
DESY - ZEUS COLLABORATION

SUMMER STUDENT REPORT

Secondary vertex reconstruction from
tracking data using the
ZEUS-framework

t→3-jet reconstruction from
ZEUS-data at

√
s = 318GeV

Author:
Harald VIEMANN

Supervisors:
Achim GEISER

Andrii GIZHKO

September 12, 2014

Abstract

The first part of the report discusses the usage of the ZEUS-title-library to
reconstruct jets and secondary vertices from tracking-data taken by the ZEUS-detector
and to port the algorithm for the usage on CMS-data. Further, in the second part, the

production of a t quark at the ZEUS experiment has been investigated by a basic analysis
of a t→3-jet decay.

Summer Student Report ? September 12, 2014 ? DESY

0

Contents

1 Secondary vertex reconstruction from tracking data using the ZEUS-framework 3
1.1 Introduction . 3
1.2 CMS to ZEUS parametrisation . 3

1.2.1 Helix-Parameters . 3
1.2.1.1 The ZEUS- and CMS-Helix-Parameter 3
1.2.1.2 Transformation of Helix-Parameter 3

1.2.2 Covariance-Matrix . 4
1.3 The Implementation . 6

1.3.1 General code-structure . 6
1.3.2 Find jet-roots . 6
1.3.3 Build jets . 7
1.3.4 Revertex . 8

1.4 Flags, Variables and additions (Summary) 9
1.5 Example-run for ZEUS-event . 10
1.6 Outlook and Summary . 12

2 t→3-jet reconstruction from ZEUS-data at
√
s = 318 GeV 13

2.1 Introduction . 13
2.2 Production and Decay . 13
2.3 Data and Cuts . 14
2.4 Results . 14
2.5 (The Unanalysed) . 16
2.6 Summary and Outlook . 17

Summer Student Report ? September 12, 2014 ? DESY

2

1. Secondary vertex reconstruction
from tracking data using the
ZEUS-framework

1.1 Introduction
The usage of the ZEUS-title-library offers the ability to reconstruct jets and sec-
ondary vertices from tracks without the usage of calorimeter information. A first try
to adapt the ZEUS vertex reconstruction has been done in the summer-student-project
2013 [1]. Information about the ZEUS- or CMS-detector characteristics can be found in
the report [1] of the year 2013.
The following discusses bug-checking and improvement of the original code. This report
refers to code in the file ‘TMiniNtupleAnalyzer.cxx’.

1.2 CMS to ZEUS parametrisation
To be able to reconstruct jets and vertices from CMS-data with the ZEUS-library the
track-parameter have to be transformed from CMS to ZEUS-parametrisation. A track gets
described via a helix and the error via a track-specific covariance matrix. The following
shows the transformation for the helix-parameter and the covariance matrix.

1.2.1 Helix-Parameters
1.2.1.1 The ZEUS- and CMS-Helix-Parameter

The ZEUS- and CMS-analysis-frameworks both use curvilinear coordinates to describe
the track-helix [2][3]. Both parametrisations consist of 5 parameters and are stored into
an array. Tabular 1.1 lists the specific helix-parameters as well as their ID for accessing
the array. Further the analogous ZEUS-parameter for CMS-parameter are listet and their
physical meaning gets mentioned.

1.2.1.2 Transformation of Helix-Parameter

The transformation of all CMS-parameter to ZEUS-parameter works directly except the
transformation to z1 = Q

R
.

Summer Student Report ? September 12, 2014 ? DESY

ZEUS CMS
ID Name Parameter
0 z0 Φ

1 z1
Q
R

2 z2 QD0

3 z3 z
4 z4 cot Θ

ID Name Parameter =̂
0 c0

q
|p|

1 c1 λ Θ
2 c2 Φ Φ
3 c3 dxy D0

4 c4 dsz z

Table 1.1: Helix-parameter for ZEUS and CMS. Analogous ZEUS-variables are named for CMS-
parameter. Φ describes the polar-angle of the helix, Θ states the tilt referring to the B-field, D0

is the offset and z the z-shift of the reference point. R is used for the radius, p for the track-
momentum and Q, q both tell the charge.

Transformation to z1:

For the transformation to z1 we remember the calculation of the helix-radius

R =
mv⊥
QB

=
p⊥
QB

(1.1)

via Lorentz and centrifugal force. Because of we state that the magnetic flux density
should be homogenous and constant around the vertex-regions the radiusR is proportional
to p⊥ and z1 has a direct link to c0.

With these informations it is easy to transform c0 to z1:

z1 =
Q

R
= B · Q

2

p⊥
=̂B · q

2

p⊥
(1.2)

with p⊥ = p · sin Θ

= B · q2

p · sin Θ
= B · c2

0

p

sin Θ
(1.3)

Transformation of all parameter:

Now we can easily write down the transformations of all CMS- to ZEUS-parameter as
shown in tabular 1.2.

ZEUS CMS to ZEUS
z0 c2

z1 c2
0 ·

p
sin Θ

z2 c3 · c0 · p
z3 c4

z4 cot c1

Table 1.2: Transformation of the CMS- to the ZEUS-helix-parameter.

1.2.2 Covariance-Matrix
After the transformation of the helix parameter we have a new covariance matrix. To get
this new matrix we have to transform the CMS- to the ZEUS-covariance-matrix.

4

Summer Student Report ? September 12, 2014 ? DESY

Jacobian:

The parameter-transformation is a nonlinear transformation of the form ~z = ϕ(~c). Since
there is no exact formula to describe the transformation of the covariance matrix we take
a look at the taylor expansion of the transformation

~z = ϕ(〈~c〉) + J(〈~c〉) · (~c− 〈~c〉) +O · (~c− 〈~c〉)2 (1.4)

with the Jacobian matrix

J(〈~c〉) =
∂(z0, z1, z2, z3, z4)

∂(c0, c1, c2, c3, c4)
. (1.5)

With the transformations shown in tabular 1.2 we get for the Jacobian matrix

J(〈~c〉) =

0 0 1 0 0

2p ·B · c0 · csc c1 −p ·B · c2
0 cot c1 csc c1 0 0 0

p · c3 0 0 p · c0 0
0 0 0 0 1
0 − csc2 c1 0 0 0

 . (1.6)

Transformation of covariance matrix

is now calculated in first order of the Taylor expansion (1.4) by

CovZEUS(~c) = J · CovCMS(~c) · JT . (1.7)

5

Summer Student Report ? September 12, 2014 ? DESY

1.3 The Implementation

1.3.1 General code-structure

The reconstruction function findVertices(...) is designed to get as input-parameter
an event and to provide refitted jets. She consists, as shown in the flowchart in fig-
ure 1.1, out of three stages: finding the highest momentum-tracks as possible jets-roots,
associating tracks to the jet-roots and running of the revertexing-algorithm. For the jet-

event find jet-roots build jets revertex fitted jets

Figure 1.1: general flowchart of findVertices(...)

reconstruction a jet_template (fig. 1.2) is hold available to have easy and clear access
to the jets. The ability to store all related jet-tracks is implemented via a Jet_TrackMap.

s t r u c t j e t _ t e m p l a t e {
I n t _ t J e t _ i d ;
I n t _ t Tr k_ id ; / / 0
I n t _ t J e t _ n r ; / / 1
F l o a t _ t J e t _ p h i ; / / 2
F l o a t _ t J e t _ e t a ;
F l o a t _ t J e t _ c o t _ t h e t a ; / / 3
F l o a t _ t J e t _ e t ; / / 4
s t d : : map < I n t _ t , Double_t > Jet_TrackMap ; / / ID , p

} ;

Figure 1.2: Template for jet-storage.

1.3.2 Find jet-roots

The used expression jet-root stands for a high momentum track and is the first reconstruction-
step. The idea is to search for the highest momentum tracks that are not too close to each
other, means they have a minimum angle of dR > 1 rad between each other.

The jet-finding-loop iterates over the user defined maximum of possible jets (maxJetAnz)1.
For every possible jet, see flowchart in fig. 1.3, a second loop iterates over all tracks
in the event to find the highest possible momentum track. Every time there is a track
with higher momentum a jet-validity-check is performed. To be valid, the track has to
has a minimum angle of 1 rad to all the already stored jets. If so, a dummy-jet of the
type jet_template gets updated with the track-data and finally stored in a list called
listOfJets.

For validation the code uses tree flags. The flag setJet is set to true if the track passes
at least one angle-check with the already stored jets. To prevent that a false track gets
stored, the flag oneDismatch is set to true to skip updating the dummy-jet, if the track
doesn’t pass at least one angle-check. The third flag storeJet is set to true, if the
jet_template gets updated.

1maxJetAnz - can be set in preamble

6

Summer Student Report ? September 12, 2014 ? DESY

event

trk < nTracks

get track-data

check p

check angle

update jet

trk++

storeJet

push jet to list
listOfJets

trk = 0

true

true

false

true

false

false

true
false

Figure 1.3: flowchart of ‘find jet-roots’. Shown is the loop for one jet.

1.3.3 Build jets

After the algorithm has finished to search for jet-roots it starts associating tracks to the jet
and stores them to the Jet_TrackMap of the specific jet in the listOfJets.

As shown in the flowchart of figure 1.4 every track gets checked for a minimum of 4 hits
in the Micro-Vertex-Detector (MVD) and a minimum pT of 0.5 GeV/c. After that a loop
over all jet-roots searches for the jet with the smallest distance, but with a maximum angle
of 1 rad to the others. Every time it finds a better one, jet_min, an iterator to the actual
nearest jet gets updated and the flag goodJet gets set to true. The flag ensures, that the
track is stored to the nearest jet, if there has been one.

Unfortunately at this point the jet_template isn’t fully integrated. Currently the al-
gorithm uses next to the template an additional map to store the tracks to the specific
jets.

7

Summer Student Report ? September 12, 2014 ? DESY

listOfJets (lOJ)

trk < nTracks

check nMVD > 4

get track data

check pT > 0.5

goodJet = false

jet != lOJ.end()

trk++

goodJet

store Track
to jet_min

jet++

check dR < 1

weight angle

better angle?

update jet_min
goodJet = true

reconstr.
Jets

trk = 0

true

true

false

false

true

jet = lOJ.begin()

false

falsetrue

false

true

false

true
false

false

Figure 1.4: flowchart of ‘build-jets’; jet_min is an iterator of the curr. closest jet.

1.3.4 Revertex
The revertex-step uses the listOfJets that got filled with associated tracks from the
build-jet-part.

To run a revertex on all jets of the event (see flowchart of fig. 1.5), the algorithm iterates
over every jet in the listOfJets, gets the specific jetID and list of tracks, witch
has to has more than 1 track to be processed else it jumps to the next jet in the list. As
mentioned before the algorithm uses an additionally a map to store the tracks of a jet.
Currently the jetID and track-list are read out from this map.

After getting the track-list the algorithm iterates over every track and stores its helix-
parameter, covariance matrix and all the other necessary jet parameters to a, for the class-
object TVertex readable, array. At this point the flag isCMS is used to decide if the

8

Summer Student Report ? September 12, 2014 ? DESY

reconstr. Jets

iter != jets.end()iter++

get jetID
get trackList

nJetTracks > 1

i < nJetTracks i++

isCMS

get & transf.
Helix-Param.,
Cov.-Matrix

get
Helix-Param.,
Cov.-Matrix

get track
data

set vertex
data

RefitVertex()

store
jet

refitted
Jets

iter = jets.begin()

true
false

false

true

false

falsetrue

true

true false

Figure 1.5: flowchart of ‘revertex’.

user runs on ZEUS- or CMS-data. If the the flag is set to true the code transforms the
helix-parameter and covariance matrix to the specific ZEUS-parametrisation.

Then these parameters get set to this TVertex-Variable and a refit is performed. RefitVertes()
tells the user with a bool if the fit was successful or not, thus this return is used to decide
to store the refitted values or not. After this the loop does the same for the next jet in the
list.

1.4 Flags, Variables and additions (Summary)
The following table 1.3 is a summary of useful flags, variables and additions that can be
set in the preamble.

9

Summer Student Report ? September 12, 2014 ? DESY

what it does
debug Enables printout of build-jet to show MVD-hits, pt, dR, dη, dΦ

and acceptance or not
printJets Prints out all found jets and associated tracks for the specific event,

when refitting was successful
« Overload of std::cout-«-operator to output a jet_template;

used if printJets is enabled.
isCMS Set true to switch from ZEUS to CMS

maxJetNr Sets maximum of possible jets. The default-value is 10.

Table 1.3: Summary of useful flags, variables and additions that can be found in the preamble.

1.5 Example-run for ZEUS-event
To take a look into how the code works we take a look into some output of one event. The
used event, shown in figure 1.6, has the runnumber 61792, the eventnumber 12967 and
consists out of four tracks.

Figure 1.6: Eventdisplay for runnumber 61792 and eventnumber 12967. The red numbers show
the specific ID’s of the tracks shown in purple. The red arrows show the from the orange-
framework found jets.

debug-output

Running the program with the debug-flag enabled we can see, that the build-jet-part
works as it should. The output, shown in figure 1.7, shows the check of the track with
ID = 3 with the 3 jet-roots. As one would expect the track gets associated to the jet with
jet-root-ID = 2.

printJet-output

The output produced with the printJet-flag enabled is shown in figure 1.8 and shows
the successful refitted jets of the event. In comparison with the eventdisplay of figure 1.6
we see that the algorithm correctly associated the tracks with ID = 2, 3 to one jet and left
the other two tracks separated.

10

Summer Student Report ? September 12, 2014 ? DESY

comparison to orange

Thus the last is to check how well the refit of the jet was. A comparison of the secondary
vertices and χ2 of the fit produced by orange and this code can be seen in the output
shown in figure 1.9. Thus there is no discrepancy in the numbers and the found jets we
can say that the algorithm works as it should.

TRK−Check : : t r k _ i d = 3 | nMVD = 4
| p t = 1 .92742

−> r o o t _ i d = 4 | dR = 4 .01577
| dEta = 2 .64921 | dPhi = 3 .01796
−> r e j e c t − t o o f a r

−> r o o t _ i d = 2 | dR = 0 .391355
| dEta = −0.295773 | dPhi = 0 .256276
| dR gew = 0.198131 | dRmin = 99999
−> s t o r e

−> r o o t _ i d = 1 | dR = 2 .57989
| dEta = 0 .875102 | dPhi = 2 .42694
−> r e j e c t − t o o f a r

Figure 1.7: debug-output for associating one track to the found jet-roots.

t a t a : : found J e t s :
J e t _ i d = 4 | J e t _ n r = 3
J e t _ i d = 2 | J e t _ n r = 1

| T rk _ i d = 2 | T rk _p t = 1 .97523
| T rk _ i d = 3 | T rk _p t = 1 .92742

J e t _ i d = 1 | J e t _ n r = 0

Figure 1.8: printJet-output after the successful refitting of the jets. The algorithm found 3
jet-roots and one jet consisting out of 2 tracks.

Orange : : j e t = 0 | RunNr = 61792 | EvtNr = 12967
: SecVer t : xor = 1 .74319 | yor = 0 .239931 | z o r = 16 .7953
: Chi2 = 1 .888

Debug : : j e t = 1 | RunNr = 61792 | EvtNr = 12967
: SecVer t : x = 1 .74319 | y = 0 .239931 | z = 16 .7953
: Chi2 = 1 .888

Figure 1.9: Output of the coordinates of the secondary vertices and χ2 of the fit produced by
orange and the reconstruction-code.

11

Summer Student Report ? September 12, 2014 ? DESY

1.6 Outlook and Summary
The report showed the progress in the reconstruction of secondary vertices from tracking
data. An easy to use jet_template has been implemented, the code has been restruc-
tured and the transformation from ZEUS- to CMS-parametrisation has been checked and
fixed.

Further it was possible to reconstruct jets and vertices from ZEUS-data as it has been done
by orange. A next step might be to perform some more cross-check also on events with
a higher number of tracks to ensure the stability of the code. Then there is the possibility
to make use of the already implemented option to run on CMS-data and perform some
checks for specific events as it has been done for ZEUS-data.

Last but not least, one could think of a replacement of the old track-map being used in the
build-jet section by the new implemented jet_template to improve the workflow and
reduce memory-usage.

12

2. t→3-jet reconstruction from
ZEUS-data at

√
s = 318GeV

2.1 Introduction

The following part of the report shows the progress of a very basic analysis concerning
the production of t-quarks during the ZEUS-experiment. As the impact-energy of the
electron and proton has been

√
sZEUS = 318 GeV and the mass of a t is mt = 173.34 ±

0.27± 0.71 GeV/c2 there is enough energy that one t could be produced.

2.2 Production and Decay

This analysis looks for the decay t→W b→3-jet. In figure 2.1 a possible feynmangraph1

of the production of a t is shown. The electron decays over weak interaction to an neutrino
and the proton over strong interaction to an not defined particle. This produces a t and a
b or the other way round a b and t, where the antiparticle goes over to the particle.

Figure 2.1: Possible feynmangraph of a t-production in an ep-collision at ZEUS.

1The probability says, that there will be half of a t in the whole data being produced with the ZEUS-
ecperiment.

Summer Student Report ? September 12, 2014 ? DESY

Because of the t decaying in 3 jets and the production of a b there should be at least 4 jets
in the detector and because of the production of a neutrino a cut on missing energy would
improve the results, but because of it being a basic analysis only the reconstruction of 3
jets to one t has been minded.

A possible t decaying into 3-jets can be seen in figure 2.2.

Figure 2.2: Possible decay of t→3-jet at ZEUS.

2.3 Data and Cuts
The analysis used version-v08b files. For data the years 03p, 04p, 06e, 06p, 07p,
ler and mer have been used. The used MC2-files have been ‘Low Q2 Ariadne QCD
NC sample’-files of the year 0304p. Jets-types that have been used were A and B. Both
types are massive Kt-jets, but type-A is a jet out of a photoproduction (PHP) and type-B
out of deep-inelastic-scattering (DIS). The used cuts for the jets have been Et > 5 GeV
and |η| < 2.5 As the electron decays to a neutrino most t should be seen in the graphs for
PHP.

2.4 Results
The figures 2.3,2.4,2.5 and 2.6 show the kinematic results and figure 2.7 show the invari-
ant mass of the reconstruction. As the MC has been for DIS the red curve on the PHP
graphs has to be ignored. Interesting is the peak that can be seen for the MC for the in-
variant mass (fig. 2.7). However the invariant mass for PHP-data shows no peak in the
interesting area around 171 GeV/c2.

2MonteCarlo

14

Summer Student Report ? September 12, 2014 ? DESY

Figure 2.3: Et of the 3-jet-particle. As the MC has been for DIS the red curve on the PHP graph
has to be ignored.

Figure 2.4: Φ of the 3-jet-particle. As the MC has been for DIS the red curve on the PHP graph
has to be ignored.

Figure 2.5: η of the 3-jet-particle. As the MC has been for DIS the red curve on the PHP graph
has to be ignored.

15

Summer Student Report ? September 12, 2014 ? DESY

Figure 2.6: Rapidity of the 3-jet-particle. As the MC has been for DIS the red curve on the PHP
graph has to be ignored.

Figure 2.7: mt,inv of the 3-jet-particle. As the MC has been for DIS the red curve on the PHP
graph has to be ignored.

2.5 (The Unanalysed)

To get better results a cut on the Et of the event has been performed, because a look into
the eventdisplay for events out of the t-mass region showed that there has been events
with jets of higher Etjet than the total Etevt of the event. Thus every event with Etjet < Etevt

got skipped. Cause of the fact that except of the years ler, mer and 03p every job broke
with a bus-error in the end, no root-file has been produced for them.

However the output of the interesting events, that got stored in text-files, was successful.
The summarised output can be seen in table 2.1. An interesting event out of the year 06p
with the runnumber 61296 and eventnumber 12452 can be seen in figure 2.8.

16

Summer Student Report ? September 12, 2014 ? DESY

year case type mass njets run-nr. event-nr.
07p

2 PHP 213.448 4 61974 15818
1 PHP 170.375 3 62383 33060

06p
1 PHP 174.355 3 60689 4559
1 DIS 170.727 3 60871 10467
1 PHP 179.531 3 60887 34356
1 PHP 171.114 3 60939 202734
1 PHP 171.882 4 61296 12452

06e
1 PHP 171.895 3 59027 53122

Table 2.1: This table shows the output of possible invariant masses for a t. Case 1 stands for the
region 170 GeV/c2 < m < 180 GeV/c2 and case 2 for m > 200 GeV/c2

Figure 2.8: Interesting but unanalysed event with minv,3−jet = 171.882.

2.6 Summary and Outlook
The results (vgl.fig. 2.7) didn’t show us a peak in the expected mass-region of the t. This
may be caused by minding a cut on the missing energy of a produced neutrino and looking
for events that have at least 4 jets. A look into data with these cuts may show a produced
t, as the briefly look for a cut on Et for jet- and total event-energy in section 2.5 (The
Unanalysed) showed.

17

Summer Student Report ? September 12, 2014 ? DESY

18

Bibliography

[1] L. van der Schaaf, “Secondary vertex reconstruction from cms using zeus title
libray,” tech. rep., 2013.

[2] V. Roberfroid, “Improvement of the Kalman Filter Fit of the ZEUS experiment,”
arXiv:physics/0701271 [PHYSICS].

[3] A. Strandlie and W. Wittek, “Propagation of covariance matrices of track parameters
in homogeneous magnetic fields in CMS,”.

http://arxiv.org/abs/physics/0701271

	Contents
	1 Secondary vertex reconstruction from tracking data using the ZEUS-framework
	1.1 Introduction
	1.2 CMS to ZEUS parametrisation
	1.2.1 Helix-Parameters
	1.2.1.1 The ZEUS- and CMS-Helix-Parameter
	1.2.1.2 Transformation of Helix-Parameter

	1.2.2 Covariance-Matrix

	1.3 The Implementation
	1.3.1 General code-structure
	1.3.2 Find jet-roots
	1.3.3 Build jets
	1.3.4 Revertex

	1.4 Flags, Variables and additions (Summary)
	1.5 Example-run for ZEUS-event
	1.6 Outlook and Summary

	2 t 3-jet reconstruction from ZEUS-data at s=318GeV
	2.1 Introduction
	2.2 Production and Decay
	2.3 Data and Cuts
	2.4 Results
	2.5 (The Unanalysed)
	2.6 Summary and Outlook

