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Abstract

Numerous methods for the nondestructive characterization of thin epitaxial
films, multilayers and superlattices by X-ray diffraction (XRD) have been de-
veloped since X-rays were discovered in 1895. In this report, dynamical theory
of XRD is used to describe the diffraction profiles of crystalline structures in
Bragg case reflection. A software (dynXRD) was developed in order to simu-
late the rocking curves of various types of multilayers and superlattices, including
deformed crystals. Results were compared with experimental data, leading to the
determination of the strain profile of the sample considered.
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1 Introduction

The discovery of X-ray diffraction in crystals by Laue, Friedrich and Knipping in 1912
served as the starting point for the development of scientific research along a number of
important lines. One of the first and best-known lines of investigation, which advanced
rapidly as a result of the discovery, was X-ray analysis of the atomic structure of crys-
tals. The huge amount of experimental data on X-ray structural studies accumulated
over more than half century was one of the most important preconditions for developing
solid-state physics and chemistry, on the one hand, and the production, processing, and
utilization of many materials of contemporary technology, on the other.

Inspired by the result of Friedrich’s and Knipping’s experiment, Laue devised the sim-
plest theory of three-dimensional diffraction and interference. It was referred to as
geometrical or kinematical theory. A characteristic feature of kinematical theory is that
it takes into account only the interactions of each atom with the primary, or refracted,
wave in a crystal. It neglects the interaction of an atom with the wave field induced in
the crystal by the collective scattering of all the other atoms. In other words, it ignores
the interaction of the diffracted waves with the refracted one. This leads to incorrect
results because energy is not conserved.
The kinematical theory is a good first approximation, when applied to highly imperfect
crystals consisting of very small mosaic blocks. For the highly perfect type of crystal
however, it is necessary to use the more rigorous dynamical theory, and grossly incor-
rect results would be obtained by using the kinematical approximation. In this work,
the reflection of X-rays at the surface of perfect crystals and multilayers was therefore
described using the dynamical theory of diffraction.

2 Dynamical theory of diffraction

As the incident wave propagates down into a perfect crystal its amplitude diminishes, as
a small fraction is reflected into the exit beam as it passes through each atomic plane. In
addition there is a chance that the reflected beam will be re-scattered into the direction
of the incident beam before it has left the crystal. The theory which has been developed
to allow for these multiple scattering effects is known as dynamical diffraction theory.
In the method first developed by C. G. Darwin in 1914, the crystal is treated as an
infinite stack of atomic planes, each of which gives rise to a weak reflected wave which
may subsequently be re-scattered into the direction of the incident beam.

2.1 One layer: reflection and transmission

We consider first the reflection from a single layer of the crystal near the Bragg case. Let
the incident beam be σ-polarized (i.e. the electric field is perpendicular to the scattering
plane) and have a wavelength λ. We can calculate the amplitude of the reflected and
transmitted beams by considering the radiation scattered from an element of area dϵdη
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Figure 1: Representation of X-rays from a point source S falling on a layer in the XY -
plane near the Bragg condition. Scattered radiation is observed at the point
P . For the origin O, the path length R + r is a minimum.

and integrating over the layer. We obtain the following expression for the instantaneous
value of the electric field at point P (Figure 1)

EP = −igHEOe
(2πi/λ)[(R+r)−ct]. (1)

We introduced the abbreviation

gH = re
λFHd

V sin θB
(2)

where re = e2

mc2 = 2.818 · 10−5 Å is the classical electron radius, FH is the structure
factor for the reciprocal lattice vector H, d is the spacing of the reflecting planes, V is
the volume of the unit cell and θB is the Bragg angle.

Figure 2: For the scattering by the atoms in a plane, the path lengths are the same for
a point P and its mirror image P ′.

Similarly, the electric field in the beam which has passed through a layer of unit cells
(Figure 2) is expressed by

EP ′ = (1− ig0)EOe
(2πi/λ)[(R+r)−ct] (3)

where

g0 = re
λF0d

V sin θB
. (4)

Since V is of order d3, gH and g0 are of order r0/d ≃ 10−5 ≪ 1.
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2.2 Diffraction from a set of planes

Figure 3: Diffraction from a set of
atomic planes.

We now turn our attention to the problem of how
to calculate the scattering from an infinite stack of
atomic planes (thick crystal limit), where each one
reflects and transmits the incident wave according
to the equations given in section 2.1. The planes
are labelled by the index r, with the surface plane
defined by r = 0. The objective is to calculate
the amplitude reflectivity, which is the ratio of the
total reflected wavefield S0 to that of the incident
field T0.
Both outside and within the crystal there are two
wavefields: the T field propagating in the direction
of the incident beam, and the S field in the direc-
tion of the reflected beam (figure 3).
The derivation of Bragg’s law relies on the fact that
the reflected wave from layer r+1 is in phase with
the one from layer r if the pathlength differs by an
integer number of wavelengths (equation 5).

2 sin θB = mλ (5)

As we are interested in deriving the (small) bandwidth of the reflecting region, the phase
is restricted to small deviations about mπ, and the phase is given by

φ = mπ +∆ (6)

where ∆ is a small parameter. In our development of Darwin’s theory ∆ will be used as
the independent variable.
Let the T field just above layer r on the z axis be denoted Tr, and similarly for Sr. On
being transmitted through the rth layer, the S field just above layer r + 1 changes its
phase according to equation 3, so that Sr can be written as (1− ig0)Sr+1eiφ. To obtain
the total field, we must also add the part due to the reflection of the wave Tr. In total
then we have

Sr = −igHTr + (1− ig0)Sr+1e
iφ (7)

Next consider the T field just below the rth layer. The phase is shifted by φ. This field
is composed of contributions from the field Tr after it has been transmitted through the
rth layer, and from the wave Sr+1eiφ after it has been reflected from the bottom of the
rth layer. This leads to the second difference equation

Tr+1e
−iφ = (1− ig0)Tr − igH̄Sr+1e

iφ (8)

A suitable trial solution for 7 and 8 including a phase shift and attenuation has the form

Tr+1 = e−χeimπTr, Sr+1 = e−χeimπSr (9)
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where χ is a general complex. We can now insert our trial solution into the equations.
Noting that e−iφ = e−imπe−i∆ and expanding all the small parameters to second-order
terms yields

χ2 = gHgH̄ − (∆− g0)
2 (10)

which has the solution
iχ = ±

√
(∆− g0)2 − gHgH̄. (11)

We can now calculate the amplitude reflectivity by inserting our solutions into equation
7. Let g be equal to

√
gHgH̄. We obtain

XR =
S0

T0
≃ g

iχ+ (∆− g0)
(12)

In order to obtain explicit formulae for the Darwin reflectivity curve the variable η is
introduced and defined by

η =
∆− g0

g
. (13)

From equation 12 the amplitude reflectivity curve in terms of η is

XR =
S0

T0
=

⎧
⎪⎨

⎪⎩

η −
√
η2 − 1 for η ≥ 1

η − i
√

1− η2 for |η| ≤ 1

η +
√
η2 − 1 for η ≤ −1

(14)

2.3 General case: substrate

kin kout

qn

Figure 4: Asymmetric Bragg reflection. The
widths of the incident and scat-
tered beams are different.

In general the surface of the crystal will
not be parallel to the atomic planes which
reflect the incident beam, as shown in pic-
ture 4. This implies a compression of the
width of the exit beam. The asymmetry
parameter b is defined as

b =
γ0
γH

(15)

where γ0 is the cosine of the angle between
the incident beam and the surface normal
and γH is the cosine of the angle between
the diffracted beam and the surface nor-
mal (equation 16; in the Bragg case b is
always negative).

γ0 =
kin · n̂
|kin|

, γH =
kout · n̂
|kout|

(16)
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Equation 14 is still valid in the asymmetric case if we include the asymmetric parameter
in the variable η as follows

η =
−b∆− g0(1− b)/2

|b|1/2g (17)

From equations 5 and 6 and using the fact that ∆ is small we obtain

∆ =
2 cos θBπd

λ
(θ − θB) (18)

Substitution of the expressions 2, 4 and 18 into equation 17 leads to a new expression
for η

η =
−b(θ − θB) sin 2θB − 1

2ΓF0(1− b)

|b|1/2CΓ(FHFH̄)
. (19)

2.4 General case: epitaxial layer

In a similar way it is also possible to use dynamical theory to calculate the reflected
and transmitted amplitude ratios (XR and XT ) for layers of arbitrary thickness t. For
convenience we introduce the parameters

T = πΓ(FHFH̄)
1/2 t

λ|γ0γH|1/2
(20)

α = T (η2 − 1)1/2 (21)

Q = (η2 − 1)1/2 cosα + iη sinα. (22)

where η is the variable we defined in equation 19.
The equations for XR and XT reduce to

XR =
i sinα

Q
(23)

XT =
(η2 − 1)1/2

Q
. (24)

The absolute squares of XR and XT are the reflectivity (figure 5) and transmittivity of
the layer.
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Figure 5: Darwin curve of a MgO 002 reflection. If X-ray absorption were absent, the
top of the curve of the infinitely thick crystal would be flat (Darwin plateau).

2.5 Recursion formulae

When an epitaxial layer with reflected and transmitted amplitude ratios X1
R and X1

T

is added to a substrate with ratios X0
R, X

0
T , the new amplitude ratios Xt, W for the

crystal can be derived in a recursive way. In combining the crystal parts in figure 6, the
incident beam of the lower part is replaced by the transmitted beam of the upper part.

Xt

Z Y

W

X1
R, X

1
T

X0
R, X

0
T

Figure 6: In the recursion process a thin layer of thickness t is added to the previous layer
so that the reflected and transmitted amplitude ratios at the surface change
from X0

R, X
0
T to Xt, W .

Owing to multiple reflections the amplitude ratios will vary but can be expressed in the
original values X0

R, X
0
T , X

1
R and X1

T , so that

Xt = X1
TY +X1

R (25)
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Z = X1
RY +X1

T (26)

Y = X0
RZ (27)

W = X0
TZ. (28)

After substitution, we obtain the reflected and transmitted amplitude ratios for the
sample

Xt =
X1

R −X0
R(X

1
R
2 −X1

T
2)

1−X0
RX

1
R

(29)

W =
X0

TX
1
T

1−X0
RX

1
R

. (30)

3 Implementation

In order to simulate the rocking curves of strained crystals, multilayers and superlattices
in the dynamical theory, I developed a Python program. The program dynXRD is
applicable to any coplanar and non-coplanar Bragg-case geometry (see section 3.2) and
to crystals with any number of different layers. Layers with various strain profile are
also implemented (see section 3.4). At the moment perpendicular (σ) polarization is
the only one enabled, but parallel (π) and mixed polarizations may be included in the
future. The program requires pyasf (https://github.com/carichte/pyasf) for the
definition of the crystal structure and for the calculation of the structure factors.

3.1 Structure

The program calculates the reflected and transmitted amplitude ratios for an instance
object of the class Sample. A Sample object is nothing but a sequence of other objects
of the class Epitaxial Layer.
For each Epitaxial Layer the following attributes have to be given:

• structure of the crystal, which is taken from a .cif file

• thickness of the layer in Angstrom (should be larger than unit cell thickness)

• R matrix, i.e. a rotation matrix containing information about the orientation of
the unit cell with respect to the surface of the sample

• Miller indices of the considered Bragg reflection.

A special type of Epitaxial Layer is defined by the class Substrate. The thickness of a
Substrate is set to be infinity and the transmitted amplitude is zero. A Sample is then
made of a Substrate object and a list of Epitaxial Layer objects.
Once the Miller indices (with respect to the substrate) are given by the user through
the method Sample.set Miller, the program calculates the q vector in the sample sys-
tem by using rotation matrices. The Miller indices with respect to a layer are then

9

https://github.com/carichte/pyasf


obtained as the integers which best approximate the coordinates of the q vector in the
reciprocal lattice system of the crystal. As a result we get the reciprocal space vec-
tor which corresponds to the Bragg case for the layer. The expressions for the angles
between the incident beam and these vectors are then calculated with the method Sam-
ple.calc theta layer. After evaluation of these expressions we get the angle θ to insert in
equation 19.

3.2 Geometrical parameters

The geometry of each crystal layer is needed in order to calculate the change in the
angle θ and the quantities γ0 and γH that we used to define the asymmetry parameter
b (equation 15).

kin kout

qn̂

x̂

ŷ
ẑαα

Figure 7: Asymmetric reflection in non-coplanar geometry.

Let a, b and c be the lattice vector and a∗, b∗ and c∗ the reciprocal lattice vectors.
Let x̂, ŷ and ẑ be the unit vectors of the sample system, such that the normal to
the sample surface n̂ is parallel to ẑ and that x̂ lies on the scattering plane. The ge-
ometry of the crystal layers can be specified in 2 different ways. With the method
Epitaxial Layer.calc orientation the user can set the coordinates in the reciprocal lattice
system of two vectors v⊥ and v∥ which are respectively parallel to ẑ and x̂. The two vec-
tors given should be perpendicular by definition. If this is not the case an error message
is printed. To prevent this, the method Epitaxial Layer.calc orientation from angle was
developed: the user can give as input an angle ψ, which is the angle between v∥ and a
reference vector p. The vector p is defined as the vector perpendicular to b∗ and v⊥:

p = b∗ × v⊥. (31)

If b∗ and v⊥ are parallel then p is defined as

p = v⊥ × c∗ (32)
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v⊥ p

v∥

ψ

Figure 8: Geometrical
characterization
of the Bragg
reflection.

Specification of v∥ is no longer required since it can be cal-
culated from ψ. Now v∥ is automatically perpendicular to
v⊥ and no errors occur.
The vector v⊥ and v∥ specify the geometry of the reflection.
If v⊥ and H are parallel - i.e. if the asymmetry factor b is
equal to −1 - the reflection is symmetric. If this condition
is not fulfilled the reflection is said to be asymmetric. We
call the geometry coplanar when the incident wave vector
kin, the reciprocal lattice vector H, and the surface normal
n lie in the same plane or equivalently when v∥, v⊥ and H
are coplanar.

3.3 Reflectivity

Calculation of reflected and transmitted amplitudes of a layer is implemented via the
methods Epitaxial Layer.calc parameters and Epitaxial Layer.calc amplitudes which ap-
ply equations 14 (for the substrate), 23 and 24 (for the epitaxial layers).
After solving the dynamical diffraction problem for each layer, the reflection from the
whole stack is calculated with equation 29:

def calc_reflectivity(self, theta, Energy, Polarization=1):
self.calc_theta_layer()
self.calc_g0_gH(Energy)
self.substrate.calc_amplitudes(theta, Energy)
X0=self.substrate.XR
for layer in self.Layers:

layer.calc_amplitudes(theta, Energy)
XR=layer.XR
XT=layer.XT
Xt=(XR-X0*(XR**2-XT**2))/(1-X0*XR)
X0=Xt

return X0

3.4 Strained crystals

The recursion formulae (29) and (30) can be used for samples made of different epitaxial
layers, but also hold for a single crystal with a given strain profile. The strained crystal is
treated as a stack of layers with constant strain. To do so a new class of Epitaxial Layer
was defined. An instance of a Strained Layer requires two arrays of the same length:
an array containing the depths (distances from the substrate surface) and an array
containing the strain of a lattice parameter (for example ∆a

a ) at different depths.
The amplitudes of reflected and transmitted beams are calculated for each sublayer
with constant strain by substituting the value of the modified lattice parameter in the
expressions and using equations 23 and 24. The total amplitudes of the layer are then
obtained by iterating the formulas 29 and 30 through all sublayers.
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4 Results

The program dynXRD was first tested by comparing the results with the program
GID sl created by Sergey Stepanov (http://x-server.gmca.aps.anl.gov/GID_sl.
html). Some examples are reported in sections 4.1 and 4.2. Results for strained layers
also match with the rocking curves calculated by Bartels, Hornstra and Lobeek [1] (fig-
ure 12). In section 4.3 simulation and experimental data are compared in order to get
information about the strain profile of the sample.

4.1 Rocking curves of crystalline multilayers

Figures 9 and 10 show the simulated rocking curves of crystalline layers (cubic MgO
and trigonal LiNbO3) of thickness 100 nm when an incident beam of energy 10 keV is
applied.

(a) Symmetric case: v∥ = (1,−1, 0), v⊥ = (1, 1, 1). (b) Asymmetric case: v∥ = (3,−2,−1), v⊥ = (1, 1, 1).

Figure 9: 002 reflection for a MgO layer of thickness 100 nm in non-coplanar geometry.

It can be noted that simulations made with GID sl and dynXRD give analogous results
in all cases even though the methods used by the programs are different.
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(a) Symmetric, coplanar case: v∥ = (0, 0, 1), v⊥ = (1, 0, 0).
(b) Asymmetric, non-coplanar case: v∥ = (−1, 1, 4),

v⊥ = (1, 1, 0).

Figure 10: 300 reflection for a LiNbO3 layer of thickness 100 nm.

4.2 Diffraction profiles of strained crystals

Simulations of strained crystals are shown in figure 11. The main peak exhibits a Darwin
plateau which is due to reflection from the substrate. On the other hand, the smaller
peak in figure 11a reveals the presence of the strained layer. Both plots show a 002
reflection with energy 10 keV. The substrate and the layer have the same structure and
orientation. The layer is 100 nm thick and has 1% lattice strain.

(a) MgO (cubic unit cell): symmetric, coplanar case.
(b) BaTiO3 (tetragonal unit cell): asymmetric, non-

coplanar case.

Figure 11: 002 reflection for strained crystals.

A discrepancy can be noted in figure 11b. The peaks related to the strained layer do
not match in the simulations because of a different definition of the strain. In dynXRD
we introduced a strain in the lattice parameter c (i.e. the length of the lattice vector
which is different from the others). In GID sl the crystal can only be strained in the
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perpendicular direction (along the normal to the surface, which in our case is (1, 1, 3)).
Results can only be compared with dynXRD after finding the equivalent strain in all
the lattice parameters and angles.
Figure 12b shows the 004 Cu Kα1 reflection of a structure consisting of four epitaxial
GaAs layers of different thickness on a GaAs substrate [1]. An example of how to use
the program for this simulation is here reported. The output and the plot are shown in
Figure 12a.

import pyasf
import dynXRD
import sympy as sp
import pylab as pl
import numpy as np

# Substrate
structsub = pyasf.unit_cell("9008845") #GaAs entry in Crystallography Open Database
Sub=dynXRD.Substrate(structsub)

# Strained layers
struct1=pyasf.unit_cell("9008845") #GaAs entry in Crystallography Open Database
tvector=np.array([0, 3, 4.5, 5.5, 6])*1e4 # array of layer boundaries in A
strain=np.array([20, 15, 10, 5])*1e-4 # strain values for each layer
layer1=dynXRD.Strained_Layer(struct1, tvector, a=strain)

# Geometry of substrate and layers
psi=0
v_perp=sp.Matrix([0,0,1])
Sub.calc_orientation_from_angle(psi, v_perp)
layer1.calc_orientation_from_angle(psi, v_perp)

# Crystal sample
crystal=dynXRD.Sample(Sub, layer1)

# Miller indices
R = 0,0,4
crystal.set_Miller(R)

# Reflectivity
Energy=8048
crystal.calc_g0_gH(Energy)
thBragg= Sub.thetaBragg
angle=pl.linspace(0.9975, 1.0008,501)*thBragg
XR=crystal.calc_reflectivity(angle, Energy)

# Values and Plot
crystal.print_values(angle, Energy)
pl.plot((angle-thBragg), abs(XR)**2)
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Looking up Crystallography Open
Database for entry 9008845...

Cubic
Looking up Crystallography Open Database

for entry 9008845...
Cubic
wavelength (A): 1.54050695825 Energy

(eV): 8048
Bragg reflection:
Matrix([[0], [0], [4]])
Surface: Matrix([[0], [0], [1]])
Bragg plane angle to surface (degrees):

0.0
Bragg angle (degrees): 33.0216106979
Incident angle (degrees): 33.0216106979
Exit angle (degrees): 33.0216106979
Asymmetry factor: -1.00000000000000
Symmetric
Coplanar

(a) Simulation with dynXRD.

(b) The substrate surface is taken as the origin of the thick-
ness scale in the depth profile. The plot from Bartels et
al. [1] compares diffraction profiles calculated with the
dynamical and kinematical theory.

Figure 12: The results of simulation with dynXRD 12a are in good agreement with the
plot 12b from literature.

4.3 Comparison with experimental data

The program was used to investigate the strain profile of a real SrTiO3 sample. An
external electric field was applied on the crystal, inducing a transition from a cubic
symmetry to a tetragonal symmetry [2]. We made the assumption that the strain of the
c parameter can be modelled by the following function

∆c

c
= Ae−x(1 + x) (33)

where A is the maximum strain and x is the relative depth (i.e. x = depth/ts where ts is
related to the thickness of the distorted layer). Gaussian and lorenztian functions were
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also tested but showed lower compatibility with experimental data. The reflectivity
of the sample was measured for the 002 reflection in a symmetric coplanar geometry
(Energy = 8keV ). The model parameters A and ts where then fitted against the
measured data. Figure 13 shows a plot of the resulting fitting function compared to
experimental data.

Figure 13: 002 symmetric coplanar reflection from a strained sample of SrTiO3.

The simulated curve shows pronounced oscillations which are due to the finite layer
thickness. They cannot be seen in the measurement because of a limited bandwidth,
limited coherence and certain divergence of the X-ray beam. Furthermore, the oscil-
lations may be averaged out due to layer inhomogeneities. The refined values are ap-
proximately 1% for the maximum strain A and 0.6 µm for the strained layer thickness ts.

5 Conclusion and outlooks

The program dynXRD was proved to correctly calculate rocking curves for complicated
layered structures consisting of perfect and distorted crystals, in coplanar and non-
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coplanar Bragg-case geometry. It was used to implement fitting procedures in order to
obtain structural information, as described in section 4.3. However, since the phase of
the diffracted beam was not measured, one cannot prove the uniqueness of the profile.
Improvements to the program can still be made in the future by adapting the strain
definition to a more general case. This can be accomplished by the introduction of a
strain matrix.
Applications of the program in data analysis of material science experiments range from
calculation of reflectivity or anomalous transmission from perfect crystals over determi-
nation of strain profiles to modeling of X-ray standing waves.
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