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Abstract

Big logarithms invalidate perturbation theory in QCD in the low p⊥ spectrum.
These arise because the physical process involve different energy scales and is usu-
ally solved by effective theories, factorization and resummation. However rapidity
logarithms appear in the corners of phase space that also need resummation. This
report deals with resumming the cross-section for the low p⊥ spectrum of Higgs
production up to next to leading logarithm through the use of renormalization
group equations in the formalism of Soft Collinear Effective Field Theory.
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This Report

This report is a short summary of my work at the DESY Summer School 2014. The main
topic of my project deals with RGEs in SCET which is presented below. Much of my
time was also dedicated to studying the necessary background like QCD, factorization,
resummation and SCET. However to present everything I learned would be quite hard
and without a real meaning and therefore this report deals with mainly some of the
calculations I have checked and done.

I would like to thank DESY for the opportunity to come here and also my supervisors
Frank Tackmann and Maximilian Stahlhofen for helping out in the times of confusion!

1. Introduction

Some observables in QCD involve large logarithms that makes perturbation theory lose
its predictive power. These large logarithms can arise when the physical process involves
physics on different scales which results in logarithms of large or small energy ratios. To
deal with this problem one factorizes the scattering process into several factors which
each account for the physics at a specific scale.

Resummation refers to the process of summing up all the relevant logarithmic terms
in perturbation theory. This can be done with renormalization group techniques, where
one solves a corresponding Renormalization Group Equation(RGE) for each factor in
the cross section. However large logarithms does not always come from different fixed
energy scales, such as masses. They can also come from corners in phase space involving
ratios of momenta. These are called rapidity divergences and must also be resummed.

To separate the energy scales one need an effective field theory to integrate out the
irrelevant degrees of freedom. Soft Collinear Effective Theory(SCET) is designed for
processes where the hard scale is much greater than the hadronic scale. It also accounts
for emissions of soft and collinear gluons.

In [1] the authors showed how one can do the resummation for Higgs production in
SCET with a “Rapidity Renormalization Group Equation”(RRGE). This project deals
with how one could extend this to next to leading order(NLL). I will also present some
numerical calculations for the cross section of Higgs production to see how sensitive the
computation is on energy scale parameters..

In this report I will first in part 2 give a glimpse of the relevant parts of SCET and
present the relevant RGEs. After that I will show how these are solved to do resummation
in part 3. The evolution of the factorized cross-section is explained in part 4 and the
results are presented in part 4.3. Some formulas and gathered up in appendix A and
the necessary details about plus distributions that was used to solve the RRGEs are
presented in appendix B.
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2. Higgs production in Soft Collinear Effective Field
Theory

For an effective field theory to correctly describe the infrared physics of QCD, it needs
to include the emissions of soft and collinear gluons. This is done in the formalism of
SCET [2], more specifically SCETII for Higgs production. The characteristic low energy
scale is λ = pT

mh
, but it is a little bit more complicated since the momenta of the on-shell

constituents of the process has two scales, λ and λ2.
To get a physical picture of the process it is useful to look at the constituents char-

acteristic momenta. For low p⊥ there is a natural preferred axis which makes light cone
coordinates particularly useful. In light cone coordinates the different momenta scale as

ph ∼ mh(1, 1, λ)

pn ∼ mh(1, λ
2, λ)

pn̄ ∼ mh(λ
2, 1, λ)

ps ∼ mh(λ, λ, λ)

Where pn and pn̄ stands for momenta along the x+ and x− lightcone directions. And ps
is the momenta of soft radiation.

The rapidity divergences are not traditional UV or IR divergences, instead they man-
ifests themselves in ratios of momenta, like p+

p−
1. The phase space can be split up through

factorization, which separates the radiation with different momenta scaling. The factor-
ization of the cross section can be sketched up as

σ ∼ H(mh)S(~ps)fg/P (~p1)fg/P (~p2). (1)

The hard function H is the matrix element of the scattering at the scale ∼ mh and the
soft function S takes care of the soft radiation. The fg/P are called transverse momentum
dependent parton distribution functions or simply beam functions.

Traditionally the resummation can be done through a RGE procedure where one
renormalize the specific factors in the cross section at a specific scale. This gives rise to
a differential equation that can be solved for each function. The solution can then be
used to “run” the functions between energy scales, which corresponds to summing all
the big logarithms into a prefactor.

2.1. Renormalization Group Equations

To deal with the rapidity divergences, one can introduce a dimensionful parameter
ν that acts as a momentum cutoff for the beam and soft functions. This introduces an
differential equation that acts as a rapidity renormalization group equation.

1Rapidity can be defined as y = 1
2 log p+

p−
.
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In addition to the rapidity renormalization, there is the usual renormalization with
the momentum parameter µ. The bare functions are independent of both µ and ν,

d

d log µ
{S, fg/P} =

d

d log ν
{S, fg/P} = 0. (2)

In our case the renormalized beam and soft functions can be expressed as convolutions
with some renormalization factors as

fRg/P
µν

(z, ~pi, µ, ν) = Zf (~p, µ, ν)
−1 ⊗⊥ fBg/P

µν
(z, ~pi), (3)

SR(~ps, µ, ν) = ZS(~p, µ, ν)
−1 ⊗⊥ S(~ps). (4)

Where the convolution is defined as

g ⊗⊥ f(~p) =

∫
d2~q

(2π)2
g(~q)f(~p− ~q), (5)

with the identity

I~p = (2π)2δ(2)(~p) =

∫
d2~q

(2π)2
Z−1(~q)Z(~p− ~q). (6)

The hard function is independent on ν and is renormalized as

HR(mh, µ) = ZH(µ,mh)
−1
HB(mh) (7)

and the µ part of eq. 2 also holds for the hard function. Combined with the renormalized
expression one arrives at the RGEs and RRGEs2,

µ
d

dµ
SR(~p, µ, ν) = γSµ (~p, µ)SR(~ps, µ, ν), (8)

ν
d

dν
SR(~p, µ, ν) = γSν (~p, µ, ν)⊗⊥ SR(~ps, µ, ν), (9)

µ
d

dµ
fRg/P

µν
(z, ~pi, µ, ν) = γfµ(~p, µ)fRg/P

µν
(z, ~pi, µ, ν), (10)

ν
d

dν
fRg/P

µν
(z, ~pi, µ, ν) = γfν (~p, µ, ν)⊗⊥ fRg/P

µν
(z, ~pi, µ, ν), (11)

µ
d

dµ
HR(mh, µ) = γHµ (µ)HR(mh, µ). (12)

2The γ
f/S
µ are really proportional to I~p which cancels the convolutions. But I have omitted that in

the notation
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Where the anomalous dimensions are defined as

γSµ (~p, µ) = −(ZS)
−1
µ
d

dµ
ZS, (13)

γSν (~p, µ, ν) = −(ZS)
−1 ⊗⊥ ν

d

dν
ZS, (14)

γfµ(~p, µ) = −(Zf )
−1
µ
d

dµ
Zf , (15)

γfν (~p, µ, ν) = −(Zf )
−1 ⊗⊥ ν

d

dν
Zf , (16)

γHµ (µ) = −(ZH)
−1
µ
d

dµ
ZH . (17)

The soft, beam and hard function are all defined at their respective characteristic µ
and ν scale. With solutions of the RGE and RRGE they can all be evolved to the same
point in (ν, µ) space. What point does not matter, so for convenience one can evolve the
soft and hard function to the beam function and leave the beam function unchanged.
But a different evolution choice would reach the same result since the cross-section is µ
and ν independent.

The anomalous dimensions can thus be derived from the renormalization factors and
they have been calculated to 1-loop in [1]. There however they are only including LL
terms. This can be matched to the more general form which for the soft function can
be written

γSµ (µ) = 4Γgcusp[αs(µ)] log
µ

ν
+ γS[αs(µ)], (18)

γSν (p, µν) = 4Γgcusp[αs(µ)]
2π

µ2

[
µ2

p2

]
+

. (19)

Definition and details of the plus distribution can be found in appendix B and the
formulas for the Γgcusp, γF and αs(µ) functions are collected in appendix A.

Similarly the anomalous dimensions for the beam function are

γfµ(µ) = 2Γgcusp[αs(µ)] log
ν

mh

+ γf [αs(µ)], (20)

γfν (p, µν) = −2Γgcusp[αs(µ)]
2π

µ2

[
µ2

p2

]
+

, (21)

and for the hard function

γH(µ) = −4Γgcusp log
µ

mh

+ γH [αs(µ)]. (22)

2.2. Factorization

Assuming that the only relevant Higgs production occurs through gluon fusion, the cross
section can be written as
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dσ

d2pTdy
=

πC2
t

2v2s2(N2
c − 1)

∫
d2~p1

∫
d2~p2

∫
d2~psδ(p

2
T − |~p1 + ~p2 + ~ps|2)

×fµνg/P

(
mh√
s
e−y, ~p1

)
fg/P µν

(
mh√
s
ey, ~p2

)
S(~ps)H(mh). (23)

3. Solving the RGE & RRGE

The µ RGEs are homogeneous Ordinary Differential Equations(ODE) which can easily
be solved. Care must be taken to include the αs running as well when integrating over
µ. The general solution for all the functions can be expressed as

F (µ) = exp

[∫ µ

µ0

d log µ′γµF (µ′)

]
F (µ0) ≡ UF (µ, µ0)F (µ0). (24)

Where the function UF evolve the function F from µ0 to µ. The full evolution functions
are

US(µ, µS, ν) = exp

[
4

∫ αs(µ)

αs(µS)

dα

β[α]
Γgcusp[α]

∫ α

αs(µS)

dα′

β[α′]
+ 4 log

µS
ν

∫ αs(µ)

αs(µS)

dα

β[α]
Γgcusp[α]

+

∫ αs(µ)

αs(µS)

dα

β[α]
γS[α]

]
, (25)

Uf (µ, µS, ν) = exp

[
−2 log

ν

mh

∫ αs(µ)

αs(µB)

dα

β[α]
Γgcusp[α] +

∫ αs(µ)

αs(µB)

dα

β[α]
γf [α]

]
, (26)

UH(µ, µS, ν) = exp

[
−4

∫ αs(µ)

αs(µH)

dα

β[α]
Γgcusp[α]

∫ α

αs(µH)

dα′

β[α′]
− 4 log

µH
mh

∫ αs(µ)

αs(µH)

dα

β[α]
Γgcusp[α]

+

∫ αs(µ)

αs(µH)

dα

β[α]
γH [α]

]
. (27)

These can be computed to whatever order is needed.
In the case of the RRGEs it is a little bit more complicated since they involve a

convolution. However the equation can be simplified if one goes to b-parameter space
with a fourier transform. In the case of the soft function, this yields the multiplicative
ODE

ν
d

dν
S̃ = γ̃Sν S̃. (28)

Where the fourier transformed functions are defined by

f̃(b) =

∫
d2~p

(2π)2
ei~p·

~bf(p). (29)
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For the soft function, the solution in b-space is given by

S̃(b, µ, ν) = exp

[
γ̃νS(b, µ) log

ν

νS

]
S̃(b, µ, νS) =

(
b2µ2e2γE

4

)−ωs(ν,νS ,µ)

S̃(b, µ, νS). (30)

Where

ωs(ν, νS, µ) = 2Γgcusp[αs(µ)] log
ν

νS
. (31)

Transforming back to momentum space gives a convolution again

S(~p, µ, ν) = VS(~p, ν, νS, µ)⊗⊥ S(~p, µ, νS), (32)

with

VS(~p, ν, νS, µ) ≡ 2π

∫ ∞
0

dbbJ0(bp)

(
b2µ2e2γE

4

)−ωs(ν,νS ,µ)

= 4πe−2γEωS
Γ(1− ωS)

Γ(ωS)

1

µ2

(
µ2

p2

)1−ωS

. (33)

The evolution of the beam function gives a similar expression but with

Vf (~p, ν, νB, µ) ≡ 2π

∫ ∞
0

dbbJ0(bp)

(
b2µ2e2γE

4

)ωB(ν,νB ,µ)

= 4πe2γEωB
Γ(1 + ωB)

Γ(−ωB)

1

µ2

(
µ2

p2

)1+ωB

. (34)

and

ωB(ν, νB, µ) = Γgcusp[αs(µ)] log
ν

νB
. (35)

3.1. Unwanted Singularity

However eq. 33 and eq. 34 poses a problem because they are singular at ωS = 1 and
ωB = −1. This is relevant since ωB/S are of O(1), see fig. 1. Which can be seen to cause
trouble if you consider the integrals that govern the inverse transform. For example
ωS = 1 gives a singular contribution from the region of b � 1/p. The problem can be
reduced to only one integral if the soft function is evolved to the beam function or vice
verse. The authors in [1] suggests a solution to this problem by suppressing the singular
region by setting νS = 1/b.

It is somewhat surprising that this singularity shows up here and it is not fully
understood why it does. With no better solution as a suggestion, this project deals
mainly with numerically investigating this “1/b” solution.
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Figure 1: ωS(ν, νS, µS) is of order 1 with µS = νS = p⊥ and ν = mh.

4. Numerical calculations

To compute the cross-section all the factors have to be resummed. This can be done in
several ways and here below we present one convenient way of doing it.

4.1. Evolution of the Cross-Section

µB, µS, pT

µH, mh

νS, pT νB, mh

µ
 [

G
e

V
]

ν [GeV]

fg/PS

H

RRGE

RGE

Figure 2: All the functions in the factorized cross-section should be evolved to a common
point in the (ν, µ) space. Here is the evolution to the beam scale µB ∼ p⊥,
νB ∼ mh.

The total evolution in (ν, µ) space is path independent and the cross section is inde-
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pendent of the final value of ν and µ. So one is free to choose how to evolve the soft,
beam and hard function. Their characteristic scales are set by minimizing the logarithms
that appear to higher order in αs. This is done by setting [1]

νS ∼ µS ∼ µB ∼ p⊥, νB ∼ µH ∼ mh. (36)

A convenient choice is then to only evolve the soft and hard function to the scale of the
beam function, see fig. 2. Then there is no need to evolve the beam function at all. The
total evolution function would then be3

Etot(~p, νB, νS, µB, µS, µH) = UH(µB, µH)US(µB, µS, νB)VS(νB, νS, µS). (37)

To NLL it is sufficient to only include the lowest order of fg/P and S which are [1]

S(0)(~p) = δ(2)(~p), (38)

f
(0)
g/P

µν
(
mh√
s
ey, ~p

)
=

(√
s

mh

)
gµν⊥
2
δ(2)(~p)fg/P

(
mh√
s
ey
)
. (39)

The gluon fusion hard function can be found in [3] and is to lowest order

H(mh) = 4m4
h

∣∣∣∣αs(mh)

[
6m2

t

m2
h

− 6m2
t

m2
h

∣∣∣∣1− 4m2
t

m2
h

∣∣∣∣ arcsin2

(
mh

2mt

)]∣∣∣∣2 . (40)

With everything inserted into the cross-section eq. 23, it becomes

dσ

d2p⊥dy
=

πC2
t

2v2s2(N2
c − 1)

s

8πm2
h

fg/P

(
mh√
s
e−y
)
fg/P

(
mh√
s
ey
)
Etot(~p⊥)H(mh). (41)

4.2. Scale Variations

To compute the cross-section and avoid the mentioned singular contribution in the soft
evolution, we will fix νS = 1/b. For a realistic investigation of the cross-section for
Higgs production you would want a prediction over the entire p⊥ range. However the
resummation is only valid for low p⊥. For the entire range one should match the NLL
to NLO. This can be done by switching of the resummation4 at some scale that can be
decided by looking at the singular and non-singular pieces of the fixed order calculation.
However we will not do this in this project, but instead only look at the variation of the
characteristic scales to see how it affects the resummation.

We will consider the canonical choice of scaling each parameter with a factor of 2, see
fig. 3. Each renormalization scale is then varied and the total variation is the envelope
of them all.

3It is really a convolution with the soft function.
4Setting all the renormalization scales to the fixed order scale.
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Figure 3: Each of the parameters µB, µS, µH and νB is scaled by a factor 2. νB and µH
are shown in red shading while µS and µB are shown in gold shading.

4.3. Results

The cross-section has been computed for a variation of the renormalization scales ac-
cording to the scaling profile in fig. 3 to see how it affect the resummation, see fig. 4. At
∼ 1 GeV the variation is bigger than at the higher scales because at the very low scale
there are non-perturbative effects.

The computation of the cross-section was done in Mathematica. The MSTW pack-
age [4] was used to generate the parton distribution functions and the RunDec package [5]
was used to generate αs(µ).

5. Conclusion

In this report the RGE and RRGE of the soft, beam and hard functions for the cross-
section for low p⊥ spectrum of Higgs production were presented. The general solutions
were also derived however no solution to get rid of the surprising singularity in [1] was
found. Instead some numerical calculations of the resummed cross-section were done up
to NLL.

The solution of setting νS = 1/b works for numerical calculations. However it is not
clear how one shuts off the resummation with this choice.

Further analysis could be done by comparing the results to LHC data of the p⊥
spectrum for Higgs production. But because of time issues this was omitted in this
project.
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Figure 4: Cross-section for Higgs production. The red shading is the total variation of the
renormalization scales according to fig 3. At low p⊥ non-perturbative effects
come into play causing a bigger variation. Other parameters:

√
s = 8 TeV

and y = 0.

Appendices

A. Formulas Γcusp, γF and β functions

The anomalous dimensions are written in the form of the Γgcusp[αs] function. It, as well
as the non-cusp piece γF [αs], are power series in αs,

γF [α] =
∞∑
n=0

γFn

(αs
4π

)n+1

, Γgcusp[α] =
∞∑
n=0

Γgn

(αs
4π

)n+1

. (42)

For completeness, the lowest order terms that was used in this project are listed below.
All terms up to 3-loop order can be found in [3]. The coefficients up to 2-loop for
Γgcusp[αs] are

Γg0 = 4CA, (43)

Γg1 = 4CA

[(
67

9
− π2

3

)
CA −

10

9
nf

]
(44)

and to 1-loop for γF [αs] are

γS0 = 0, (45)

γB0 = 2β0, (46)

γH0 = −2β0. (47)
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Where β0 is the first coefficient in the beta function for αs

β[αs] = −2αs

∞∑
n=0

βn

(αs
4π

)n+1

, (48)

β0 =
11

3
CA −

2

3
nf , (49)

β1 =
34

3
C2
A −

(
10

3
CA + 2CF

)
nf . (50)

B. Plus Distributions

Plus distributions are used to render the 2 dimensional convolutions finite. They can be
defined with dimensional regularization as∫

d2~p

(2π)2
f(~p) [P (~p, µ)]+ ≡ lim

ε→0+
µ−2ε

{∫
d2+2ε~p

(2π)2+2ε
f(~p)P (~p, µ)− f(0)

∫
Dµ

d2+2ε~p

(2π)2+2ε
P (~p, µ)

}
.

(51)

Where Dµ = {~p : |~p| < µ}.
In the solution of the RRGE we are in need of the fourier transform of 1

µ2

[
µ2

~p2

]
+

. We

can derive it by first evaluating for α < 0,∫
d2~p

(2π)2
ei
~b·~p 1

µ2

[(
µ2

~p2

)1+α
]

+

=

∫
d2~p

(2π)2
ei
~b·~p 1

µ2

(
µ2

~p2

)1+α

−
∫
Dµ

d2~p

(2π)2

1

µ2

(
µ2

~p2

)1+α

=
1

4π

Γ(−α)

Γ(1 + α)

(
b2µ2

4

)α
+

1

4πα
. (52)

Now if we expand both sides in α we get∫
d2~p

(2π)2
ei
~b·~p

{
1

µ2

[
µ2

~p2

]
+

+
∞∑
n=1

αn

n!µ2

[
µ2

~p2
logn

µ2

~p2

]
+

}
= − 1

4π
log

(
b2µ2e2γE

4

)
+O(α).

(53)

Matching the powers of α gives us∫
d2~p

(2π)2
ei
~b·~p 1

µ2

[
µ2

~p2

]
+

= − 1

4π
log

(
b2µ2e2γE

4

)
. (54)
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