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Abstract

This is a brief summary of my experience as a Summer Student at DESY. I worked
under the supervision of Jirgen Reuter and Christian Weiss on the validation of
WHIZARD , an event simulator. My tasks included the calculation of cross sections
for some exemplary processes, in order to test and possibly improve the performance
of WHIZARD .
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1 Introduction and Motivation

This brief report is a summary of my experience as a summer student at DESY. Apart
from the various and interesting lectures we had, I did a research internship in the Theory
Group under the supervision of Jiirgen Reuter and Christian Weiss. The topic of the
my work was the use and validation of WHIZARD [5, 6], a program system designed for
the efficient calculation of multi-particle scattering cross sections and simulated event
samples.

WHIZARD can be linked to other programs such as Openloops [3] for loop matrix elements
and FastJet [7], which provides clustering algorithms. The former is a fully automated
implementation of the Open Loops algorithm for the fast numerical evaluation of tree and
one-loop matrix elements for any Standard Model process, and the latter is a software
package for jet finding in p p and e™ e~ collisions.

The goal of my project is the utilization of WHIZARD to reproduce results from the
literature and other software such as MadGraph [8], in order to find possible bugs or
improvements. The focus will be put in processes at so-called QCD Next-to-Leading-
Order (NLO), which involves diagrams with exactly one additional strong coupling. In
the following section some exemplary processes will be studied.

2 Validating WHIZARD and Openloops
21 et e —wuug

At Leading Order (LO), this process is made up from the Feynman diagrams below:

diagram 1 QCD=1, QED=2 diagram 2 QCD=1, QED=2

diagram 3 QCD=1, QED=2 diagram 4 QCD=1, QED=2

Figure 1: LO Feynman diagrams generated with MadGraph for et e~ — u @ g.



However, the matrix elements for this one are divergent already at LO. In order to study
this in more detail, let’s focus on the first diagram in Figure 1:

Figure 2: One of the LO Feynman diagrams for et e~ — u u g.

Considering the up quark to be massless, the matrix element for the diagram in Figure
2 has the form:

‘(s Lo uk
M = ozsozzep (évue) <p2u7“k2*ypu> . (1)

In Equation 1, ;s and a. are the strong and EW coupling constants and €, the polariza-
tion vector of the gluon. Besides p and k are the 4-momentum of the photon and quark
propagator respectively and u and e, the spinors of the fermions involved, as can also
be seen in Figure 2 . The term corresponding to the quark propagator is the source of
divergence. Taking into account that the 4-momentum of the propagator is k = p, + py,
that term becomes:
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This term clearly diverges when p? = 0, pg =0 or # = 0. The divergence due to the first
two members is called soft divergence, due to the vanishing energy of the emitted particle,
and the one coming from the latest is called collinear divergence, and appears when the
particles move parallel with respect to each other. To deal with this divergences, one
usually applies cuts, which filter events in the divergent region achieving convergence
(See Table 2). This way a well-defined cross-section is calculated, but can be compared
to experimental results only if the same cuts are applied to the data. In our case, the
cuts applied to all particles in the final state are E; > 10 GeV and R;; > 0.4. Here, R;;
is defined as:

Rij = \/(m — ;)% + (65 — ¢5)2, (3)



where ¢; the azimuthal angle and 7); is the pseudorapidity of the ith particle:

=t fun ()] ®

with 6 being the angle between the particle and the positive direction of the beam axis.

WHIZARD MadGraph
oro (pb) | 70.304 +0.083 | 70.24 £ 0.24

Table 1: Cross-section of the process e™ e~ — u u g at /s = 100 GeV'.

2.2 Calculation of the NLO cross-section with Example

In the previous section we performed the calculation of the cross-section at LO (Born
level) of the process e™ e~ — u 4 g. Now, we will try to understand how the NLO
calculation works, which includes loop(virtual) diagrams and real tree-level diagrams of
higher order. We will show one example of each diagram for the aforementioned process
(Figures 3 and 4).

diagram 1 QCD=3, QED=2 real diagram 1 QCD=2, QED=2

Figure 3: Example of Loop diagram Figure 4: Example of Real diagram

Naively, the cross-section would have the following structure including the Born (B) ,
Virtual (V) and Real (R) contributions:

do™NO = do® + do™ 4 doV . (5)

However, the integration process is a little more complicated because the virtual and
real terms are divergent by themselves.However, the KLN theorem [9] guarantees that
the three contributions must be finite once suitable cuts are applied, which is assured by
the finiteness of the LO cross section. The singularities in these cases are also infrared



singularities, exactly as the ones of the previous section (collinear or soft). The problem
can be solved solved by including a “Substraction term” (§), that cancels the divergences:

do™MtO = do® + (daR - da‘s) + (dav + dcrs) . (6)

This Substraction term is calculated in WHIZARD using the FKS Scheme, explained in
[10]. A substraction scheme basically consists on determining the values of R and V in
the divergent limits and use them for the substraction. Table 2 shows the value of the
cross-section of the previous process:

LO Real (substracted) | Virtual (substracted) NLO

o (pb) | 3.7579 £0.0069 | —0.2178 £ 0.0043 0.1872 £ 0.0014 3.7272 £ 0.0083

Table 2: LO, Real with substraction, Virtual with substraction and NLO Cross-sections
of the process e™ e~ — w u g at /s = 200 GeV. The last column is the sum of
the previous three in accordance with Equation 6.

23 et e bbb Wt W~ at NLO QCD

Since some discrepancy has been found while studying the cross-section of this process
when comparing to [1], it is interesting to compare WHIZARD ’s result with MadGraph
and see if they both agree. The parameters are taken from [1] and summarized here:

almyz)™ = 127918, ay(m%) = 0.1176, Tz = 2.495 GeV,
Iw = 2.141 GeV, my = 172.5 GeV, Ty = 1.3745 GeV'1,
my = 120 GeV, T'y = 0.3692 1072 GeV

The results for the cross-section at LO are:

oro(fb)
Ve (GeV) ' ri7amp | MadGraph | Guo of al. 1]

1000 241.16 £0.52 | 240.5 £ 0.5 | 182.24 £ 0.07
1500 125.08 £ 0.26 | 1244 £0.3 | 82.73+0.03

Table 3: Comparison of the LO cross-section of the process et e~ —bb W+ W,

It is clear that both WHIZARD and Madgraph are consistent with each other. A possible
explanation for the disagreement with [1] could be that they did not take into account
diagrams including Higgs bosons. Such a result could be reproduced by letting the Higgs
mass go to infinity, nevertheless we do not see a big change for /s = 1000 GeV and

Tt is the NLO width, calculated using the same formula as in [1].



My =1.2-10" GeV:

OWh.My—int = 235.40 £ 0.49 fb, (7)
O MG My —int = 235.3 £ 0.6 fb. (8)

Let’s now have a look to the cross-section at NLO. At /s = 500 GeV, the results are:

WHIZARD MadGraph | Guo et al. [1]
oro (fb) | 673.27 £0.68 | 673.5+ 1.3 | 602.57 +0.30
onro (fb) | 551.7+6.50 548 + 20 975.0 £ 2.2

Table 4: Comparison of the NLO cross-section of the process et e~ — b b WT W™ at
Vs =500 GeV.

Moreover, a scan for increasing center-of-mass energies is displayed in Figure 5.
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Figure 5: Cross-section at NLO for et e~ — b b W+ W~ with scale u = /5.

As a conclusion for this process, we could affirm that there might be a problem in the
calculations of [1], given the agreement at LO and NLO of two independent programs.

24 et e — jjjjand et e — jjj

Let us now consider the case of electron-positron annihilation into four jets. What one
sees experimentally is a cone of hadrons coming from a point due to the hadronization
process of colour charged particles (¢ and g), so the theoretical calculation for this cross-
section is obtained by considering j = u,d,c,s,b,u,d,¢,5,b,g. We use the FastJet [7]
package, which is linked to WHIZARD , but only after performing some modifications in the
code, so that the Aachen-Cambridge jet algorithm [11] can be used for electron positron
collisions.



A jet algorithm is a procedure to find and separate jets in experimentation and in theory.
Basically one imposes certain conditions to identify a jet as separate from others. In
particular, the Cambridge-Aachen algorithm imposes for two jets namely i and j to be
considered different that:

2min(E?, E?)
Yij = T(l —c0s0i5) > Yeut, (9)

where @) is a reference scale, usually chosen to equal the renormalization scale. The
algorithm matches the two jets into one if they don’t fulfill the condition. This procedure
is also strong enough to avoid collinear and soft divergences, because of the condition in
f and energy.

We compare the results obtained by using WHIZARD with [2] and [4]. Following their
convention, we normalize our results to oj; (the LO cross-section of the process et e™ —
jj), because this way the dependence on the electroweak coupling constants cancels. Our
results at LO can be seen in Figure 6, and they are clearly compatible to the ones of [2]
and [4]. Moreover, an equivalent result at LO can be obtained without any jet algorithm
but just imposing a cut in which we impose the condition of Equation 9. At NLO,
however, this would not lead to the same result, since in this situation there could be
more than 5 jets in final state which can be matched together. For example, if two of
the five jets were too close, it wouldn’t pass the cut. However, the jet algorithm would
match them together, having four jets in the final state, and so passing the cut.
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Figure 6: Cross-section at LO for et e~ — jjjj with u = /s = 91.187 GeV = my
using Cambridge Algorithm for jet identification and a simple cut.

Besides, we studied what happens in the production of 3 jets. This result is again
comparable to the one in [2].
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Figure 7: Cross-section at LO for e™ e~ — jjj with u = /s = 91.187 GeV = my using
Cambridge Algorithm for jet identification.

3 Conclusion

WHIZARD is a powerful tool for cross section calculation and event simulation. Neverthe-
less, NLO calculations are an experimental feature which naturally contains bugs and
hidden problems and therefore, validation and feedback is essential to improve it.
During the validation a few bugs were found and communicated, so that they could be
solved. The majority of the errors were found during calculations at NLO. However,
some of them could not be solved as quickly, for instance, the calculation at NLO of four
jets production. In this particular case, two issues arose. First, the clustering FastJet
algorithm at NLO does not seem to work as at LO and does not achieve convergence.
Second, the flavour structure of the 4 jets at NLO includes some processes having order
4 in the EW coupling, whereas it should only include order 2 in both strong and WE
couplings.

Of course, the validation task is far from being complete. More processes have to be
calculated, focusing on NLO, so that further problems come out. Moreover, for experi-
mental features, feedback from the users is required.
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