
Heat capacity calculations for plasmas with
the finite-temperature Hartree-Fock-Slater

atomic model

Dmitrii I. Shedogubov
Voronezh State University
CFEL Theory Division

13 September, 2014



Contents

1 Introduction 2

2 Non-relativistic Hartree-Fock-Slater equation 2

3 Total energy calculation 3

4 Hot aluminum plasma energy calculation 4

5 Cold aluminum plasma energy calculation 6

6 Free-electron gas calculation 6

7 Conclusion 8

8 Acknowledgements 8

References 9

1



1 Introduction

A progress in developing power light sources leads us to constructing of X-ray
free-electron lasers (XFEL). This lasers generate coherent X-ray radiation by
single pass of an electron beam through a long undulator. XFEL combines
high intensity of the pulse and high photon energy, therefore it offers new
possibilities, which were unavailable before. Because of high intensity and
short duration of a pulse, a target can be heated up to extremely hight
temperatures. Hence it is necessary to have a strong theoretical background
to be able to describe behaviour of matter in such extreme conditions.

2 Non-relativistic Hartree-Fock-Slater equa-

tion

For pure hydrogen-like systems it is possible to solve the time-independent
Schroedinger equation analytically.

Ĥ(r)Ψ(r) = EΨ(r) , (1)

Since most atomic systems have more than one electron, it is impossible to get
precise solution of the equation (1). Major number of chemical elements are
many-electron systems where state of one electron is correlated to states of all
the others. In this case it is better to use approximate methods. One widely
used method is a Hartree-Fock method [1, 2]. It is based on assumption that
every electron moves in a mean field created by the nucleus and all other
electrons. This leads us to a single-particle model, which essentially reduces
the N-particle problem to problem of solving N single-particle equations.

To consider the Pauli exclusion principle, a wave function is chosen as a
Slater determinant:

Ψ(x1,x2, . . . ,xN) =
1√
N !

∣∣∣∣∣∣∣∣∣
ψ1(x1) ψ2(x1) . . . ψN(x1)
ψ1(x2) ψ2(x2) . . . ψN(x2)

...
...

. . .
...

ψ1(xN) ψ2(xN) . . . ψN(xN)

∣∣∣∣∣∣∣∣∣ , (2)

where ψi(xj) is a single-particle wavefunction of a particle j in a state i,
xi = (ri, σi)–a set of space and spin variables. In this case if there are two
identical lines or columns, determinant becomes zero. It corresponds to the
Pauli exclusion principle−there is no possible states for two fermions with
the same quantum properties.
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Using the variational principle one could derive a Hartree-Fock equation:

ĥiφi(ri) +
∑
i̸=j

∫
φ∗
j(rj)φj(rj)

|ri − rj|
d3rj φi(ri)−

−
∑
i̸=j

∫
φ∗
j(rj)φi(rj)

|ri − rj|
d3rj φj(ri) = εiφi(ri) ,

(3)

where ĥi is a single-particle Hamiltonian:

ĥi = −1

2
∇2

i +
Z

ri
. (4)

The last term in the equation (3) stands for exchange interaction between
electrons. Slater introduced an effective potential [3, 4], which corresponds
to this interaction.

3 Total energy calculation

To provide all calculations we used XATOM [5]−an integrated toolkit for
X-ray and atomic physics, which is able to calculate properties of warm and
hot dense plasmas [6]. However, this program was not able to calculate a
total energy of hot atomic system within the Wigner-Seitz radius.

Electrons start to occupy higher levels with increasing of the tempera-
ture. Hence it was essential to factor into contribution to energy only of
those electrons, which are inside the Wigner-Seitz sphere. In the zero-order
approximation we consider the total energy as the sum of orbital energies ϵi,

ĥiφi = ϵiφi . (5)

Since electrons have spin of ±1/2, they submit to the Fermi-Dirac distri-
bution:

ñi =
1

e
ϵi−µ

kT

. (6)

From this set of statements we can derive evaluation for the total energy
per Wigner-Seitz sphere in the zero-order approximation:

EWS =
∑
i

ñiϵi

∫
r6RWS

φ∗
iφi d

3ri . (7)
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4 Hot aluminum plasma energy calculation

After implementation this formula into the source code, the energy and the
heat capacity of aluminum plasma were calculated, ∆E(T ) = E(T )−E(0):
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Figure 1: Dependence of the energy (1) and the heat capacity (2) on T for
Al

From the Fig. 1 we can conclude that the heat capacity behaviour varies
from expected. For low temperatures the heat capacity must be linear:

C = γT + βT 3 , (8)

where the first term corresponds to the electron gas contribution and the
second term−to the phonon contribution [9]. At the same time at high
temperatures the Fermi-Dirac distribution transforms to the Boltzman dis-
tribution, therefore electron gas becomes more and more ideal. Heat capacity
for ideal gas is known well:

C =
3

2
NkB = 19.5 . (9)

But on the plot we can see non-linear behaviour at low temperatures
and the heat capacity goes higher than 19.5 at temperatures above 200 eV .
Moreover we have a region with a negative heat capacity.

The easiest explanation of this result was in many approximations we
have assumed in the source code: Hartree-Fock method [1, 2] with the Slater
exchange potential [3, 4], muffin-tin potential for the average atom calcula-
tion [6]. Slater exchange potential does not depend on temperature, therefore
it does not correspond to real orbital energies. To solve this issue we used
two more types of the exchange potential: Rozsnyai exchange potential [7]
and Perrot-Dharma-wardana (PDW) exchange potential [8]. The results are

4



shown below on the Fig. 2, green curve stands for Rozsnyai exchange poten-
tial, blue curve−for Perrot-Dharma-wardana exchange potential, red one−for
Slater exchange potential:
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Figure 2: Comparison between Slater and thermal exchange potentials

We can conclude that difference between these three methods is not big
and they describe behaviour of the energy with the same accuracy. However,
using thermal exchange potentials we can reach better results in a region of
10 eV.
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5 Cold aluminum plasma energy calculation

As it was already mentioned in (8), at low temperatures contribution to the
total heat capacity from electron gas must be linear [9]:

C = γT . (10)

For aluminum γ = 1.88 in case of both energy and temperature units are
eV.

We calculated the energy of aluminum plasma in a low temperature case
with 3 different exchange potentials to figure out what approximation is
better:
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Figure 3: Dependence of the ∆E on T for Al in a low-temperature case

The red curve, which stands for the Slater exchange potential, fits the
analytical expression (dashed curve) best of all.

6 Free-electron gas calculation

It was mentioned that in a high-temperature region the Fermi-Dirac distri-
bution looks like the Boltzman distribution. It means that electron gas in
aluminum plasma becomes more and more ideal with the heat capacity of
19.5 (9) which corresponds to fully-ionized aluminum.

First, to calculate such a system we used a hydrogen atom with extra 12
electrons, which gives us an electronic configuration of aluminum, therefore
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we calculated quasi-free electron gas (green curve). It was justified because
of the value of the potential energy was much less than the kinetic energy.
After that we managed to calculate a gas with no electron-electron interaction
(blue curve) and with no electron-nucleus interaction (black curve). We did
not manage to exclude both of this interactions because of the source code
issues.
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Figure 4: Calculations for different types of the quasi-free electron gas

Here we can see that all three curves reach an expected value of the heat
capacity very fast. And this result allows us to conclude that the program
works correctly.

Also we calculated an intermediate case−carbon with 7 additional elec-
trons, the same trend was detected:
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7 Conclusion

The XATOM was extended to be able to calculate the total energy of atomic
system within the Wigner-Seitz radius. The results we got were quite unex-
pected and we were necessary to verify the calculation method using already
known models. The results we took for carbon gives us confidence that the
heat capacity for aluminum will reach the expected value with higher tem-
peratures. Also there are unexplained phenomena, therefore all this results
should be formalized.
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