy to reconstruct the momentum
of the B-meson, once one of the B-mesons is identified. The e�ciency of B-tagging is
around 0.2%. NeuroBayes gives an output x 2 [0, 1] such that it can be interpreted as a
degree of belief in the probability of correct tagging. By cutting on this output one can
increase the purity of the candidate sample. In the case of two identified B-mesons the
one with the higher NeuroBayes output is chosen as B

tag

.

5 Analysis

This analysis is a counting experiment on monte carlo (MC) data with the aim to set
an expected upper limit on the branching ratio of the decay B± ! K±⌧⌧ . Multivariate
classifiers are used to distinguish between signal and background. A gradient boosted de-
cision tree (BDT) was found to perform best. It is trained on MC signal and background
samples and then used to classify an independent sample from which the upper limit is
calculated. The signal is reconstructed in the ”ExtraEnergyECL” variable, the residual
energy in the calorimeter after removing all clusters from tag and signal particles. The
systematics have not been treated.
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5.1 Event selection

The signal event selection is done using the following steps. The first step in is to identify
the B

tag

-meson. Once it is identified, all tracks related to it are removed from the event.
The remaining tracks then must be related to the signal B-meson. There are two cases
that have to be distinguished. The B

tag

can be a B± or a B0. We only consider the
case of B±. In this case we require a K+-track and two charged tracks. The K+-track is
identified by cutting on the likelihood-hypothesis to this being a ⇡+. The ⌧ -tracks then
are found from demanding two oppositely charged tracks in the detector and no more
tracks or entries in the calorimeter. The same holds for the charge conjugated case.

5.2 Pre-cuts

Soft precuts have been applied to ”BTagNBout” and ”BTagMbc” before fitting the
BDT. The precuts are used to reduce the amount of background and to increase the
computation speed of the fitting. ”BTagNBout” was cut such that BTagNBout > 10�4

and BTagMbc > 5.27 [GeV ]. The applied cuts are depicted in figure 2 and 3.

Figure 2: Histogram of the ”BTagNBout” variable. This variable describes the Neu-
roBayes output for the B

tag

-candidate. The contributions to the background
are displayed in di↵erent color. The black line indicates the precut of
BTagNBout > 10�4 that has been applied on this variable.

5.3 Analysis of classifiers

To find the best classifier for the signal-background discrimination a set of classifiers has
been trained on background and a signal events to learn how to discriminate those. The
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Figure 3: Histogram of the ”BTagMbc” variable. This variable describes the mass of the
B

tag

-candidate. The contributions to the background are displayed in di↵erent
colors. The black line indicates the precut of BTagMBC > 5.27 [GeV ] that
has been applied on this variable.

one with the best receiver operating characteristic (=purity versus e�ciency behavior)
then is chosen as the tool for the analysis. The classifiers investigated were a gradient
boosted decision tree, a decision tree stump - a gradient boosted decision tree with a
maximum depth of one layer, an adaptive boosted decision tree, a fisher discriminant
and NeuroBayes. To investigate the behavior, purity and e�ciency of a classification
is plotted against each other while altering a cut on the output of the classifier. The
results are depicted in figure 4. A gradient boosted decision tree was found to perform
best.

5.4 Choice of variables to feed the classifier

The set of variables that has been chosen for the classification has been defined during
the event selection step. The variables are displayed and their meaning are tabulated in
table 1.
Their importance for the classification is depicted in figure 5. The measure for the
importance is the relative frequency of occurring in the BDT’s subtrees. This can be
thought of as a measure of information gain from that variable.
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Figure 4: Purity versus e�ciency of di↵erent classifiers. A gradient boosted decision tree
has the best purity to e�ciency characteristics.

5.5 Background contribution

The main contributions to the background originate from decays e+e� ! ūu, d̄d, s̄s
called ’uds’, e+e� ! cc̄ called ’charm’ and e+e� ! B̄+B� called ’charged’, as well as
e+e� ! B̄0B0 called mixed. There are also contributions from rare decays, however
these are very small. The contributions in all variables is depicted in figure 6, figure 7
and figure 8.

5.6 Data MC comparison

After a set of suitable variables was chosen they have been compared to real data in
order to check the accuracy of MC-modeling for each variable. A Kolmogorov-Test has
been performed to check the overlap of all data points in a variable. It has been found
that in a subset of variables the data is not well described by MC. These variables have
been removed from the set of variables feed to the classifier. The comparison is depicted
in figure 9 and figure 10.
The features which were assumed to be well described by both MC and data are depicted
with their importance ranking in figure 11.
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5.7 Upper limit calculation

The BDT then has been fitted with a MC-stream containing background and signal
shape. The previously determined set of variables that agree with real data has been
used in this fit. After that the upper limit for N

obs

has been calculated using the method
of W.Rolke [5] and the TRolke class as it is implemented in ROOT. The branching
ratio has then been calculated using formula 5. The upper limit on B was computed by
varying the cut on the BDT output and the signal window size. In each step the classifier
e�ciency was calculated according to formula 6. The result from this computation is
depicted in figure 12. The minimum in this plane is the expected upper limit. The upper
limit as well as the other results found are depicted in table 2. The expected upper limit
is B(B± ! K±⌧⌧)  1.19 · 10�3 on 90% confidence level. The result of varying the
signal window is depicted in figure 13. The main contribution to the background is due
to decays containing K

L

which escape identification.

5.8 Systematics

Systematic uncertainties arise from the MC models to simulate the events, the detector
simulation and uncertainties to the e�ciency of B-tagging, classifying and the number
of total BB̄-events that can be expected. Those from MC, detector simulation and B-
tagging can be joined in an e�ciency and treated as an uncertainty on that. But this
quantity is still unknown. The uncertainty on the classifier e�ciency is believed to be
⇡ 2%. The uncertainty on the number of B-mesons is known with ±1, 36%
However, the systematics are not treated in this analysis.

6 Conclusion

An analysis aiming to set an expected upper limit to the branching ratio of the rare
B-meson decay into a K-meson and two ⌧ leptons was performed. This analysis is based
on a counting experiment using multivariate classifying methods on preprocessed monte
carlo data.
A boosted decision tree was chosen as the classifying tool for this analysis. A set of
suitable variables was feed to the classifier. This set was determined by the quality of
simulation reproducing data. An expected upper limit of B(B± ! K±⌧⌧)  1.19 · 10�3

on 90% confidence level was found.
The systematic uncertainties are not included in this calculation but are expected to
alter the result by ⇡ 10%. This has to be validated in the future.
The result is an improvement by approximately a factor three when comparing to the
result of B(B± ! K±⌧⌧)  3.3 · 10�3 (90% CL) produced on BaBar data.
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Table 1: Variables chosen for the classification and their meaning.

Variable Meaning

NRemainGamma number of remaining photons in the event
NRemainKs number of remaining K

S

NRemainKL number of remaining K
L

NRemainTracks number of remaining tracks
Btag costThetaB cos(✓) of the tag-B-meson
dist to IP distance the secondary vertex to the interaction point
Ch0 Pstar inBSigRest momentum of the zeroth child in the B

s

ig restframe
chi2 �2-value of the vertex fit
Qvalue reconstructed mass of the B

tag

with children mass subtracted
ChargeHighMomentumTrack sign of the charge of the highest momentum track
AngleMissingMomentumToBeam the angle of missing momentum track relative to the beam
Ch1 AngleToBeam child one angle with respect to beam
Ch2 AngleToBeam child two angle with respect to beam
DistToOtherB dz significance significance of the distance to the other B-meson in z-direction
DistToOtherB dz distance to the other B-meson in z-direction
BTagMbc reconstructed mass of the tag-B-meson
pt transversal momentum of the signal-B-meson
MissingMass missing mass of the event calculated from the B masses
Ch01 Angle angle between child 0 and child 1
q2 tag k barbar paepr suchen
MomentumAsymmetrie momentum asymmetry of the event
Ch0 energy energy of child 0
Ch0 pt transverse momentum of child 0
CosThetaB cos(✓) of the reconstructed B-meson
R2 ratio of the second to the zeroth Fox-Wolfram-Moment
Ch1 NBout NeuroBayes output for child 1
Ch01 InvMassScaled invariant mass of child 0 and 1
Ch02 InvMassScaled invariant mass of child 0 and 2
Ch12 InvMassScaled invariant mass of child 1 and 2
Ch1 PseudoHelAng cosine of angle of the pseudo helicity of child 1
Ch2 PseudoHelAng cosine of the angle of the pseudo helicity of child 2
Children nboutprod product of the NeuroBayes ouput of child 1 and 2
Emiss missing energy of the event
Mmiss missing mass of the event calculated from all reconstructed tracks
BTagDE �E of the tag-B-meson
BTagNBout NeuroBayes output for the tag-B-meson

Table 2: Results from the upper limit calculation.

results

upper limit on branching ratio: B(B± ! K±⌧⌧)  1.19 · 10�3

classifier cut: BDT
out

� 0.129
signal window cut: ExtraEnergyECL  0.324 [GeV ]
classifier e�ciency: ✏

class

= 0.42
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Figure 5: Feature importance according to the BDT. The X-Axis displays the relative
frequency of occurring in the subtrees.
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Figure 6: Background contributions in the di↵erent variables.
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Figure 7: Background contributions in the di↵erent variables. The legend can be found
in figure 6.

12



Figure 8: Background contributions in the di↵erent variables. The legend can be found
in figure 6.
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Figure 9: Comparison of real data with MC using the same event selection. A
Kolmogorov-Test has been performed to measure the quality of MC for the
di↵erent variables.
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Figure 10: Comparison of real data with MC using the same event selection. A
Kolmogorov-Test has been performed to measure the quality of MC for the
di↵erent variables.
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Figure 11: Feature importance according to the BDT. The X-Axis displays the relative
frequency of occurring in the subtrees. This set of variables was chosen after
the data-MC comparison as all features are well described in MC and data.
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Figure 12: Computed branching ratio depending on the cut applied to the BDT output
and the signal window size. The signal window is described by the variable
”ExtraEnergyECL”. The minimum point in this topography is the expected
upper limit on the branching ratio. The cuts producing this minimum are
indicated with a black line.
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Figure 13: The resulting cut from varying the signal window. The numerical value found
is: ExtraEnergyECL  0.324 [GeV ]. The main contribution to the back-
ground is due to decays containing K

L

which escape identification.
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