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Chapter 1

Introduction

One approach in the search for new physics is to probe the Standard Model (SM) of
elementary particle physics in high-energy experiments like hadron colliders. There,
new physics is expected to show up at very short distances, i.e. high energies.
In order to judge whether experimental data point towards physics beyond the
SM, one has to provide precise theoretical predictions for these experiments within
the framework of the SM. Due to the hadronic initial states, experimental cuts
etc. these processes are multi-scale processes which require to describe them within
factorization framework. Restricting the initial state contribution e.g. by a jet veto
implies that the whole initial state is not merely described by parton distribution
functions (PDFs) of the colliding hadrons but rather by the so called beam functions
characterizing the initial state jets. This report shall discuss the question of how to
incorporate massive quark e�ects in these objects theoretically.

First of all we will give a short review on some of the theoretical background
in chapter 2. Afterwards we define operators describing the initial state radiation
at the jet veto scale and calculate gluon matrix elements of the partonic PDF and
the partonic beam function operator. We conclude this report with the result for
matching corrections between these e�ective operators in chapter 5.
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Chapter 2

Theoretical Foundations

This chapter shall give a small glimpse at some of the theory behind the calculation
of initial states in hadron-hadron collisions. The first section summarizes how to
disentangle the contributions of the initial state from the rest of the physics in the
cross section. This part is mainly based on [1]. Then we will discuss the steps
in a calculation of a beam function starting from the PDF of a proton exploiting
the physics behind the initial state at di�erent energy scales (mainly based on [2]
and [3]). Eventually there will be a short review on soft-collinear e�ective theory
(SCET) on the basis of [4] and [5].

2.1 Factorization of Cross-Sections
The goal of all theoretical calculations in physics is to obtain physical quantities that
can be checked experimentally in order to verify or falsify the underlying theory.
Within the context of collider experiments this quantity is the cross section ‡ of a
specific process given as a function of leptonic or hadronic observables. Because of
the presence of multiple scales in these experiments it is often useful to disentangle
the corresponding physics in its calculation, such as the universal nonperturbative
physics at low energies and the process dependent perturbative physics at higher
energies. This concept is called factorization and will be explained in the following.

The standard factorization theorem for a fully inclusive collision of two hadrons
is

d‡ = f ¢ f ¢ Hincl (2.1)

where f denotes the PDF which gives the probability of finding a specific parton
with specific momentum fraction inside each of the colliding hadrons and Hincl is the
perturbatively calculable partonic cross-section of the considered hard interaction.
Thus, the calculation of the cross section reduces to a calculation of the initial-state
PDFs f and Hincl incorporating all contributions of the hard scattering process.

This factorization theorem is probably the easiest but is only suitable for exper-
imental setups where one has no restriction on the final state or any hard physics.
In contrast to this, final states of most experiments are restricted by constraints and
cuts on certain kinematic variables due to the apparatus, statistics and to identify
decay chains with certain properties of the final state, e.g. specific numbers of hard
jets, leptons and photons or energy limits. In order to set up theoretical predic-
tions for these experimental observables ("fiducial cross-sections") one has to apply
suitable factorization theorems.
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Introducing a jet veto, e.g. by restricting the invariant mass p2 = ≠t of the beams
to be t π Q2, where Q is the momentum transfer during the hard interaction, leads
to a sensitivity on collinear scales at ≥ Ô

t and soft scales at ≥ t
Q

and a factorization
theorem in the form of

d‡ = H · (
Ÿ

i

Ji · B · B) ¢ S

C

1 + O
A

t

Q2

BD

with B = I ¢ f

C

1 + O
A

�2
QCD

t

BD

(2.2)

which can be derived using SCET discussed in chapter 2.3. It is a convolution of
di�erent functions:

- f is the PDF of each colliding proton associated to a low hadronic scale µ� ≥
�QCD

- I takes into account the initial-state radiation of the partons prior to the hard
collision at the veto scale µB ≥ Ô

t

- H is the perturbative function describing the hard interaction of the scattering
event at µH ≥ Q

- Ji describes the di�erent final-state jets at µJ ≥ mJ with mJ as invariant mass
of the jets

- S includes the impact of wide-angle soft gluons radiated from the energetic
strongly interacting particles at µS ≥ t

Q
.

Thus the initial-state is not only described by the probability density f of extract-
ing a specific parton but also by the initial radiation which changes the virtuality t
of the parton and is incorporated in the function I. Thus the initial-state proton is
replaced by a jet of partons not constrained to remain inside the proton anymore.
Both components together are described by the beam function B = I ¢ f .

A hierarchy of these scales results in large logarithms of the ratios of the scales
in perturbation theory which have to be resummed to obtain precise predictions for
the cross section.

2.2 Scales and E�ective Operators for Initial State
Radiation with Massive Quarks

After having separated di�erent physical contributions to the cross section in a
collider experiment we will now concentrate on the initial state of the collision
process described by the beam function and investigate how factorization works
out for these contributions when massive quarks are present. This discussion is
relevant e.g. in deep inelastic scattering and can be extended for hadron-hadron
collisions such as in the bb̄H-process (see [3]).

For the calculation of the beam function at the scale µB ≥ Ô
t one has to con-

sider all the physics of the lower scales beginning with the nonperturbative PDFs
and match between di�erent e�ective field operators describing the physics in inter-
mediate regimes with new scales such as the mass of the heavy b-quark µm ≥ mb

and at µB ≥ Ô
t. A hierarchy between these scales again introduces large logarithms

of their ratios in the perturbative results leading to a slow convergence of the fixed-
order perturbative series. A resummation of these logarithms can be achieved using
evolution equations discussed in the following.
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During the discussion of the computation of beam functions we will di�erentiate
the following two cases:

1. m2
b π t: µ� π µm π µB

2. m2
b ≥ t: µ� π µm ≥ µB.

Thus we will always assume mb ∫ �QCD because otherwise we cannot describe the
b-quark perturbatively.

2.2.1 m2

b π t

Let us first discuss the case where there is more hierarchal structure. At a low energy
scale µ� & �QCD which separates nonperturbative and perturbatively calculable
physics the initial state physics can be described by the light quarks u, d, s, c and
gluons only1, the heavy quarks b and t are treated as decoupled, i.e. all interactions
with momentum transfer & mb are integrated out. The associated PDFs in this so-
called 4-flavor-scheme (4FS) e�ective theory, where the heavy quarks are integrated
out and the light quarks are taken to be massless, are denoted by f

[4]
i (›, µ�) and

give the probability of finding one of the light partons i with momentum fraction ›
inside the proton. The dependence on the momentum fraction is non-perturbative
because of the large coupling between the partons inside the proton and thus has
to be determined using experimental data. The perturbative evolution of the PDFs
from µ� to higher scales µ is possible using the renormalization group evolution
(RGE) equations for k = 4

µ
d

dµ
f

[k]
i (›, µ) =

⁄ d›Õ

›Õ “
[k]
ij

A
›

›Õ , µ

B

f
[k]
j (›Õ, µ). (2.3)

These so-called DGLAP equations include the anomalous dimension “
[k]
ij given per-

turbatively by the well-known Altarelli-Parisi splitting functions. They mix the dif-
ferent partons, redistribute their momentum fractions and resum single logarithms
of the ratio of µ and µ� if f

[4]
i (›, µ�) is set as initial condition.

This evolution stops at the scale µm where the massive b quark starts to be
treated as dynamic flavor and can be pair-produced, so altogether there are 5 active
flavors which can strongly interact. In order to pass over from the 4FS to the 5-
flavor scheme (5FS) one matches the 5-flavor theory onto the 4-flavor theory by a
factorization

f
[5]
i (mb, µm) = Mij(mb, µm) ¢ f

[4]
j (µm)

C

1 + O
A

�2
QCD

m2
b

BD

(2.4)

with i œ {u, d, c, s, b, g} whereas j œ {u, d, c, s, g}. Thus, all e�ects of the b-quark
will be captured inside the mb-dependent Wilson (matching) coe�cients Mij. The
operator ¢ denotes the convolution

1
Mij ¢ f

[4]
j

2
(›) =

⁄ 1

›

dz

z
Mij

A
›

z

B

f
[4]
j (z) (2.5)

1
Depending on the application it is also possible to decouple the c-quark at first, only de-

termine the nonperturbative PDF for the u, d and s quarks and afterwards include the c-quark

perturbatively by matching onto a theory with a heavy c-quark.
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which mixes the di�erent partons and redistributes their momentum fractions. This
matching can be performed perturbatively until the desired number of orders is
achieved.

The PDFs f
[5]
i (mb, ›, µm) can be evolved using the standard PDF DGLAP-

evolution equations (2.3) for k = 5. If f
[5]
i (mb, ›, µm) are chosen as initial conditions,

the evolution will resum single logarithms of µ
µm

.
At the scale µB ≥ Ô

t this evolution stops since a new physical scale appears: The
partons emit collinear (and soft) radiation which pushes the partons o�-shell with
virtuality t. These contributions with momentum transfer &

Ô
t were integrated out

in the 5FS. The resulting jet-like structure of collinear partons and gluon radiation
can be described by beam functions Bi(t, x, µ) where i œ {u, d, c, s, b, g}. Again the
transition between both e�ective operators is performed by a matching equation

Bi(t, mb, µB) = I [5]
ij (t, µB) ¢ f

[5]
j (mb, µB)

C

1 + O
A

m2
b

t

BD

(2.6)

with perturbatively calculable Wilson (matching) coe�cients Iij including all e�ects
of the emitted radiation such as the change of the momentum fraction from › to x

and of the identity due to pair-production or gluon emission. The expansion in m2
b

t

implies that the LO term of Iij ’i, j will be independent of mb.
The evolution of the beam function is governed by the RGE

µ
d

dµ
Bi(t, x, µ) =

⁄
dtÕ“i

B(t ≠ tÕ, µ)Bi(tÕ, x, µ) (2.7)

with anomalous dimensions “i
B. This evolution does not mix the di�erent parton

species and leaves the momentum fraction x unchanged. Furthermore it resums
Sudakov double logarithms of the ratio µÔ

t
giving collinear singularities for t æ 0.

This evolution can be performed until it reaches the hard scale µH associated
with the momentum transfer Q during the hard interaction. Since we set µH π mt

with the top mass mt, the t-quarks are still decoupled.

2.2.2 m2

b ≥ t

In contrast to this, there is only one matching step needed in the second case.
Because of the coincidence of the scales µm and µB one can directly match the beam
function Bi at µB ≥ mb ≥ Ô

t onto the 4FS PDFs f
[4]
i evolved to this scale:

Bi(t, mb, µB) = I [4]
ij (t, mb, µB) ¢ f

[4]
j (µB)

C

1 + O
A

�2
QCD

t2

BD

(2.8)

where j œ {u, d, s, c, g} whereas i œ {u, d, s, c, b, g}. Thus all fluctuations in the
order of mb and t are integrated out in a single matching step.

2.3 SCET
Before proceeding with an explicit calculation of beam functions let us discuss an
e�ective field theory of QCD called SCET which enables us to focus only on the
relevant degrees of freedom in this problem. Since we discuss processes including
collinear incoming partons emitting collinear and soft radiation this framework is
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particularly suitable because it integrates out all higher invariant mass contribu-
tions and resums large logarithms resulting from the IR behavior related to soft
and collinear momenta. Furthermore, SCET gives well-defined gauge-independent
definitions of the PDF and beam function in terms of operator matrix elements of
the relevant fields.

In the discussed interaction process the direction of the collinear parton inter-
acting strongly is of great importance and working in coordinates adjusted to this
direction can help us reveal hierarchies in the momenta. Hence we introduce light-
like vectors nµ and n̄µ defined as

nµ = (1, 0, 0, 1) n̄µ = (1, 0, 0, ≠1) n2 = n̄2 = 0 n · n̄ = 2 (2.9)
and align the collinear partons and radiation in the initial state jet with the z̨ =
n̨ = (0, 0, 1) beam direction. Then each momentum can be decomposed as

pµ = n̄ · p
nµ

2 + n · p
n̄µ

2 + pµ
‹ © (p+, p≠, p̨‹) (2.10)

where pµ
‹ = (0, p1, p2, 0) describes all the momentum components orthogonal to nµ

and n̄µ and p̨‹ is the two-dimensional euclidean of pµ
‹ with p̨2

‹ = ≠p2
‹ using the

mostly minus Minkowski metric. Additionaly it is p+ © n · p and p≠ © n̄ · p. In
these coordinates the invariant mass can be written as

p2 = p+p≠ ≠ p̨2
‹. (2.11)

In order to describe soft and collinear modes and their hierarchy in momentum
components we furthermore need a high and low scale. All momenta with invariant
mass of the order of the hard scale are integrated out whereas the momenta with
invariant mass close to the low scale are described within SCET as soft or collinear
momenta. For the calculation of the beam function we will use SCET in the limit
t π Q2 and thus we can define a power counting parameter ⁄ ≥

Ô
t

Q
. Then collinear

momenta in the n- and n̄-direction scale as
pµ

n ≥ Qh(1, ⁄2, ⁄) pµ
n̄ ≥ Qh(⁄2, 1, ⁄). (2.12)

In this report we will investigate soft modes scaling as
pµ

us ≥ Qh(⁄2, ⁄2, ⁄2) (2.13)
often denoted as ultrasoft in order to di�erentiate between the here used SCET-I
and SCET-II with a di�erent scaling for soft modes.

In the following we will deal with collinear quarks and gluons in the initial state
jet. Using the framework of SCET-I one can decompose the Lagrangian of QCD in
collinear and soft contributions and obtain the following Feynman rules

- collinear quark propagator with momentum p, mass m and large p≠ component

i
/n

2
n̄ · p

(n · p)(n̄ · p) + p2
‹ ≠ m2 + i0 = i

/n

2
n̄ · p

p2 ≠ m2 + i0 (2.14)

- vertex of a collinear gluon with momentum k and a collinear quark with mass
m, incoming momentum p + k and outgoing p

igtaV µ
n (p, p + k, m) = igta

C

nµ + “µ
‹

(/p + /k)‹ + m

n̄ · (p + k) +

+/p‹ ≠ m

n̄ · p
“µ

‹ ≠ (/p‹ ≠ m)((/p + /k)‹ + m)
(n̄ · k)(n̄ · (p + k)) n̄µ

D

.

(2.15)



Chapter 3

Quark PDFs

3.1 PDFs in SCET
Since beam functions contain PDF-e�ects we first discuss the calculation of some
PDFs which is based on techniques used in [2] and [3]. In SCET they are defined as
the nonperturbative proton matrix elements

fi(µ) = Èp|Qi(µ)|pÍ (3.1)

of the PDF operator Qi where i denotes the parton initiating the hard interaction
and |pÍ the external proton state.

In this report we will only consider diagrams with gluons in the external state and
restrict ourselves to quark-initiated contributions at 1-loop level. The corresponding
partonic PDF is

fq/g(›, µ) = Èg(p≠)|Qq(Ê, µ)|g(p≠)Í . (3.2)

Here p≠ = n̄ ·p is the collinear momentum of the incoming gluon which shall have no
perpendicular momentum p̨‹. Ê is the minus-component of the momentum flowing
into the initial state jet initiating interaction (called hard in the following because
these interactions have a momentum transfer which is integrated out) and › is the
ratio › = Ê

p≠ . The bare quark operator is

Qbare
q (Ê) = ◊(Ê)‰̄n(0)

/̄n

2 [”(Ê ≠ n̄ · Pn)‰n(0)] (3.3)

where ‰n is the SCET field of n collinear quarks depending on the position in space
yµ and ‰̄n is the corresponding collinear antiquark field. Pn is the momentum
operator and the square-bracket denotes that ”(Ê ≠ n̄ · Pn) only acts inside it.

3.2 Tree-Level and 1-Loop Calculation
At leading order, the collinear parton i with momentum fraction › in the initial
state simply does the hard interaction itself. For an incoming collinear quark such
a contribution to the hard interaction process is illustrated in Figure 3.1 and for a
collinear gluon in Figure 3.2. Dashed lines represent collinear quarks, springs with
lines denote collinear gluons and the crossed vertex is the hard interaction vertex.
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Figure 3.1: LO diagram
for a quark-initiated hard
interaction

Figure 3.2: LO diagram
for a gluon-initiated hard
interaction

Figure 3.3: NLO diagram
for a quark-initiated hard
interaction with gluons in
the external state

The partonic PDF for this process using (3.3) is simply given by

f
(0)
i/j (›, µ) = ”ij◊(›)”(1 ≠ ›). (3.4)

The first factor denotes that there is only a non-vanishing tree-level term for i = j,
i.e. incoming and strongly interacting parton are the same. The second term trivially
implies that the momentum fraction of the scattered parton has to be positive
and the last factor emphasizes that the strongly-interacting parton carries all the
momentum of the incoming parton at tree-level.

At NLO we only consider contributions of quark-initiated strong interactions
with gluons in the external state. The corresponding diagram is shown in Figure
3.3. Applying the definition (3.3) and SCET Feynman rules (2.14) and (2.15), using
dimensional regularization and contour integration we obtain for a massless fermion
loop the well-known result

f
(1)bare
q/g (›, µ) = –s(µ)TF

2fi
◊(›)

IC
1
‘

≠ log tÕ(1 ≠ ›)
µ2

D

Pgq(›) ≠ ◊(1 ≠ ›)
J

(3.5)

with the splitting function
Pgq(›) = ◊(1 ≠ ›)(1 ≠ 2› + 2›2). (3.6)

This expression is UV-divergent which is encoded in the 1
‘
-term and IR-divergent

for tÕ = ≠Êp+ æ 0 with small p+ < 0.
The diagram with massive fermion loop yields

f
(1)bare
b/g (›, µ) = –s(µ)TF

2fi
◊(›)

IC
1
‘

≠ log m2
b

µ2

D

Pgq(›)
J

. (3.7)

3.3 Matching 5FS onto 4FS
Matching the renormalized 5FS partonic PDFs onto the 4FS partonic PDFs using
equation (2.4) yields the following well-known matching coe�cients at LO

M(0)
gg (›) = M(0)

qq (›) = ”(1 ≠ ›) M(0)
gq (›) = M(0)

qg (›) = M(0)
bq (›) = M(0)

bg (›) = 0(3.8)
and at NLO

M(1)
gg (›, mb, µm) = f

[5](1)
g/g ≠ f

[4](1)
g/g = ≠–s

fi

4TF

3 log µ2
m

m2
b

”(1 ≠ ›) (3.9)

M(1)
bg (›, mb, µm) = f

[5](1)
b/g = –s

2fi
TF ◊(›)Pgq(›) log µ2

m

m2
b

. (3.10)



Chapter 4

Quark Beam Functions

4.1 Beam Functions in SCET
Analogously to PDFs, SCET beam functions are defined as proton matrix elements
of the beam function operator Oi:

Bi(t, x, µ) = Èp|◊(Ê)Oi(t, Ê, µ)|pÍ . (4.1)
Similar to the last chapter we will only consider diagrams with gluons in the

external states and restrict ourselves to quark-initiated contributions at NLO. The
corresponding beam function reads

Bq/g(t, x, µ) = Èg(p≠)|◊(Ê)Oq(t, Ê, µ)|g(p≠)Í (4.2)
with incoming large gluon momentum p≠. Here t = Êb+ is the virtuality of the
strongly-interacting parton with minus momentum xp≠ = Ê and plus momentum
≠b+.

In SCET this quark beam function operator is given by the Fourier transform of

ÂObare
q (y≠, Ê) = e≠ i

2 p̂+y≠
‰̄n

3
y≠ n

2

4 /̄n

2
Ë
”(Ê ≠ P̄n)‰n(0)

È
(4.3)

which includes the plus momentum operator p̂+ and (anti-)quark fields at positions
yµ = y≠ nµ

2 and 0. This separation in the y≠ component makes the operator non-
local. Fourier transformation yields

Obare
q (|Ê|b+, Ê) = ‰̄n(0)”(Êb+ ≠ Êp̂+)

/̄n

2
Ë
”(Ê ≠ P̄n)‰n(0)

È
. (4.4)

4.2 Tree-Level Calculation
The beam function tree-level diagrams are shown in Figure 4.1 and 4.2. The incom-
ing quark or gluon simply proceeds to the hard interaction with momentum transfer
Q whose vertex is two-parted due to the nonlocality of the beam function operator
and afterwards the quark or gluon directly continues to the final state.

Using the definition of the beam function in (4.2) and (4.4) one obtains the
tree-level result

B
(0)
i/j (t, x, µ) = ”ij◊(x)” (1 ≠ x) ”(t) (4.5)

similar to the partonic PDF result. The ”-function in t indicates that this pro-
cess takes place without any initial-state radiation and thus, the partons have no
virtuality at tree level.
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Figure 4.1: Tree-level diagram for a
quark-initiated hard interaction

Figure 4.2: Tree-level diagram for a
gluon-initiated hard interaction

Figure 4.3: 1-Loop
diagram for a quark-
initiated hard interaction
with gluon external state

Figure 4.4: 1-Loop
diagram for a quark-
initiated hard interaction
with gluon external state

Figure 4.5: 1-Loop
diagram for a gluon-
initiated hard interaction
with gluon external state

4.3 1-Loop Level Calculation
In general there are two di�erent kinds of beam function diagrams. On the one hand
one has disconnected diagrams, i.e. the two external states are not connected by
propagators and vertices (e.g. tree-level diagrams) and on the other hand there are
connected diagrams (e.g. NLO-diagrams with gluons as external states). The latter
can be calculated using

Èg|◊(Ê)Oq(t, Ê)|gÍconnected = Disc
t>0

Èg|Tq(t, Ê)|gÍ (4.6)

where Disc denotes the discontinuity of the inserted function and Èg|Tq(t, Ê)|gÍ is the
time-ordered gluon matrix-element for this process which can be calculated using
the SCET Feynman rules. The discontinuity of real functions is given by

Disc g(x) = 2 i Im(g(x + i0)). (4.7)

The NLO-diagrams with gluons in the external states are shown in Figures (4.3)
and (4.4). A calculation of the first diagram yields the well-known result

B
(1)
q/g(t, x, µ) = –s(µ)

2fi
TF ◊(x)Pqg(x) ◊(t)t

(t + xtÕ)2 . (4.8)

tÕ = ≠Êp+ regulates the IR divergence with small p+ < 0. The diagram has no
UV-divergent term which ensures that renormalization does not mix Oq and Og

confirming that (2.7) does not mix beam functions associated to di�erent partons.
The second 1-loop diagram can be calculated using the result in (4.8) by replacing

pµ æ ≠pµ and therefore z æ ≠z and z < 0. This is contrary to the factor ◊(z)
obtained during the calculation of the discontinuity and thus this beam function
diagram vanishes.



11

We will now calculate the diagram in Figure 4.3 for a massive fermion loop more
explicitly. Since we already know that this diagram must be UV finite we calculate
it without any UV regulator right from the beginning. Using the SCET Feynman
rules gives

B
(1)
Q/g(t, x, µ) = Disc

t>0

C

≠‘̄µ(p)
⁄ d4l

(2fi)4 tr
CA

igta /̄n

2 V µ
n (l ≠ p, l, m)

B

·
A

i
/n

2
l≠

l2 ≠ m2 + i0

B

· ”(l≠ ≠ xp≠)”(l+ + b+ ≠ p+)
/̄n

2 ·

·
A

i
/n

2
l≠

l2 ≠ m2 + i0

B

·
A

igT b /̄n

2 V ‹
n (l, l ≠ p, m)

B

·
A

i
/n

2
l≠ ≠ p≠

(l ≠ p)2 ≠ m2 + i0

B
◊(zp≠)

zp≠

DD

= ig2TF (≠‘̄µ‘‹) Disc
t>0

C⁄ d4l

(2fi)4
1
2 tr [V µ

n (l ≠ p, l, m)V ‹
n (l, l ≠ p, m)] ·

· (l≠)2(l≠ ≠ p≠)
(l2 ≠ m2 + i0)2((l ≠ p)2 ≠ m2 + i0) ·

·”(l≠ ≠ xp≠)”(l+ + b+ ≠ p+)◊(zp≠)
zp≠

D

.

The l+- and l≠-integration is performed using the ”-distributions which yields

= ≠i
–s

2fi2 TF
◊(x)

x(1 ≠ x) Disc
t>0

5⁄ Œ

0
d|̨l‹|

(1 ≠ 2x + 2x2)|̨l‹|3 + m2 |̨l‹|
(|̨l‹|2 + t + tÕ + m2)2(|̨l‹|2 ≠ 1≠x

x
t + m2)

T

V

= i
–s

4fi2 TF ◊(x) Disc
t>0

S

U
1
(1 ≠ 2x + 2x2)t + 2m2x2

2 log
1
m2 ≠ 1≠x

x
t
2

(t + xtÕ)2

T

V

These nontrivial discontinuities can be calculated using
i

2fi
Disc 1

x
= ”(x) Disc log x = 2fii◊(≠x) (4.9)

and thus we obtain

= –s

2fi
TF ◊(x)◊(1 ≠ x)

Ë
(1 ≠ 2x + 2x2)t + 2m2x2

È ◊
1

1≠x
x

t ≠ m2
2

(t + xtÕ)2

= –s

2fi
TF ◊(x)

Ë
Pgq(x)t + 2m2◊(1 ≠ x)x2

È ◊
1

1≠x
x

t ≠ m2
2

t2 . (4.10)

where we removed the IR-regulator tÕ because the result is IR-safe due to the mass
mb (we could have also neglected tÕ right from the beginning).

Another NLO massive 1-loop diagram is illustrated in 4.5. Its contribution can
be directly obtained from (3.9)

B
(1)
g/g(t, mb, x, µ)

---
ML

= ≠–s

fi

4TF

3 ”(t) log µ2

m2
b

”(1 ≠ x) (4.11)

where the index ML shall emphazise that this is only the contribution of the massive
loop.



Chapter 5

Matching Beam Functions on
PDFs

In order to pass from PDFs that describe partons inside hadrons in the initial state
to beam functions describing jets of collinear partons and radiated gluons one has
to match the associated operators at the scale µB. First we will do the tree-level
matching and afterwards perform the matching at NLO for the aforementioned casesÔ

t ≥ mb and
Ô

t ∫ mb. We also discuss how the beam function matching can be
written for general hierarchies between mb and

Ô
t by including the nonsingular

terms in mbÔ
t

to the 5-flavor resummation result.

5.1 Tree-Level Matching
The matching equation for beam functions and partonic PDFs at tree-level

B
(0)
i/k(t, x, µB) = I(0)

ij (t, µB) ¢ f
(0)
j/k(µB) = I(0)

ik (t, x, µB) (5.1)

yields

I(0)
ik (t, x, µB) = ”ik◊(x)”(1 ≠ x)”(t). (5.2)

Thus the transition from partonic PDFs to beam functions at tree-level is given by

B
(0)
i/k(t, x, µB) = ”(t)f (0)

i/k(x, µB) (5.3)

which is illustrated for a gluon initiated hard interaction in Figure 5.1.

Figure 5.1: Tree-level matching between beam functions and partonic PDFs for
gluon initiated hard interactions

12



13

Figure 5.2: NLO matching between beam functions and 5FS partonic PDFs for
heavy-quark initiated hard interactions with gluons in the external state

5.2 One-Loop Matching
5.2.1

Ô
t ∫ mb

Now we come to the matching at NLO. For
Ô

t ∫ mb we match the beam function
onto the partonic PDF in the 5FS at µB ≥ Ô

t. Considering only heavy-quark initi-
ated hard interactions with gluons in the external states yields the NLO matching
equation

B
[5](1)
b/g (t, mb, µB) = I(0)[5]

bi (t, mb, µB) ¢ f
(1)[5]
i/g (mb, µB) + I(1)[5]

bi (t, µB) ¢ f
(0)[5]
i/g (µB)

= ”(t)f (1)[5]
b/g (mb, µB) + I [5](1)

bg (t, mb, µB)

which is illustrated in Figure 5.2 and where the subscript [5] is introduced in order
to di�erentiate between the di�erent results for

Ô
t ∫ mb and

Ô
t ≥ mb. The sum

over the index i is over the light quarks, gluons and the b quark. In the first term
only i = b contributes whereas the second one is only nonvanishing for i = g. Since
this equation is only valid up to O

3
m2

b
t

4
we expand all terms in ratios of m2

b
t

. The

partonic PDF f
(1)[5]
b/g (x, µB) given in (3.7) only contains terms O

1
(m2

bt
≠1)02

.
In the limit mb æ 0 distributive structures appear in the beam function B

[5](1)
b/g (t, x, µB).

In order to extract them we need the plus-distribution 1
µ2 L0

Ë
t

µ2

È
=

Ë
◊(t)

t

È

+
with

⁄ t

0
dtÕ

C
◊(tÕ)

tÕ

D

+
= log t (5.4)

and the ”-distribution ”(t) with
⁄ t

0
dtÕ”(tÕ) = 1. (5.5)

Equating coe�cients in
s t

0 dtÕB
(1)
b/g(tÕ, x, µ) then yields

B
[5](1)
b/g (t, x, µ) = –s

2fi
TF ◊(x)

C

Pgq(x)
A

1
µ2 L0

C
t

µ2

D

+ ”(t)
A

log 1 ≠ x

x
≠ log m2

b

µ2 ≠ 1
BB

+◊(1 ≠ x) + O
A

m2
b

t

BD

.

(5.6)
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Thus we obtain for the matching coe�cient at 1-loop level

I(1)[5]
bg (t, x, µB) = B

[5](1)
b/g (t, mb, x, µB) ≠ ”(t)f (1)[5]

b/g (mb, x, µB)

= –s

2fi
TF ◊(x)

C

Pgq(x)
A

1
µ2 L0

C
t

µ2

D

+ ”(t)
3

log 1 ≠ x

x
≠ 1

4B

+◊(1 ≠ x) + O
A

m2
b

t

BD
(5.7)

where all the IR mass dependence cancels as expected. This result coincides with
the matching coe�cient given in [2] for the matching of massless beam functions
(4.8) onto massless partonic PDFs (3.5), i.e. for µm ≥ mb ∫ Ô

t ≥ µB. Here
all contributions from interactions with momentum transfer & mb are integrated
out and this massless matching is the leading order contribution for the matching
between massive quark PDFs and beam functions for m2

b π t.
In order to obtain the one-loop beam function Bb/g(t, x, µB) for t ∫ m2

b one
proceeds as described in chapter 2.2 using the matching coe�cients in chapter 3.3
and 5

B
[5](1)
b/g (t, mb, µB) = I(0)[5]

bb (t, µB) ¢
3

M(1)
bg (mb, µm) ¢

1
f

(0)[4]
g/g (µ�)

2---
µ�æµm

4----
µmæµB

+ I(1)[5]
bg (t, µB) ¢

3
M(0)

gg (µm) ¢
1
f

(0)[4]
g/g (µ�)

2---
µ�æµm

4----
µmæµB

where the subscript µm æ µB denotes the DGLAP evolution from µm to µB etc..
This beam function includes a resummation of logarithms log m2

b
t

to all orders of –s

but does not include power corrections O
3

m2
b

t

4
.

5.2.2 t ≥ m2

b

For the case t ≥ m2
b the scale from which on one has to consider the jet-like behavior

of the initial state coincides with the scale at which the heavy b-quark becomes
active. Thus one can directly match the massive beam function onto the partonic
PDF in the 4FS. The matching equation at NLO is

B
[4](1)
b/g (t, mb, µB) = I(0)[4]

bi (t, mb, µB) ¢ f
(1)[4]
i/g (µB) + I(1)[4]

bi (t, mb, µB) ¢ f
(0)[4]
i/g (µB)

= I(1)[4]
bg (t, mb, µB)

which is illustrated in Figure 5.3 and where the subscript [4] at B
(1)
b/g is again only

introduced in order to di�erentiate between both mentioned cases and does not
mean that the beam function is evaluated in the 4FS. Here the sum over i is over
the light quarks and gluons only. Thus we obtain for the matching coe�cient

I(1)[4]
bg (t, mb, x, µB) = –s

2fi
TF ◊(x)

Ë
Pgq(x)t + 2m2

b◊(1 ≠ x)x2
È ◊

1
1≠x

x
t ≠ m2

b

2

t2 . (5.8)

For completeness, the contribution of Figure 4.5 with a massive fermion loop to
I(1)

gg gives

I [4](1)
gg(Q)(t, mb, x, µB)

---
ML

= ≠–s

fi

4TF

3 ”(t) log µ2

m2
b

”(1 ≠ x), (5.9)



15

Figure 5.3: NLO matching between beam functions and 4FS partonic PDFs for
heavy-quark initiated hard interactions with gluons in the external state

in analogy to Mgg. This contribution does not appear for t ∫ m2
b since it cancels

with analogous PDF diagrams.
The beam function for t ≥ m2

b can be obtained according to chapter 2.2 by

B
[4](1)
b/g (t, mb, µB)

---
m2

b≥t
= I(1)[4]

bg (t, mb, µB) ¢
1
f

(0)[4]
g/g (µ�)

2---
µ�æµB

.

This result contains power corrections O
3

m2
b

t

4
but no resummation of log m2

b
t

.

5.3 Beam Function for Arbitrary Hierarchies be-
tween mb and

Ô
t

We will now combine the beam functions from 5.2.1 and 5.2.2 and upgrade them to
incorporate the whole regime from t ≥ m2

b to t ∫ m2
b . Thus we add a nonsingular

contribution to B
[5](1)
b/g (t, mb, x, µB) that yields m2

b
t

-corrections to fixed order in –s

given by the di�erence of B
[4]
b/g(t, x, µB) and B

[5]
b/g(t, x, µB) at fixed order neglecting

all hierarchy of scales:
�B

(1)
b/g = B

[4](1)
b/g (t, x, µB) ≠ B

[5](1)
b/g (t, x, µB). (5.10)

This term is a convolution of the 4FS partonic PDFs and
�I(1)

b/g = I(1)[4]
bg (µB) ≠ I(0)[5]

bb (µB) ¢ M(1)
bg (µB) ≠ I(1)[5]

bg (µB) ¢ M(0)
gg (µB)

= I(1)[4]
bg (t, mb, x, µB) ≠ I(1)[5]

bg (t, x, µB) ≠ ◊(x)”(t)M(1)
bg (mb, x, µB).

Inserting all matching coe�cients (3.10), (5.7) and (5.8) yields

�I(1)
b/g = –s

2fi
TF ◊(x)

;Ë
Pgq(x)t≠1 + 2m2

b◊(1 ≠ x)x2t≠2
È

◊
31 ≠ x

x
t ≠ m2

b

4

≠Pgq(x)
C

1
µ2

B

L0

C
t

µ2
B

D

+ ”(t)
A

log 1 ≠ x

x
+ log µ2

B

m2
b

≠ 1
BD

≠ ◊(1 ≠ x)
J (5.11)

The partonic beam function
B

(1)
b/g(t, mb, x, µB) = B

[5](1)
b/g (t, x, µB) + �B

(1)
b/g(t, mb, x, µB), (5.12)

which is a sum of the resummation term B
[5]
b/g(t, x, µB) and the nonsingular term

�Bb/g, contains a resummation in log m2
b

t
due to the evolution between µm and µB

in the first term as well as power corrections in m2
b

t
from the second term and thus

is valid for all virtualities between t ≥ m2
b and t ∫ m2

b to the perturbative order of
the nonsingular term.
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5.4 Main Results of this Report
We calculated the massive partonic beam function at one-loop order (4.10) in section
4.3 and this result allowed us to find the NLO matching coe�cient (5.8) for the
matching between massive beam functions and massless PDFs in the regime m2

b ≥ t.
Including resummation of log m2

b
t

relevant for the regime m2
b π t we also extended

this result to arbitrary hierarchies between mb and
Ô

t. These results are not known
in literature yet and find application in heavy-quark induced processes e.g. in the
bb̄H production with a jet veto.
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