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Abstract

The method of constrained least squares is brought to use in the object-oriented
data to theory comparison framework Alpos, using the FORTRAN based imple-
mentation in Apcalc as well as a newly developed C++ implementation of the
method. Reformulations of different definitions of x? functions in the framework
of constrained least squares are studied, and the validity is verified by fits of the
strong coupling constant with data sets taken at the HI1 experiment. A fit of
the strong coupling constant is also performed with inclusive jet cross sections
measured at the ATLAS detector. First studies on the use the method in fits for
parton density functions are performed, where problems concerning the numerical
stability of the fit are observed and reported.



Contents
1. Introduction

2. Reference Data

2.1. Experiment . . . . . . . ...
2.2, Theory . . . . . .

3. The Method of Constrained Least Squares
3.1. Standard Least Squares. . . . . . . . . . . ... ... .. ... ... ...
3.2. Constrained Least Squares . . . . . . . . ... ... .. ... ... ..

4. Implementation
4.1. Alpos. . . . .
4.2. Using Apcalcin Alpos . . . . . . . . ...
4.3. Implementation of the method and use in Alpos . . . . . . ... .. ...

5. Definitions of y? and Constraints

5.1. Nuisance Parameters . . . . . . . . . . . ... ... .. ...
5.2. Simple x2 . ...
5.3. Log Normal based x? . . . . . . ... .. ... ........

5.4. x? with variable variance . . . . . . .. ... ... ... ...

. Fit for ag using ATLAS inclusive jet data

6.1. Data . . . .. . ..
6.2. Theory . . . . . . . .
6.3. Fit . . . .

. Fits to Parameters of Parton Density Functions

7.1. Parametrisation . . . . . .. ... ...
72, Data . . . . ...
7.3. Fit with Minuit . . . . . . . . . . . ... .. ... ...
7.4. Constrained Least Square Fit . . . . ... .. ... ... ..

. Conclusion

. Tables

. Figures



1. Introduction

Quantum Chromodynamics (QCD) is the theory of strong interactions between coloured
particles, e.g. quarks and gluons in the standard model, for a review see e.g. [1]. In
calculations in the framework of perturbative QCD, the strong coupling constant ag!
enters as a free parameter, which needs to be determined by experiments. This is the only
free parameter of the perturbative part of QCD, if the masses of particles are considered
to be known or negligible. However, the perturbative procedure is only applicable in
hard scattering processes with sufficient high energy scale, where quarks and gluons
can be considered as free particles. Thus, parton density functions (PDFs) are needed
to account for non-perturbative effects in the scattering of hadrons, or the scattering of
other particles with hadrons. This makes PDFs an essential ingredient for any prediction
at hadron colliders like the Large Hadron Collider (LHC). The PDFs as well as the
strong coupling constant are currently only determinable by fits to experimental data.
Therefore, fit methods are required to provide estimates for these theory parameters
from experiments. Additionally to the widely used least square approach, an alternative
constraint least square technique can be considered. This will provide an alternative
approach and thus enable double checks for biases in fits, but also allows for a more
general fitting method. This report is on the implementation of this method and the
application to ag fits, and first studies on the application in PDF fits. In section two, a
particular data set is defined as a reference for the following studies. In section three, the
method of constrained least squares is introduced in contrast to the standard least square
approach. Afterwards, in section 4, different standard x? definitions are considered,
reformulated in the framework of constrained least squares and fits of ag are performed
with these definitions in both approaches. The strong coupling constant is fitted with
inclusive jet data taken at the ATLAS detector at energies of /s = 2.76 TeV and
/s = 7 TeV in section 5. Fits to parton density functions are attempted in section 6.
The results are summarised in the final section 7.

2. Reference Data

The method described in section 3.2 is applied in fits of the strong coupling constant azg,
in order to validate the method and the implementation as described in section 4 and 5.
As a reference the inclusive jet cross section measurement in electron/positron®-proton
collisions at the H1 [2] experiment is chosen. It provides a useful benchmark model, firstly
as the ag fit result is published and discussed, such that simple comparisons with these
published results are possible. Secondly it provides an advanced correlation structure

IThroughout this report, quoted values for aig generally refer to as(My), the strong coupling constant
at the scale of the mass of the Z boson, although the scale will be suppressed in the notation for
convenience reasons.

2From here on, the term ”electron” will be used to refer to electrons as well as positrons, if not
explicitly stated otherwise.



between different sources of uncertainties which is well understood and a statistical co-
variance matrix, such that the fit method can be tested in a challenging environment.

2.1. Experiment

The H1 is a detector which was taking data from electron-proton collisions at the HERA
accelerator. The most important detector components are the tracking system consisting
of a silicon tracker (CST) and jet chambers (CJC1 and CJC2). The tracking system is
surrounded by a liquid argon sampling calorimeter (LAr) consisting of an electromagnetic
and a hadronic part. The return yoke for the 2.76 T magnetic field is equipped with
streamer tubes for muon measurements. In the forward direction a lead-fibre calorimeter
(SpaCal) is assembled.

The used inclusive jet cross section measurement analysed data taken from 2003 to
2007 at a electron energy of F. = 27.6 GeV and a proton energy of £, = 920 GeV
corresponding to an integrated luminosity of 351 pb™.

2.2. Theory

On parton level, the cross section for inclusive jet production in electron proton scattering
can be calculated perturbatively. In the so called Breit frame of reference, where the
boson radiated from the electron collides heads on with a parton of the proton, the cross
section on parton level can be expressed as

gbarton _ Z @g(ﬂr)ca,n<x> M, ,uf) ® fa(-fE, ,uf) ) (1)
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where ¢, , are perturbative coefficients to be calculated from Feynman diagrams, f, is
the parton density function for parton a. The parameters p, and py denote the re-
normalisation and factorisation scale. They are chosen to be u2 = (Q? + (p/)?)/2 and
,u?c = (Q? with Q? denoting the negative square of the exchanged four momentum and pr
the transverse jet momentum. Corrections have to be applied to take into account non
perturbative hadronisation effects and electroweak corrections. Both are parametrised

by bin-wise factors ¢, ¥ and used to calculate the cross section in each bin i as
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The perturbative coefficients are determined at NLO using predictions from NLOJet++

[3] interfaced to fastNLO [4] [5]. The PDF set MSTW2008ulo [6] [7], which was deter-
mined at a value of the strong coupling of ag = 0.118, is used.

3. The Method of Constrained Least Squares

It is a common problem to find the set of parameters of a theory which best fits some
measured data. Two methods designed to solve this problem, referred to as ”standard



least square” and ”constrained least square”, are described here. Both are based on the
minimisation of some expression x?, but differ in the construction of this expression,
and in the implementation of the connection of data and theory.

3.1. Standard Least Squares

The ”standard least squares” shall name the widely used approach to construct residuals
of every measured data point y; as

ri =y — fi(a;) (3)

where f; denotes the theory prediction fir y; in terms of a set of parameters a;. The x?
expression is defined as the weighted sum over the residuals squared:

X = Wi (4)
ij

with some weight matrix W;; which can be chosen to be the inverse of the co-variance
matrix of the data points W;; = V;j_l With this weight, the case of uncorrelated data

reduces to )

=) (5)
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with the uncertainty o; of the data point ;. More advanced definitions of x? expressions
are described in chapter 5.

3.2. Constrained Least Squares

The method of ” constrained least squares” is an alternative approach to the one discussed
above [8]. For every measured data point y; a correction is calculated by

Ay = Yi — Yo, (6)

where y; is the "true” value according to the fitted model. The weighted sum over these
corrections,
X =D Ayl Ay, (7)
]
is minimised with respect to the corrections Ay;, but this time subject to some con-
straints F;, which are functions of the corrected data points and the current values of

parameters,
F; = Fy(y; + Ayj, a; + Aay) (8)

where a; in this case denotes the initial value of the parameters. Of course again a natural
choice for the weights is W;; = V;J_l The actual form of the constraints can vary, as they
may also impose some physical constraint like conservation laws, normalisation rules or
known geometric properties of the measured data. However, in the case where they are



only used to realise the connection of a data point to its respective theory prediction,
they can be formulated as

Fy =y — fi(a;) = yip + Ay; — fi(a; + Aay) (9)

Other formulations and the translation of more advanced standard x? definitions are as
well discussed in chapter 5

4. Implementation

The method of constrained least squares is implemented in the FORTRAN based program
Apcalc [9]. The essential functionality is re-implemented in C++. Both methods are used
in the Alpos [10] data to theory comparison framework.

4.1. Alpos

The C++ based Alpos framework is used to interface theory predictions with measured
data and uncertainties. User code may implement additional

e Datasets, providing data and uncertainties for a new measurement.
e Functions, providing necessary tools for theory predictions.
e Tasks, providing tools to access and modify theory parameters.
Two tasks were implemented
e AApcFitter featuring the FORTRAN code from Apcalc.
e AConstLQFitter featuring the new C++ implementation of the constrained least

square method.

4.2. Using Apcalc in Alpos

The Apcalc program is used in the AApcFitter task in Alpos. Different calculations
for constraints are implemented as discussed in section 5. The functions apc, apcres,
apcpul and apccova from Apcalc are used to provide the basic derivative calculation
and solving of the linear equation, print out of results, calculation of pulls and co-variance
matrix, respectively.



4.3. Implementation of the method and use in Alpos

The basic functionality of the Apcalc program was re-implemented in C++ using the
Eigen library [11]. The provided class Apccpp has to be initialised with a vector con-
taining all measured values and starting values as parameters. By convention, slightly
different to Apcalc, the unmeasured parameters have to be given as the last entries in
the vector, and the later provided co-variance matrix of size m x m will be considered
as the co-variance matrix for the first m entries of X. The main function to be used by
the user is bApcpp, which is used in a similar way as APC in apcalc:

Apccpp Example(evX);

do {
VectorXd evNewX = Example.evGetX(); // get corrected X
VectorXd evF = Constraint(evNewX); // user defined code for constraint

} while(Example.bApcpp(evF, emV));

where the above code corresponds to one iteration. The function bApcpp will return true
as long as more evaluations of F' are needed to calculate the derivative. The derivative
with respect to the i-th entry of X is calculated by varying the value of this entry to
positive and negative direction and calculating the difference of the constraints at these
two values. Thus, two evaluations of F' are needed per entry in X. When all derivatives
are calculated, the function bSolveEquation is used, which determines the matrix

V0 VTAT
M= 0o o0 AT (10)
AV Ayn —A,VATL

where A,, denotes the derivative matrix of the constraints with respect to measured val-
ues, and A,,, the derivative matrix with respect to unmeasured values, e.g. parameters.
This matrix is used to calculate the inverse of the matrix

vl oo AT
L=|0o o AT (11)
Ap Aym 0

and thus solving the system of linear equations

v-lo0 AT\ [ Ajn 0

making use of the fact that V' is usually known rather than V!, The inverse is found by
the exchange algorithm, for example described in [12]. It is implemented in the function
emInvertMatrix (MatrixXd emV, int iN) which inverts the matrix, assuming that the
necessary steps have already been applied to the top left ¢:N x ¢ N matrix. Solving this
system of equations corresponds to finding the constrained minimum as described in
section 3 for a linear constraint. If n measured values and parameters were provided,



the top left n x n part of the inverse of the matrix L corresponds to the co-variance
matrix of the fitted values, such that this is available right after the inversion. In
the case of a nonlinear constraint this procedure should be repeated iteratively. There
function bIsFinished can be used to check for convergence, it will be true if the change
in x? and the average absolute value of the constraints were sufficient small after the
last iteration, or if the maximum number of iterations is reached. The latter should
be interpreted as non-convergence of the fit, bIsConverged can be used to check for
convergence without considering the number of iterations. This implementation is used
in the AConstLQFitter task in Alpos.

5. Definitions of y? and Constraints

Various definitions of x? expressions are possible, realising different assumptions on
statistical properties of the measured uncertainties. First the concept of nuisance pa-
rameters is introduced for the treatment of correlated systematic uncertainties, and its
realisation in the used framework is sketched. Afterwards, different y? definitions are
considered together with their equivalent in terms of constrained least squares. Numer-
ical values for standard least square fits using Minuit?® [14] are compared to the result
of the constrained least square fit.

5.1. Nuisance Parameters

Correlated systematic uncertainties can be treated by the inclusion of an additional
parameter b; for every systematic uncertainty j, which is taken to be measured to be
0 with uncertainty 1. Let the effect of this systematic on the data point i be given by
F; as absolute value, or by 7} = I‘é- /Yo, where yo, denotes the measured value of the
data point 7. Note that, given a concrete model of the uncertainty, one or both of these
values might not ultimately characterise the distribution of the uncertainty and are only
meant to represent a numerical value. There are different ways to parametrise the effect
of these systematic uncertainties in the fit. In any case, a shift is applied to the theory
prediction t¢; corresponding to the data point i. This shift can be parametrised in the
following ways

A Additive, t; — t; + b,
M Multiplicative, t; — t; exp b;;
e Approximately multiplicative, t; — ¢;(1 4 b;})

When combining several systematic uncertainties with different treatments, one needs
to decide in which order to add and multiply different shifts. For the constrained least
square fits, there are two ways implemented to add systematic uncertainties:

A adding after multiplying with all multiplicative systematic uncertainties

3The TMinuit implementation in ROOT [13] is used.



MA adding before multiplying with all multiplicative systematic uncertainties

If all systematic uncertainties are additive, both ways are equivalent. Alternative, all
systematic uncertainties can be treated approximately multiplicative.

5.2. Simple \?
The simplest approach is to define

= (di =)V (di — 1) (13)

ij

with measured data values d; and theory predictions in terms of the free parameters t;.
This notation will be kept throughout the report. The matrix V;; in this case is the
absolute co-variance matrix of the measured values, which implicitly assumes a normal
distribution of the uncertainties. This corresponds to take constraints

Fy=d; —t; (14)

for the constrained least square approach and using the full co-variance matrix as weight
matrix.

5.3. Log Normal based

A modified version of the simplest y? expression introduced above is introduced in
reference [2] and reads

x> = (log(d:) —log(t:))V;; ' (log(d;) — log(t;)) , (15)

]

treating the uncertainties as log-normal distributed instead of normal as in the previous
section. The matrix V' in this case contains the relative uncertainties rather than absolute
ones. The corresponding constraint can be formulated by taking d; — d; = log (d;) and
set the constraint to R

F; =d; —log (t;) (16)

The weight matrix again is taken to be the matrix containing relative co-variances.
Nuisance parameters can be included, in the case where all systematic uncertainties are
treated as multiplicative, the full x? definition used in [2] is recovered. For this case,
a fit to inclusive jet data at the H1 experiment was performed using Minuit for the
standard least square fit, and compared to the result of the constrained leas square fit
which are presented in table 2. Both methods agree well on the value of ag as well as
of the nuisance parameters and uncertainties, and reproduce the result of [2].



5.4. \? with variable variance

A x? definition motivated by the ones used in references [15] and [16] reads

2% 2
_Z 52 dt+752 Zb (a7)

stat,i uncorr,i z

which already includes nuisance parameters according to the approximate multiplica-
tive parametrisation. As previously, 'yji. denotes the relative systematic uncertainty. The
Jstat.i AN Ouncorr; denote statistical (Poisson like) and uncorrelated relative uncertainties.
Their different behaviour is accounted for by the different calculation of their contribu-
tion to the absolute co-variance matrix from the respective relative uncertainties. Note
that the shift due to systematic uncertainties is not included in the denominator, which
is considered the default behaviour.

It is not possible to dynamically change the definition of V' in the constrained least
square framework, however a similar setup can be considered. First, the constraints are

taken to be A
= (1= _~ib;) —d; (18)
J

which also already includes the parametrisation of the systematic uncertainties according
to the approximate multiplicative prescription. The behaviour of the denominator is
accounted for by taking V' to be a diagonal matrix with diagonal elements

Vi =062 dit; + 6>

stat,s uncorr,i 7,

(19)

and updating this after every iteration with the fitted theory parameters, but with the
initial provided data.

6. Fit for ag using ATLAS inclusive jet data

Another ag fit is performed using cross sections of inclusive jet production in proton-
proton collisions at the LHC. It is again performed in the standard least square and the
constrained least square framework and the results are compared with each other and
with the world average.

6.1. Data

Inclusive jet cross sections measurements at the ATLAS detector at two different val-
ues of the centre of mass energy /s of the protons are used. The measurement at
V5 = 2.76 TeV [17] was performed in 2011 with an integrated luminosity of 0.2 pb™'.
The second used measurement used data taken in 2011, corresponding to 37 pb™!, at
Vs =7 TeV [18]. Both measurements used the same detector calibration, such that the
corresponding systematic uncertainties are correlated between them.

10



6.2. Theory

Cross sections for inclusive jet production in proton-proton collisions can be determined
in a similar way as described in section 2.2. Equation (1) for the cross section at parton
level is replaced by

0= Zag(p“r)fl,i(xa ,uf) & ij(ZE’ Mf) ® C’i,j,n(xv 22 :uf) ) (20)

n7l7‘7

where ¢; ;,, perturbative factors and f; and f, denote the PDFs for the respective pro-
tons. The coefficients are again determined at NLO in the fastNLO framework, and the
MSTW2008nlo PDF set determined at ag = 0.118 is used. The renormalisation and

factorisation scales are set to be equal to the transverse jet momentum, p, = py = .:ﬁt.

6.3. Fit

The fit is performed with the standard least square approach using Minuit, and in
the constrained least square framework. The log normal based x? described in section
5.3 is used including nuisance parameters. Results for ag are presented in table 1.
They agree well with each other, and are compatible with the world average of ag =
0.1185 4 0.0006 published in [1] The distributions of the nuisance parameters for the
two separate measurements and for the combined fit are shown in figures 1, 2 and 3.
They are expected be symmetrically distributed with mean value 0, which is roughly
the observed behaviour.

Table 1: Results of the ag fits to inclusive cross section measurements at the ATLAS
experiment [17] [18], for the constrained least square approach and the standard
least square approach using Minuit, both with the log normal based prescrip-
tion with nuisance parameters. Shown are fitted values of ag with uncertainties,
and the final x*/ng value.

Data | Constr. Lq. X*/ngs  Minuit X2/ Ny
2.76 TeV | 0.12211 £0.00323 1.0510 0.12211 +0.00324 1.0507
7 TeV 0.11670 +0.00228 0.5563 0.11670 4+ 0.00229 0.5563
combined | 0.12086 + 0.00181 1.0501 0.12086 + 0.00181 1.0501

7. Fits to Parameters of Parton Density Functions

After the method is implemented and the equivalence of x? definitions and constraints
is validated, it is attempted to apply the method of constrained least squares to fits of
parameters of parton density functions (PDF). This would enable to make use of the
possibility to naturally include physical requirements into the fit by means of additional
constraints implementing the sum rules. A review on sum rules can be found at [19]

11



7.1. Parametrisation

The PDF is parametrised at the starting scale Q2 = 1.9 GeV?. The values at higher scales
are calculated using the QCDNUM program [20]. The parametrisation of the PDF used is
introduced in reference [21], and is therefore referred to as " HERAPDF parametrisation”.
The functions are defined as

which respectively parametrise the gluon distribution, the u and d valence quark dis-
tribution and the u-type and d-type anti quark distribution. The parameter By is set
equal to Bp and B,, equal to B,,. Further, A;, A, , Az and A, are determined by
sum rules and physical considerations, leaving in total 10 parameters for the fit.

7.2. Data

For the PDF fit, data from deep inelastic scattering in electron/positron-proton collisions
taken at the H1 and the ZEUS experiments [21] is used. Both detectors were taking
data at the HERA accelerator between 1994-2000.

7.3. Fit with Minuit

The fit is first done in the framework of standard least squares in Minuit, using the
HERAFitter style x? prescription. It yields the result presented in table 3.

7.4. Constrained Least Square Fit

The constrained least square fit for the same parametrisation was attempted, but no
numerical stable result was found. Possible reasons are discussed in the following:

e Correlations between different parameters. Table 4 shows the correlations between
parameters and global correlations as obtained by the standard least square fit
with Minuit. It can be seen that some parameters are highly correlated, which
may cause problems for the used method and the applied iterative procedure for
non-linear constraints.

e Insufficient accuracy in underlying calculations. Another possibility is that the cal-
culation of the PDF at higher scales than () is not sufficient accurate to allow for
a precise derivative calculation by the method used in Apcalc.

12



8. Conclusion

The constrained least square method was implemented in the Alpos framework, and
was used to successfully reproduce published fits of the strong coupling constant a,g and
agrees with results of standard least square. Different x? definitions can be reformulated
as fitting procedures in the constrained least square framework. Fits of ag are also
performed for inclusive jet cross section measurements at the ATLAS detector. Again
agreement between the two methods is found, and values of ag are obtained which are
compatible with the current world average. The attempted fit of the PDF parame-
ters failed to find a stable solution. Possible reasons might be insufficient accuracy in
underlying calculations spoiling the derivative calculation or high correlations between
parameters.

13
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A. Tables

Table 2: Results of the ag fits to inclusive cross section measurements at the H1 ex-
periment [2], for the constrained least square approach and the standard least
square approach using Minuit, both with the log normal based prescription.
Shown are fitted values for nuisance parameters and ag with uncertainties, and
the final x? value, where the number of degrees of freedom is Ny = 23.

Parameter | Constr. Lq  uncert. Minuit (Lq) uncert.
Eel —0.118574 0.989151 —0.118398 0.989156
Ee2 0.164451 0.973625 0.163633 0.973634
Ee3 0.130504 0.96193 0.130967 0.961934
Ee4 —0.548446 0.942674 —0.548347 0.942675
Eeb 0.15678 0.986295 0.156297 0.986295
Ee6 0.033113 0.998928 0.0333391 0.998928
[Del 0.156884 0.986565 0.156834 0.986572
IDe2 —0.0945082  0.987231 —0.0934895 0.987236
IDe3 —0.109699 0.988528 —0.110129 0.988529
[De4 0.170533 0.991857 0.170156 0.991857
IDeb —0.379062 0.930441 —0.379606 0.930441
IDe6 —0.00120012 0.976528 —5.08426 x 107%  0.976528
JES —0.839874 0.835335 —0.837921 0.835432
LArN —0.0387863  0.998956 —0.038135 0.99899
Lumi —0.193932 0.97356 —0.195303 0.974438
Mod1 0.577884 0.907091 0.57753 0.907105
Mod2 0.264247 0.920891 0.264944 0.920892
Mod3 —0.0514873  0.933844 —0.0521898 0.93385
Mod4 0.721486 0.924786 0.72196 0.924787
Mod5 —0.46755 0.939925 —0.467944 0.939926
Mod6 0.201529 0.900293 0.201099 0.900293

RCES 0.013186 0.986554 0.0128818 0.986617
ThE1 —0.0461547  0.994451 —0.0460038 0.994454
ThE2 0.0777942 0.992977 0.0768791 0.992979
ThE3 0.0284282 0.996139 0.0286272 0.996139
ThE4 —0.108905 0.998369 —0.108811 0.998369
ThES 0.0828137 0.985539 0.0821319 0.98554
ThEG 0.0110961 0.998206 0.0107733 0.998206
TrCl —0.0775727  0.995817 —0.0722268 0.995954
Trig —0.0930872  0.993971 —0.0968922 0.994169
g 0.117389 0.00222235 | 0.117388 0.00222624
2 24.7464 24.7465
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Table 3: Fitted values of pdf parameters for fit with Minuit to data published in [21].

Parameter | Fitted Value Uncertainty
By 0.315859 0.0323106
Cy 9.41796 0.687771
B,, 0.706674 0.0183122
Cu, 5.12833 0.240229
E,, 10.5675 2.22162
Cy, 4.58529 0.372283
Cy 1.33633 0.190079
Ap 0.113807 0.00385015
Bp —0.213225 0.00462787
Ch 2.83034 0.748938
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B. Figures
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Figure 1: Distribution of nuisance parameters for inclusive jet data measured with the
ATLAS detector at a centre of mass energy of the proton-proton system of
Vs = 2.76 TeV [17], obtained with the constrained least square fit described

in section 6.
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Figure 2: Distribution of nuisance parameters for inclusive jet data measured with the
ATLAS detector at a centre of mass energy of the proton-proton system of
Vs = 7 TeV [18], obtained with the constrained least square fit described in

section 6.
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Figure 3: Distribution of nuisance parameters for inclusive jet data measured with the
ATLAS detector at a centre of mass energy of the proton-proton system of
Vs =2.76 TeV [17] and /s = 7 TeV [18], obtained with the constrained least

square fit described in section 6.
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