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Chapter 1

Introduction

One approach in the search for new physics is to probe the Standard Model (SM) of
elementary particle physics in high-energy experiments like hadron colliders. There,
new physics is expected to show up at very short distances, i.e. high energies.
In order to judge whether experimental data point towards physics beyond the
SM, one has to provide precise theoretical predictions for these experiments within
the framework of the SM. Due to the hadronic initial states, experimental cuts
etc. these processes are multi-scale processes which require to describe them within
factorization framework. Restricting the initial state contribution e.g. by a jet veto
implies that the whole initial state is not merely described by parton distribution
functions (PDFs) of the colliding hadrons but rather by the so called beam functions
characterizing the initial state jets. This report shall discuss the question of how to
incorporate massive quark effects in these objects theoretically.

First of all we will give a short review on some of the theoretical background
in chapter 2. Afterwards we define operators describing the initial state radiation
at the jet veto scale and calculate gluon matrix elements of the partonic PDF and
the partonic beam function operator. We conclude this report with the result for
matching corrections between these effective operators in chapter 5.



Chapter 2

Theoretical Foundations

This chapter shall give a small glimpse at some of the theory behind the calculation
of initial states in hadron-hadron collisions. The first section summarizes how to
disentangle the contributions of the initial state from the rest of the physics in the
cross section. This part is mainly based on [1]. Then we will discuss the steps
in a calculation of a beam function starting from the PDF of a proton exploiting
the physics behind the initial state at different energy scales (mainly based on [2]
and [3]). Eventually there will be a short review on soft-collinear effective theory
(SCET) on the basis of [4] and [5].

2.1 Factorization of Cross-Sections

The goal of all theoretical calculations in physics is to obtain physical quantities that
can be checked experimentally in order to verify or falsify the underlying theory.
Within the context of collider experiments this quantity is the cross section o of a
specific process given as a function of leptonic or hadronic observables. Because of
the presence of multiple scales in these experiments it is often useful to disentangle
the corresponding physics in its calculation, such as the universal nonperturbative
physics at low energies and the process dependent perturbative physics at higher
energies. This concept is called factorization and will be explained in the following.

The standard factorization theorem for a fully inclusive collision of two hadrons
is

where f denotes the PDF which gives the probability of finding a specific parton
with specific momentum fraction inside each of the colliding hadrons and H;, is the
perturbatively calculable partonic cross-section of the considered hard interaction.
Thus, the calculation of the cross section reduces to a calculation of the initial-state
PDFs f and H;,. incorporating all contributions of the hard scattering process.

This factorization theorem is probably the easiest but is only suitable for exper-
imental setups where one has no restriction on the final state or any hard physics.
In contrast to this, final states of most experiments are restricted by constraints and
cuts on certain kinematic variables due to the apparatus, statistics and to identify
decay chains with certain properties of the final state, e.g. specific numbers of hard
jets, leptons and photons or energy limits. In order to set up theoretical predic-
tions for these experimental observables ("fiducial cross-sections') one has to apply
suitable factorization theorems.



Introducing a jet veto, e.g. by restricting the invariant mass p?> = —t of the beams
to be t < Q?, where Q is the momentum transfer during the hard interaction, leads
to a sensitivity on collinear scales at ~ v/t and soft scales at ~ é and a factorization
theorem in the form of

dU_H'(IZIJi'B'B)QQSlHO(c;?)] with B—I@f[1+0</\%“’)](2.2)

which can be derived using SCET discussed in chapter 2.3. It is a convolution of
different functions:

f is the PDF of each colliding proton associated to a low hadronic scale pp ~
Agep

7 takes into account the initial-state radiation of the partons prior to the hard
collision at the veto scale up ~ Vit

H is the perturbative function describing the hard interaction of the scattering
event at ug ~ @)

J; describes the different final-state jets at p; ~ m; with m; as invariant mass
of the jets

S includes the impact of wide-angle soft gluons radiated from the energetic

strongly interacting particles at g ~ é

Thus the initial-state is not only described by the probability density f of extract-
ing a specific parton but also by the initial radiation which changes the virtuality ¢
of the parton and is incorporated in the function Z. Thus the initial-state proton is
replaced by a jet of partons not constrained to remain inside the proton anymore.
Both components together are described by the beam function B =7 ® f.

A hierarchy of these scales results in large logarithms of the ratios of the scales
in perturbation theory which have to be resummed to obtain precise predictions for
the cross section.

2.2 Scales and Effective Operators for Initial State
Radiation with Massive Quarks

After having separated different physical contributions to the cross section in a
collider experiment we will now concentrate on the initial state of the collision
process described by the beam function and investigate how factorization works
out for these contributions when massive quarks are present. This discussion is
relevant e.g. in deep inelastic scattering and can be extended for hadron-hadron
collisions such as in the bbH-process (see [3]).

For the calculation of the beam function at the scale pug ~ v/t one has to con-
sider all the physics of the lower scales beginning with the nonperturbative PDFs
and match between different effective field operators describing the physics in inter-
mediate regimes with new scales such as the mass of the heavy b-quark u,, ~ my
and at pg ~ v/t. A hierarchy between these scales again introduces large logarithms
of their ratios in the perturbative results leading to a slow convergence of the fixed-
order perturbative series. A resummation of these logarithms can be achieved using
evolution equations discussed in the following.



During the discussion of the computation of beam functions we will differentiate
the following two cases:

L m <t pp < i < 1B
2. mi~tppn K i ~ B

Thus we will always assume m;, > Agcp because otherwise we cannot describe the
b-quark perturbatively.

2.2.1 mi<t

Let us first discuss the case where there is more hierarchal structure. At a low energy
scale p1n 2 Agep which separates nonperturbative and perturbatively calculable
physics the initial state physics can be described by the light quarks u, d, s, ¢ and
gluons only?, the heavy quarks b and t are treated as decoupled, i.e. all interactions
with momentum transfer 2 m,, are integrated out. The associated PDFs in this so-
called 4-flavor-scheme (4FS) effective theory, where the heavy quarks are integrated
out and the light quarks are taken to be massless, are denoted by fi[4] (&, pup) and
give the probability of finding one of the light partons ¢ with momentum fraction &
inside the proton. The dependence on the momentum fraction is non-perturbative
because of the large coupling between the partons inside the proton and thus has
to be determined using experimental data. The perturbative evolution of the PDFs
from pp to higher scales p is possible using the renormalization group evolution

(RGE) equations for k =4

A ) di’m<€ ) M
nant (& 1) e \goi) i (€ m). (2.3)

These so-called DGLAP equations include the anomalous dimension 'y-[]?]

ij &lven per-
turbatively by the well-known Altarelli-Parisi splitting functions. They mix the dif-
ferent partons, redistribute their momentum fractions and resum single logarithms
of the ratio of p and gy if fi[4] (&, pa) is set as initial condition.

This evolution stops at the scale p,, where the massive b quark starts to be
treated as dynamic flavor and can be pair-produced, so altogether there are 5 active
flavors which can strongly interact. In order to pass over from the 4FS to the 5-
flavor scheme (5FS) one matches the 5-flavor theory onto the 4-flavor theory by a

factorization

2

my
with i € {u,d,c,s,b,g} whereas j € {u,d,c,s,g}. Thus, all effects of the b-quark
will be captured inside the my-dependent Wilson (matching) coefficients M,;;. The
operator ® denotes the convolution

z z

My ) © = [ Fm, (5) 1) (25)

!Depending on the application it is also possible to decouple the c-quark at first, only de-
termine the nonperturbative PDF for the u, d and s quarks and afterwards include the c-quark
perturbatively by matching onto a theory with a heavy c-quark.



which mixes the different partons and redistributes their momentum fractions. This
matching can be performed perturbatively until the desired number of orders is
achieved.

The PDFs fi[5](mb,§,um) can be evolved using the standard PDF DGLAP-

evolution equations (2.3) for k = 5. If i (mw, &, ) are chosen as initial conditions,
the evolution will resum single logarithms of #Lm

At the scale g ~ v/t this evolution stops since a new physical scale appears: The
partons emit collinear (and soft) radiation which pushes the partons off-shell with
virtuality ¢. These contributions with momentum transfer > /¢ were integrated out
in the 5FS. The resulting jet-like structure of collinear partons and gluon radiation
can be described by beam functions B;(t, x, 1) where i € {u,d,c,s,b,g}. Again the
transition between both effective operators is performed by a matching equation

Bt ) =75 () @ 7 ) 140 () 2:6)

with perturbatively calculable Wilson (matching) coefficients Z;; including all effects

of the emitted radiation such as the change of the momentum fraction from & to x
2

and of the identity due to pair-production or gluon emission. The expansion in %
implies that the LO term of Z;; V¢, j will be independent of my,.
The evolution of the beam function is governed by the RGE

d
'udu i(t, 2z, 1) /dt (t —t', u)B;(t',x, ) (2.7)

with anomalous dimensions v%. This evolution does not mix the different parton
species and leaves the momentum fraction x unchanged. Furthermore it resums
Sudakov double logarithms of the ratio \/ giving collinear singularities for t — 0.

This evolution can be performed until it reaches the hard scale pg associated
with the momentum transfer () during the hard interaction. Since we set ug < my
with the top mass m;, the t-quarks are still decoupled.

2.2.2 mi~t

In contrast to this, there is only one matching step needed in the second case.
Because of the coincidence of the scales p,, and g one can directly match the beam
function B; at g ~ my ~ v/t onto the 4FS PDFs f evolved to this scale:

A2
Bi(t, my, u) = Ii[;'l] (t,mp, pp) ® fjm(MB) [1 +0 ( %CD)] (2.8)

where j € {u,d,s,c, g} whereas i € {u,d,s,c,b,g}. Thus all fluctuations in the
order of my and ¢ are integrated out in a single matching step.

2.3 SCET

Before proceeding with an explicit calculation of beam functions let us discuss an
effective field theory of QCD called SCET which enables us to focus only on the
relevant degrees of freedom in this problem. Since we discuss processes including
collinear incoming partons emitting collinear and soft radiation this framework is



particularly suitable because it integrates out all higher invariant mass contribu-
tions and resums large logarithms resulting from the IR behavior related to soft
and collinear momenta. Furthermore, SCET gives well-defined gauge-independent
definitions of the PDF and beam function in terms of operator matrix elements of
the relevant fields.

In the discussed interaction process the direction of the collinear parton inter-
acting strongly is of great importance and working in coordinates adjusted to this
direction can help us reveal hierarchies in the momenta. Hence we introduce light-
like vectors n* and n* defined as

n* = (1,0,0,1) @ =(1,0,0,—1) n=n*=0 n-n=2 (29

and align the collinear partons and radiation in the initial state jet with the z =
1= (0,0, 1) beam direction. Then each momentum can be decomposed as

n* n*

Pr=neptnep Pl =077 ) (2.10)

where p/| = (0,p', p?,0) describes all the momentum components orthogonal to n*

and 7* and p| is the two-dimensional euclidean of p/ with p?2 = —p? using the

mostly minus Minkowski metric. Additionaly it is pt = n-pand p~ =n-p. In
these coordinates the invariant mass can be written as

p=pp -t (2.11)

In order to describe soft and collinear modes and their hierarchy in momentum
components we furthermore need a high and low scale. All momenta with invariant
mass of the order of the hard scale are integrated out whereas the momenta with
invariant mass close to the low scale are described within SCET as soft or collinear
momenta. For the calculation of the beam function we will use SCET in the limit
t < Q% and thus we can define a power counting parameter \ ~ Yt Then collinear

momenta in the n- and n-direction scale as ¢
Ph~ Qu(L, AN ph ~ Qr(A%1,0). (2.12)
In this report we will investigate soft modes scaling as
Py ~ Qu(X*, A% 0% (2.13)

often denoted as ultrasoft in order to differentiate between the here used SCET-I
and SCET-II with a different scaling for soft modes.

In the following we will deal with collinear quarks and gluons in the initial state
jet. Using the framework of SCET-I one can decompose the Lagrangian of QCD in
collinear and soft contributions and obtain the following Feynman rules

- collinear quark propagator with momentum p, mass m and large p~ component

e g mr
2(n-p)(n-p)+pi —m?+i0 2 p2 —m2 +10

- vertex of a collinear gluon with momentum & and a collinear quark with mass
m, incoming momentum p + k£ and outgoing p

igt* Vi (p,p+ k,m) = igt® |n* + yﬁW
. o o 21)
e R

n-p (- k) (- (p+ k)



Chapter 3
Quark PDFs

3.1 PDFs in SCET

Since beam functions contain PDF-effects we first discuss the calculation of some
PDFs which is based on techniques used in [2] and [3]. In SCET they are defined as
the nonperturbative proton matrix elements

filw) = {plQi(1)lp) (3.1)

of the PDF operator Q; where i denotes the parton initiating the hard interaction
and |p) the external proton state.

In this report we will only consider diagrams with gluons in the external state and
restrict ourselves to quark-initiated contributions at 1-loop level. The corresponding
partonic PDF is

farg(&s 1) = (g(p7)|Qq(w, 1)]g(p™)) - (3.2)

Here p~ = n-p is the collinear momentum of the incoming gluon which shall have no
perpendicular momentum p’; . w is the minus-component of the momentum flowing
into the initial state jet initiating interaction (called hard in the following because
these interactions have a momentum transfer which is integrated out) and € is the
ratio § = p%. The bare quark operator is

are = ﬁ’ —
Q" (W) = 0(w)xn(0)5 [6(w = 7+ Pu) xn(0) (3.3)
where y,, is the SCET field of n collinear quarks depending on the position in space
y* and Yy, is the corresponding collinear antiquark field. P, is the momentum

operator and the square-bracket denotes that d(w — 7 - P,) only acts inside it.

3.2 Tree-Level and 1-Loop Calculation

At leading order, the collinear parton ¢ with momentum fraction £ in the initial
state simply does the hard interaction itself. For an incoming collinear quark such
a contribution to the hard interaction process is illustrated in Figure 3.1 and for a
collinear gluon in Figure 3.2. Dashed lines represent collinear quarks, springs with
lines denote collinear gluons and the crossed vertex is the hard interaction vertex.
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Figure 3.3: NLO diagram
for a quark-initiated hard
interaction with gluons in
the external state

Figure 3.1: LO diagram Figure 3.2: LO diagram

for a quark-initiated hard ~for a gluon-initiated hard
interaction interaction

The partonic PDF for this process using (3.3) is simply given by
P39 (& 1) = 0,56(€)5(1 = €). (3.4)

The first factor denotes that there is only a non-vanishing tree-level term for i = j,
i.e. incoming and strongly interacting parton are the same. The second term trivially
implies that the momentum fraction of the scattered parton has to be positive
and the last factor emphasizes that the strongly-interacting parton carries all the
momentum of the incoming parton at tree-level.

At NLO we only consider contributions of quark-initiated strong interactions
with gluons in the external state. The corresponding diagram is shown in Figure
3.3. Applying the definition (3.3) and SCET Feynman rules (2.14) and (2.15), using
dimensional regularization and contour integration we obtain for a massless fermion
loop the well-known result

R O e e L GRUEG ES)

2 € 1
with the splitting function
Pyg(€) = 0(1 = §)(1 — 26 4 267). (3.6)

This expression is UV-divergent which is encoded in the l-term and IR-divergent

for t' = —wpt — 0 with small p™ < 0.
The diagram with massive fermion loop yields

s = a0 {2 - roa 2| mte)}. 37)

3.3 Matching 5FS onto 4FS

Matching the renormalized 5FS partonic PDFs onto the 4FS partonic PDFs using
equation (2.4) yields the following well-known matching coefficients at L.O

MO(E) = MO(€) =51 —€) MO(€) = MO(€) = M (€) = MY (€) = 0(3.8)
and at NLO

Qs 4T‘F /L,Zn
M€, i) = fyg" = foy? = = 5" log "56(1 — €) (3.9)
™ 3 mj
MO _ B _ Qs g\ p ] Fon 3.10
by (fambaum) - fb/g - o F (6) QQ<€) 0og m2’ ( ’ )
b



Chapter 4

Quark Beam Functions

4.1 Beam Functions in SCET

Analogously to PDFs, SCET beam functions are defined as proton matrix elements
of the beam function operator O;:

Bi(th’ :u) = (p|0(w)(’)i(t,w, M)|p> . (4'1)

Similar to the last chapter we will only consider diagrams with gluons in the
external states and restrict ourselves to quark-initiated contributions at NLO. The
corresponding beam function reads

Byg(t,x, 1) = (g(p7)|0(w) Oy (t, w, p)|g(p™)) (4.2)

with incoming large gluon momentum p~. Here ¢ = wb™ is the virtuality of the
strongly-interacting parton with minus momentum xp~ = w and plus momentum
—bt.

In SCET this quark beam function operator is given by the Fourier transform of

@Zare(y_,w) = e_%ﬁﬂan <y‘§> z {5@’ - 75n)Xn(O)} (4.3)

which includes the plus momentum operator p* and (anti-)quark fields at positions

Yyt =y 7“ and 0. This separation in the y~ component makes the operator non-
local. Fourier transformation yields

are < A~ %
O (|wlb™, w) = Xa(0)d(wb* —wp*) 7

5 9@ = Pu)xa(0)] (4.4)

4.2 Tree-Level Calculation

The beam function tree-level diagrams are shown in Figure 4.1 and 4.2. The incom-
ing quark or gluon simply proceeds to the hard interaction with momentum transfer
) whose vertex is two-parted due to the nonlocality of the beam function operator
and afterwards the quark or gluon directly continues to the final state.

Using the definition of the beam function in (4.2) and (4.4) one obtains the
tree-level result

Btz 1) = 6,;0(x)8 (1 — z) 6(t) (4.5)

i/j
similar to the partonic PDF result. The d-function in ¢ indicates that this pro-
cess takes place without any initial-state radiation and thus, the partons have no
virtuality at tree level.
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Figure 4.1: Tree-level diagram for a
quark-initiated hard interaction
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Figure 4.3: 1-Loop
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Figure 4.4: 1-Loop
diagram for a quark-
initiated hard interaction
with gluon external state
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Figure 4.2: Tree-level diagram for a
gluon-initiated hard interaction
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Figure 4.5: 1-Loop
diagram for a gluon-

initiated hard interaction
with gluon external state

4.3 1-Loop Level Calculation

In general there are two different kinds of beam function diagrams. On the one hand
one has disconnected diagrams, i.e. the two external states are not connected by
propagators and vertices (e.g. tree-level diagrams) and on the other hand there are
connected diagrams (e.g. NLO-diagrams with gluons as external states). The latter
can be calculated using

(910(@) 04 (t,)19) e = Dise (0l (. 0)g) (4.6)

where Disc denotes the discontinuity of the inserted function and (g|T(t,w)|g) is the
time-ordered gluon matrix-element for this process which can be calculated using

the SCET Feynman rules. The discontinuity of real functions is given by
Disc g(x) = 2iIm(g(z + 10)). (4.7)

The NLO-diagrams with gluons in the external states are shown in Figures (4.3)
and (4.4). A calculation of the first diagram yields the well-known result

o(t)t

(1) _ as(p)
Btz p) = o TFQ(x)qu(x)m‘ (4.8)
t' = —wp™ regulates the IR divergence with small p™ < 0. The diagram has no

UV-divergent term which ensures that renormalization does not mix O, and O,
confirming that (2.7) does not mix beam functions associated to different partons.

The second 1-loop diagram can be calculated using the result in (4.8) by replacing
p* — —pt and therefore z — —z and z < 0. This is contrary to the factor 6(z)
obtained during the calculation of the discontinuity and thus this beam function
diagram vanishes.



11

We will now calculate the diagram in Figure 4.3 for a massive fermion loop more
explicitly. Since we already know that this diagram must be UV finite we calculate
it without any UV regulator right from the beginning. Using the SCET Feynman
rules gives

T dl L
B = D [-a0) [ gt v nam)

. (i’/‘l_> (I — ap )T+ bt —ph)

202 - m2 410

(ZT/LM) : (igTbﬁV,i’(l, [ —p, m))

5
(S ) o]
_ mﬁ%vﬂﬁgggw/éi;;uuwu—nhmnxml—nmﬂ-
_ ) =p7) .

(12 —m?2 +10)2((l — p)? — m? +1i0)

ST —ap oI + bt — p+)9(;p_)]
The [*- and [~ -integration is performed using the d-distributions which yields
_ _¢207‘:2TF$£(% Dise | [~ dll.|
(1 — 2z + 222) |1, |3 + m2|l,|
(L2 4+t 4+ m2)2(|1L 2 — =2t 4+ m?)

((1 — 27 + 22°)t + szxz) log (m2 — Lz )]

NS

. as .
e Trl(z) [t);%c

= 1

(t + xt')?

These nontrivial discontinuities can be calculated using

; 1
 Disc - = o(x) Disclog x = 2mif(—x) (4.9)
2 T
and thus we obtain
0 (1;‘”15 — m2)
_ G 2 2 2 z
0 (I*—mt — m2>
_ 9 2001 _ 2] N2 ")
= QWTFQ(x> [qu(x)t +2m°0(1 — z)x } v . (4.10)

where we removed the IR-regulator ¢’ because the result is IR-safe due to the mass
my, (we could have also neglected ¢’ right from the beginning).

Another NLO massive 1-loop diagram is illustrated in 4.5. Its contribution can
be directly obtained from (3.9)
Qg 4TF [1,2

(tymp, )| = === =L0(t) log (1 — x) (4.11)

B
ML T 3 m3

9/g

where the index M L shall emphazise that this is only the contribution of the massive
loop.



Chapter 5

Matching Beam Functions on
PDFs

In order to pass from PDFs that describe partons inside hadrons in the initial state
to beam functions describing jets of collinear partons and radiated gluons one has
to match the associated operators at the scale pup. First we will do the tree-level
matching and afterwards perform the matching at NLO for the aforementioned cases
Vit ~ my and vVt > m,. We also discuss how the beam function matching can be
written for general hierarchies between mj, and /¢ by including the nonsingular
terms in % to the 5-flavor resummation result.

5.1 Tree-Level Matching
The matching equation for beam functions and partonic PDFs at tree-level
BNt x, 1p) = TG (t, 15) @ fig () = T4 (t, 7, i) (5.1)
yields
IO, x, ) = 6ub(2)5(1 — 2)5(2). (5.2)
Thus the transition from partonic PDFs to beam functions at tree-level is given by
BNt x, 1p) = 6(4) 9, 1) (5.3)

which is illustrated for a gluon initiated hard interaction in Figure 5.1.

Figure 5.1: Tree-level matching between beam functions and partonic PDFs for
gluon initiated hard interactions

12



13

PN

+ I(O)[S] ’ \
__-.;.___
p p

Figure 5.2: NLO matching between beam functions and 5FS partonic PDFs for
heavy-quark initiated hard interactions with gluons in the external state

5.2 Omne-Loop Matching

5.2.1 Vt>my

Now we come to the matching at NLO. For V/t > my, we match the beam function
onto the partonic PDF in the 5FS at pup ~ /t. Considering only heavy-quark initi-
ated hard interactions with gluons in the external states yields the NLO matching
equation

Byt ) = T, ) @ £ o, ) + 1 10) © 15 110)
= 001y (s ) + T, )

which is illustrated in Figure 5.2 and where the subscript [5] is introduced in order
to differentiate between the different results for v/t > m; and v/t ~ m,. The sum
over the index ¢ is over the light quarks, gluons and the b quark. In the first term
only ¢ = b contributes whereas the second one is only nonvanishing for ¢ = g Since

m2
this equation is only valid up to O (;) we expand all terms in ratios of =&. The

partonic PDF fl)(/l;[5] (x, pup) given in (3.7) only contains terms O (( 2 )

In the limit m; — 0 distributive structures appear in the beam function B [ /]( )(

In order to extract them we need the plus-distribution %L |5 | = 901 with
1% 15 tl4

/Ot dt’ le(j)L —logt (5.4)

and the J-distribution () with

KWWFL (5.5)

Equating coefficients in f; dt’ Bé};(t’ ,x, i) then yields

B%W%MZ;HWW%U(£4A+ﬂwm%f_m?_>%@

)

t,x, up).
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Thus we obtain for the matching coefficient at 1-loop level

Ty Pt e pum) = By (t ma, s ) = 6(8) £, (i, )
= 2 T0) [qu(x) (:25 L;]+6()(log1_$—l>> 67
a0 (28)

where all the IR mass dependence cancels as expected. This result coincides with
the matching coefficient given in [2] for the matching of massless beam functions
(4.8) onto massless partonic PDFs (3.5), i.e. for pu, ~ my > Vt ~ up. Here
all contributions from interactions with momentum transfer = m,; are integrated
out and this massless matching is the leading order contribution for the matching
between massive quark PDFs and beam functions for mj < t.

In order to obtain the one-loop beam function By,(t, @, up) for t > mj one
proceeds as described in chapter 2.2 using the matching coefficients in chapter 3.3

and 5
0)[5 1 0)[4
By (t,my, ) = Ty (¢, ps) @ (M£g><mb, ) ® (0 (1n)) ﬁ)
.U‘A_)Nm>

5 0)4
+ 0,0t ) ® (Mé?(um) @ (£ ()
where the subscript p,, — pp denotes the DGLAP evolution from u,, to up etc..

Hm—1B

Hm—pB

2
This beam function includes a resummation of logarithms log  to all orders of g

2
but does not include power corrections O (t>

5.2.2 t~m}

For the case t ~ m} the scale from which on one has to consider the jet-like behavior
of the initial state coincides with the scale at which the heavy b-quark becomes
active. Thus one can directly match the massive beam function onto the partonic
PDF in the 4FS. The matching equation at NLO is

Bz[,%)(t,mb,ﬂB) = IIS?)M](t,mb,MB) ff/lg”“( )+I§§)[4}(t,mb,u3)®ff2[4](u3)
= Ié;)[4](tamb7HB)

which is illustrated in Figure 5.3 and where the subscript [4] at Bb /g is again only
introduced in order to differentiate between both mentioned cases and does not
mean that the beam function is evaluated in the 4FS. Here the sum over 7 is over
the light quarks and gluons only. Thus we obtain for the matching coefficient

ZOW (1, my, 7. i) = 2—Tp9( 7) [P, ()t+2mbe(1—x)xz]W- (5.8)

For completeness, the contribution of Figure 4.5 with a massive fermion loop to
IV gives

4)(1 as 4Ty T
ok (tmy, v, ps)| = ——5r (1) log 5(1 — ), (5.9)
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Figure 5.3: NLO matching between beam functions and 4FS partonic PDFs for
heavy-quark initiated hard interactions with gluons in the external state

in analogy to M,,. This contribution does not appear for ¢ > m7 since it cancels
with analogous PDF diagrams.
The beam function for ¢t ~ m7 can be obtained according to chapter 2.2 by

Bz[;/]; )(t, My, LB) = Iég)[ ](t, My, fip) @ (fé/;[ }(MA)N

m§ HA—HB

2
> but no resummation of log %

2
my

This result contains power corrections O < ;

5.3 Beam Function for Arbitrary Hierarchies be-
tween my;, and /t

We will now combine the beam functions from 5.2.1 and 5.2.2 and upgrade them to

incorporate the whole regime from ¢ ~ m? to t > m3. Thus we add a nonsingular

J(1)
g

given by the difference of ng]g(t, x, up) and BE;]g(t, x, up) at fixed order neglecting
all hierarchy of scales:

4
ABy) = B\ (t,x, up) — B\ (@, ). (5.10)

This term is a convolution of the 4FS partonic PDFs and
1 1)[4 0[5 1 1[5
ATy, = Ty ) = T3 pm) © Mg (u) = T3, ) © MGG ()
= L)t ) — T, (1 i) — 0)3(0) My (o, . ).
Inserting all matching coefficients (3.10), (5.7) and (5.8) yields

m2 . o
contribution to Bz[f/ (t,mp, x, up) that yields —-corrections to fixed order in aj

Qs - _ 1—=z
5T = 520 { [t + 2miots — o (15 )

. ) (5.11)
_ P, (2) Uzco UQ] +6(t) <log ! — 1og% - )] 01— x)}

B B b

The partonic beam function

Bé};(t, My, T, UB) = Bé?];l)(t, x,ug) + ABé};(t,mb, T, lug), (5.12)
which is a sum of the resummation term Bl[f}]g(t,.f, pp) and the nonsingular term
ABy/,, contains a resummation in log ng due to the evolution between i, and up

2
in the first term as well as power corrections in % from the second term and thus

is valid for all virtualities between ¢ ~ m} and t > m} to the perturbative order of
the nonsingular term.
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5.4 Main Results of this Report

We calculated the massive partonic beam function at one-loop order (4.10) in section

4.3 and this result allowed us to find the NLO matching coefficient (5.8) for the

matching between massive beam functions and massless PDFs in the regime m? ~ t.
mg

Including resummation of log =* relevant for the regime m? < t we also extended

this result to arbitrary hierarchies between m, and v/t. These results are not known
in literature yet and find application in heavy-quark induced processes e.g. in the
bbH production with a jet veto.
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