Three-Dimensionally Visualized Project Based on IDL
Program in Beam-Driven Wakefield Acceleration

Dezhi Cao
Tsinghua University, China

Supervisor
Timon Mehrling
FLA Group

DESY Summer Student Program, 2015

September 4, 2015

Abstract

This report describes project about three-dimensional visualization based on
IDL(Interactive Data Language) used for results produced by simulation in HDF5
format. Reading data file and building graphical models by using IDL’s library,
we can create pictures in png format and export movie in mp4 format. Written
scripts have been debuged in IDLDE(IDL Development Environment) so that we
can run in command line directly with adjustable parameters.

The work will help us to understand physical procedure of beam-driven wakefield
acceleration in space and time scale,and that is what I have done in FLA (Forschung
Linear Accelerator) group during the DESY Summer Student Program.

Contents

1

Introduction

1.1 Plasma Wakefield Acceleration
1.2 PIC Simulation and Osiris Code
1.3 IDL Introduction and Code Style

Three Dimensional Visualization

2.1 Flow Chart of Project

2.2 Plotting Plasma Density Surface in Three Dimension
2.3 Plotting Three-Dimensional Models of Electron Beam Particles

2.4 Creating MP4 Movie
Summary

Acknowledge

1 Introduction

1.1 Plasma Wakefield Acceleration

Plasma wakefield acceleration of electrons with high-gradient field, especially in
laser-driven wakefield accelerators and beam-driven wakefield accelerators, has pro-
gressed rapidly, leading to an improvement in the quality of the accelerated beams.

People has validated laser-driven wakefield accelerators(LWFA) as a promising tech-
niques for future because of some realization such as GeV-beam [1], and the application
of the generated beams to drive compact extreme ultraviolet [2] and x-ray sources [3]. At
the same time, beam-driven plasma wakefield acceleration(PWFA) made great progress
culminating in the demonstration of energy doubling of part of the 42 GeV SLAC elec-
tron beam [4].

However,insufficient control over the electron-injection process in PWFA have a
great influence on the quality of electron bunches. That’s why theoretic simulation and
experiments of evolution of electron beam in PWFA process is extremely significan-
t. Therefore, three dimensional visualization used for analyzed data will enhance our
understanding of phenomenon in some key points, such as hosing instability.

1.2 PIC Simulation and Osiris Code

The PIC(Particle-In-Cell) technique is an excellent approach to simulate a huge
variety of plasma-particles-behaviours, especially highly nonlinear and kinetic processes
that occur during high-intensity particle and laser beam-plasma interactions.It’s able
to compute large sets of position, momentum, energy and their self-consistent fields of
particles [5].

Osiris, a three-dimensional, relativistic, massively parallel, object oriented particle-
in-cell code for modeling plasma based accelerators, was developed in Fortran 90 and
then runs on multiple platforms (Cray T3E, IBM SP, Mac clusters). It is through
an object-oriented programming style that divides the code and data structures into
independent classes of objects. This programming style maximizes code reusability, re-
liability, and portability, which break up the large problem of a simulation into a set of
essentially independent smaller problems that can be solved separately from each other.

Osiris code achieved this by handling different aspects of the problem in differ-
ent modules (classes) that communicate through well-defined interfaces. That’s the
reason we discuss the object-oriented design of the code, the encapsulation of system
dependent code and the parallelization of the algorithms involved. It can make it pos-
sible allowing individuals in a code development team to work independently. There-
fore,implementation of communications as a boundary condition problem and other key
characteristics of the code, such as the moving window, open-space and thermal bath
boundaries, arbitrary domain decomposition, 2D (cartesian and cylindric) and 3D simu-
lation modes, electron sub-cycling, energy conservation and particle and field diagnostics
are always discussed [6].

Finally the results from three-dimensional simulations of particle and laser wake-

field accelerators are presented, in connection with the data analysis and visualization
infrastructure developed to post-process the scalar and vector results from PIC simula-
tions [7].

1.3 IDL Introduction and Code Style

IDL, short for Interactive Data Language, is a programming language used for data
analysis. It is popular in particular areas of science, such as astronomy, atmospheric
physics and medical imaging. IDL shares a common syntax with PV-Wave and originat-
ed from the same codebase, though the languages have subsequently diverged in detail.

IDL is vectorized, numerical, and interactive, and is commonly used for interactive
processing of large amounts of data (including image processing). The syntax includes
many constructs from Fortran and some from C.

IDL has been applied widely in space science, for example in solar physics. The
European Space Agency used IDL to process almost all of the pictures of Halley’s Comet
taken by the Giotto spacecraft. The team repairing the Hubble Space Telescope used
IDL to help them diagnose anomalies in the main mirror. In 1995, astronauts on board
a space shuttle used IDL loaded on a laptop to study ultraviolet radiation. Currently,
amongst other applications, IDL is being used for most of the analysis of the SECCHI
part of the STEREO mission at NRL, USA, and at the Rutherford Appleton Laboratory,
UK.

Although IDL has widely used in scientific field. Actually, facing with nearly 60
folders and 500 code file is a big challenge especially it is totally new to me. The first
thing I can do is studying the feature of IDL language. Spending some time on learn-
ing it, I make a nest about its organization of code below(Fig.1) in my opinion. After
comparing to C and Matlab I have learned before, it has different regulations such as
definition of function and procedure, transferring parameters between code files, 10 rules
and etc. But it is also the high level language in deeply thinking.

{ PRO1 Y 8 Y

|

\

PRO1

PRO2

PRO3

/

\ END1

Functionl
End

w

[PrO2

0
print,'Hello World',Varl,Var2

v

([PrO3

\END

\,

|_EnD3

ot
if var gt var2 then begin

end

Functionl

fori=0, var3 then begin
N_ELements(vard)
Keyword_set(var5)

Figure 1: Example of Organized Code Structure

In addition, I provide some code examples in scripts of IDL shown in Fig.2.

PRO 0siris_Analysis_3D, EXTRA=extrakeys, $
; Axis Ranges
XRANGE = xrange, YRANGE = yrange, ZRANGE = zrange, §
d Labels

o
1
4 XTITLE = XAxisTitle, YTITLE = YAxisTitle, ZTITLE = ZAxisTitle, §
TITLE = PlotTitle, SUBTITLE = PlotSubTitle, TIME UNITS = time units, $
26 ; Slicer Operation
7 SLICER = use slicer, $
8 EXTRAMODEL = extraModel,$
9 i
1

FILENAVE = FileName, $ i (in) name of the file to open
PATH = filepath, $; (in) path to the file to open
N_ISOLEVEL = n_Isolevel,$;(in)number of iso-surface,
33 ;0utput parament
34 OUTNAME = outname, $; (out) name to the file to output
35 OUTFORMAT = outformat ,§ ; (out) format to the file to output
36 OQUTPATH = outpath ; (out) path to the file to output
37
S RS ROTEERTRROIERUCERRCEROEED ST UUTEEED RS D E—
39

405 ; TIME UNITS
42 ; Units to display next to the time information

43
44 if N_Elements(time_units) eq © then time_units = '1 / !Mw!Dp!N'

45
46

PN —————————————————————————————— WatiCode
48

49 ; Gets the Data

50

51

52 Osiris_Open Data, EXTRA=extrakeys, pbata, $

53 TIMEPHYS = time, §

54 N = dxN, FORCEDINS = 3, §

55 XRANGE = xrange, YRANGE = yrange, ZRANGE = zrange, $

56 XAXTS = XAxisData, YAXIS = YAxisData, ZAXIS = ZAxisData, $

57 DATATITLE = DataName, DATALABEL = Datalabel, DATAUNITS = Units, $

58 XLABEL = x1label, XUNITS = xlunit, $

59 YLABEL = x2label, YUNITS = x2unit, §

60 ZLABEL = x3label, ZUNITS = x3unit, $

61 FILENAVE = FileName, $; (in) name of the file to open

62 PATH = filepath, $; (in) path to the file to open

Figure 2: Code Example of the Analysis File

2 Three Dimensional Visualization

2.1 Flow Chart of Project

The whole folder set consists of sixty nine sub-folders and five hundred and thir-
ty three code files, but my task is drawing the three dimensional picture and out-
put the movie. Therefore, running main code file such as “osiris_analysis_3d.pro”,
“osiris_movie_3d.pro”, “osiris_particles.pro”, “osiris_particles_movie.pro” and its callback
function contained in folder “plot3”,“misc” and so on, are my targets during six weeks.
Now I figured the relationship between main process and making two flowcharts here.
The one is plotting picture for plasma surface(Fig. 3) and the other is drawing picture
with particles models(Fig. 4).

@

@\@;
N

/ |
/

@

N \@
N

Figure 3: Flow Chart of Main Function in Plotting Plasma Surface

Draw Particles Models J

Figure 4: Flow Chart of Main Functions in Particles Modeling

2.2 Plotting Plasma Density Surface in Three Dimension

Taking notes for variables help us understand meaning of transferred parameter,
then debugging the programmer step by step solve problems in functions that using
wrong index of array. Thus, we can easily plot pictures of plasma surface shown in
Fig. 5.

charge
Time = 11011 [1/w,]

Figure 5: 3D Plot of Plasma Density After a Travel Time of 110.11[1/w,)]

Optimizing parameters and choosing proper value to generate more plasma surfaces,
and then drawing plasma surface in different color will output good-looking picture.

From the picture shown in Fig. 6, we can see the plasma density distribution in
time scale 110.11[1/w,]. It shows us shape of plasma surface which looks like a bullet
directly after electron beam goes through.

charge
Time = 11011 [1/w,]

Figure 6: Optimized 3D Plot of Plasma Density After a Travel Time of 110.11[1/w,)]

The distribution of longitudinal electric field is surrounded in electron beam. That’s

main driven force which accelerates the second electron beam. The picture is shown in
Fig. 7

el
Time = 42500 [1/w,]

Figure 7: 3D plot of Longitudinal Electric Field After a Travel Time of 425.00[1/w,]

In different time scale, we can see evolution of plasma density ,such as in time scale

110.11[1/wy], shown in Fig. 8. From that, we know that accelerated beam has becomed
relativistic because its shape is narrow than before.

charge
Time = 1950.00 [1/w,]

Figure 8: Optimized 3D Plot of Plasma Density After a Travel Time of 1950.00[1/w,]

2.3 Plotting Three-Dimensional Models of Electron Beam Particles

In addition, properties of particles, including position, momentum, energy and etc

simulated by osiris code, will be loaded into Variables through the pointer pSpecies
according to their string labels “x17, “x27, “x3”, “p1”, “p2”, “p3”, “ene”, “q”, “tag”
(Fig. 9).

Osiris_Open_Particles, FILE = file, NUMPAR = numpar, NUNSPECIES = numspecies, $
SPIDX = spidx, SPNPAR = spnpar, TIME = time, ITER = iter, $
NODE = node, $
pSpecies

o0id some error when particles is zero;
it :spnpar eq 0) then GoTO, SKIP

SpID 0
lat

gam = sqrt(lnutal(((pspecies[spID]).part[*].p[*]1)"2,1))
case x1dir of

X1' : xdata = (*pSpecies[spID]).part[*].x[0]
x2' : xdata = (*pSpecies[spID]).part[*].x[1]
x3' : xdata = (*pSpecies[spID]).part[*].x[2]
28 : xdata = (*pSpecies[spID]).part[*].p[0]
p2 : xdata = (*pSpecies[spID]).part[*].p[1]
p3' : xdata = (*pSpecies[spID]).part[*].p[2]
ganma’: xdata = gamma
q : xdata = (*pSpecies[spID]).part[*].q

else :begin
print, "Wrong input,Input parameter:X1DIR = ?('x1','x2','x3','pl','p2','p3", 'gamma’,'q")"
return

endcase

if (dim ge 2) then begin
case x2dir of

x1 : ydata = (*pSpecies[spID]).part[*].x[8]
x2 : ydata = (*pSpecies[spID]).part[*].x[1]
x3' : ydata = (*pSpecies[spID]).part[*].x[2]
pl ydata pSpecies [spID]).part[*].p[e]
p2 ydata pSpecies [spID]).part[*].p[1]
p3’ data pSpecies [spID]).part[*].p[2]
gamna': ydata = gamma

q : ydata = (*pSpecies[spID]).part[*].q
else:begin

print,"wrong input, Input parameter:X2DIR = ?('x1','x2','x3','pl’,'p2', 'p3', 'gamma’,'q")"
return

endcase
nd

Figure 9: Loading Particle Data from Pointer

However, overflowing the memory will be a problem if we want to create a lot of
particle models from the simulation results. Setting a limitation of model numbers and

generating random number to pick up particles sample from the whole set will solve this
problems in a proper way(Fig. 10).

case (shape) of
©: sphere, vert, poly, quality, [0.,0.,0.], 1.8, ASPECTRATIO = sphereratio
1: Cube, vert, poly, [6.,0.,0.], 1.9, ASPECTRATIO = sphereratio
2: Cone, vert, poly, quality, [6.,0.,-0.5], [6.,0.,+0.5], 1.0, ASPECTRATIO = sphereratio
3: cylinder, vert, , quality, [0.,0.,-0.5], [0.,0.,+0.5], 1.0, ASPECTRATIO = sphereratio
endcase

rad = radius*LBoxMax
if (n_elements(rad) eq 1)

e faster algorithm
vert = vert * rad

s = size(vert, /dimensions)

nvert = s[1]
185 vertp = fltarr(3, nvert)
;default number of plot point(slow & lots of particle)
if (npoints 1t 100000) then begin
plot_point = npoints
;generate index num t point

ind l el ithin polo
selected points = lindgen(npoints)
end else begin

if (npoints gt 100000) and (npoints Lt 200000) then plot point = floor(npoints/2.0)
if (npoints gt 200000) then plo t = 100000

igenerate random number within polot point

selected points = floor (randomu(seed,plot_point)*npoints)
end
for i=0L, plot_point-1 do begin

vertp[e,*] = vert[0,*] + pos[o,selected points[i]]

vertp[1,*] = vert[1,*] + pos[1,selected points[i]]
vertp[2,*] = vert[2,*] + pos[2,selected points[i]]

oModel -> Add, obj_new('IDLgrPolygon® ,vertp, $

POLYGON = poly, STYLE = 2, Shading = 1, §
COLOR = reform(color all[*,il) , §
REJECT = 1, UVALUE = name)

Figure 10: Generating Random Number and Creating Models

Finally we can draw particle models according to its position to show its movement
in short time scale. It is shown in Fig. 11.

Figure 11: Plots of Self-Injection Electron Beam

2.4 Creating MP4 Movie

Adding loop that reading file list of data in directory, we can plot three dimensional
picture continuously. Meanwhile, producing png format photographs and link them up
in proper(8 fps) speed at the same directory. Finally we are able to create movie in mp4
format. The first movie shows kinetic behavior of evolution of plasma density(Fig. 12).

Figure 12: Evolution of Plasma Density(Click It to Play)

The second one is a movie of driven electron beam(Fig. 13).

Figure 13: Particles of Driven Electron Beam(Click It to Play)

The last one shows us how self-injection electron beam developes with time. From

10

that movie, we can understand the hosing instability at the end of electron beam through
a lot of particle models. The movie is shown in Fig. 14.

Figure 14: Particles of Self-Injection Election Beam(Click It to Play)

3 Summary

After developing scripts of IDL and coping with simulation results, we can draw
pictures of plasma surfaces and particle models in three dimension. And then playing
movie in the frequency of eight picture per second to show dynamic movement of electron
beam. It is obviously that we will get more clearly perspective about beam-driven
wakefield acceleration in physical sight.

From the pictures and movies, we can change parameters of the simulation to get
better results, leading to more specific and clear physical description in beam-driven
plasma wakefield acceleration. It will be hopeful to find new physical principles in this
fields.

4 Acknowledge

I really would like to thank my supervisors Timon Mehrling, Albertos Martinez de
la Ossa, and Zhanghu Hu, and all the members of the DESY FLA Group for their help.
Because of their patience and kindness with my work here and the opportunity they
gave me to join their research group , I have an exciting experience in these two months.

I also have to thank the Summer Student Program organizers that made this great
opportunity possible and made all their efforts, which is the most important reason we
can take part in the project. Besides, thanks to Olaf for all the ideas and suggestions
he gave us to enjoy our stay in Hamburg.

11

References

[1] Nature. Physics. 2, 696(2006). W.P. Leemans, B.Nagler, A.J. Gonsalves, Cs. To’th,
K.Nakamura, C.G.R. Geddes, E. Esarey, C.B. Schroeder, and S.M. Hooker

[2] Nature. Physics. 5, 826 (2009). Matthias Fuchs1,2, Raphael Weingartnerl,2, Anto-
nia Poppl, Zsuzsanna Majorl,2, Stefan Becker2, Jens Osterhoff1,2, Isabella Cor-
trie2, Benno Zeitler2, Rainer H?rleinl,2, George D. Tsakiris1, Ulrich Schramms,
Tom P. Rowlands-Rees4, Simon M. Hookerj, Dietrich Habsl1,2, Ferenc Krausz1,2,
Stefan Karschl,2, Florian Grnerl,?2

[3] Nature. Physics. 6, 980 (2010). S. Kneip, C. McGuffey, J.L. Martins, S.F. Martins,
C. Bellei, V. Chuykov, F. Dollar, R. Fonseca, C. Huntington, G. Kalintchenko,
A. Maksimchuk, S.P.D. Mangles, T. Matsuoka, S.R. Nagel, C.A.J. Palmer, J.
Schreiber, K. Ta Phuoc, A.G.R. Thomas, V. Yanovsky, L.O. Silva, K. Krushelnick,
Z. Nagmudin

[4] Nature (London) 445, 741 (2007). lan Blumenfeld1, Christopher E. Clayton2, Franz-
Josef Deckerl, Mark J. Hoganl, Chengkun Huang2, Rasmus Ischebeckl, Richard
lversonl, Chandrashekhar Joshi2, Thomas Katsouleas3, Neil Kirbyl, Wei Lu2,
Kenneth A. Marsh2, Warren B. Mori2, Patric Muggli3, Erdem 0Oz3, Robert H.
Siemannl, Dieter Walz1, Miaomiao Zhou2

[5] Web Page of FLA Group , hitp://plasma-wiki.desy.de/PIC-simulation(permission
limited)

[6] Web Page of Osiris Documention, https://osiris.ist.utl.pt/index.php /Osiris(permission
limited)

[7] Web Page of FLA Group ,http://plasma-wiki.desy.de/PIC-simulation(permission
limited)

[8] IDL-Wikipedia https://en.wikipedia.org/wiki/IDL-programming-language

12

	Introduction
	Plasma Wakefield Acceleration
	PIC Simulation and Osiris Code
	IDL Introduction and Code Style

	Three Dimensional Visualization
	Flow Chart of Project
	Plotting Plasma Density Surface in Three Dimension
	Plotting Three-Dimensional Models of Electron Beam Particles
	Creating MP4 Movie

	Summary
	Acknowledge

