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Abstract

This report is a summary of my work at Desy as a Summer Student. In my
project, I focus on the analyse of a molecular Hamiltonian with harmonic and
morse potentials. This is to change the harmonicity of our model an to see how
it responds under an oscillating electric field. This work is mainly a computer
simulation of such a system and I use the MCTDH program to do necessary
calculations and plots.
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1 Introduction

In this work, we consider the quantum mechanical approach to write a Hamiltonian for
a molecule. In the first case we use two harmonic potentials and also a coupling term.
In order to write this term, we follow the article ”Theory of nonlinear phononics for
coherent light-control of solids” Reference [1], where they use a similar way to write
the interaction between IR and Raman modes for magnetoresistive manganites (PMO).
Throughout in this profect, IR mode stands for the first oscillator q1 and Raman mode
stands for the second one q2. We will only consider a cubic coupling in the molecular
hamiltonian which looks like λq2

1q2. Then we create an electric field, which has the shape
of a Gaussian envelope, around the molecule to excite the energy levels of the potential
and to reach higher ones. Additionaly, as we are dealing with a system in molecular
scale, we have to use atomic units for length and mass in this way we are near to bond
length in a molecule and we can express the weight around proton mass scale. For this
purpose we will use the mass-weighted coordinate system.
In the second case, we change the first harmonic potential to a morse potential and
we keep the rest of the system same as before. In this way, the system gets more an-
harmonic depending on the value of the dissociation energy. Our main goal here is to
study how the excitation levels change depending on the harmonicity of the system. In
this procedure, we use MCTDH program to analyse the different eigenstates that the
Schrödinger equation reaches as well as to plot the variation of position with respect to
time and also to observe the exitation levels of the system, additionaly, all the plots and
graphs are created by Gnuplot scripts.
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2 Time Dependent Quantum Mechanics

A very general way to analyse a quantum mechanical system is to propagate wave pack-
ets. In order to solve such a system, one needs to specify (time dependent) Hamiltonian
operator, and than one solves the time-dependent Schrödinger equation (ih̄ψ̇ = Hψ).
The Hamiltonian operator acts on a wavefunction ψ which has to be splitted into some
basis functions. This procedure is called the basis expansion method and in our project
it is done by MCTDH program. Consider a wavefunction:

ψ(q1, q2, ......, qn; t) =
∑
j1jn

Aj1..jn(t)φ
(1)
j1 (q1, t)φ

(2)
j2 (q2, t)....φ

(n)
jn

(qn, t)

where n is the degrees of freedom of the system, φj’s are the time dependent basis
functions and A′

js are the expansion coefficients. The φj can also be expended like :

φ
(1)
j1 (q1, t) =

N1∑
i1

ci1,j1(t).χ
(1)
i1 (q1)

Finally the wavefunction can also be defined as :

ψ(q1, q2, ......, qn; t) =
N1,Nn∑
i1in

Ci1..in(t)χ
(1)
i1 (q1)χ

(2)
i2 (q2)....χ

(n)
in (qn)

We expanded the wave packet into finite terms, linear combination of vectors and now
the time-dependent Schrödinger equation looks like a set of coupled ordinary differential
equations iψ̇ = Hψ where ψ is a vector and H is a matrix. The MCTDH (multi-
configuration time dependent Hartree) program uses a numerical algorithm to propa-
gate the wave packet. In this project we will be using MCTDH to analyse the molecular
Hamiltonian. You can find the User’s Guide for the program in the Reference [2].
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3 Hamiltonian

In order to write a moldecular hamiltonian we need to introduce mass-weighted coordi-
nate system. For this purpose put q =

√
m.x and the energy is :

− 1
2m

∂2

∂x2 + 1
2
mω2x2, where, k = mω2 or ω =

√
k
m

.

From the chain rule, we can write partial x as; ∂
∂x

= ∂q
∂x

∂
∂q

. We use the relation x = q√
m

to determine ∂q
∂x

=
√
m, then we get ∂

∂x
=
√
m ∂

∂q
and after taking the second derivative

we finally have; ∂2

∂x2 = m ∂2

∂q2 .

So, by using the mass-weighted coordinates, the energy looks like: −1
2

∂2

∂q2 + 1
2
ω2q2

Now, remember our system with two oscillators in an electric field with a coupling
term. The hamiltonian for this system has the form:

H(q1, q2, t) = −1
2

∂2

∂q2
1
− 1

2
∂2

∂q2
2

+ V1(q1) + V2(q2) + V12(q1, q2) + µ(q1).ε(t), where, ε(t) is

the electric field and µ(q1) is the dipole operator. Our main purpuse to use these two
terms together is to have energy units in the hamiltonian. We will use a simple dipole
term and an oscillating pulse in our system. Let me define these terms in the follow-
ing way: µ(q1) = c.q1 and ε(t) = A(t). cos(ωt + φ) and for the cubic coupling we put
λ.q2

1.q2. The time dependent electric field A(t) has the form of a gaussian envelope and
it is explicitly written as A(t) = A.exp(−t2

2σ2 ),where A and σ are the amplitude and the
width of the pulse respectively, (we could use a sin2 envelope which has mainly the same
shape of the exponential one, but follow the same model as in the article,Ref[1]). All
the constants used in the Hamiltonian will be specified later. For our first model, where
we use two harmonic oscillators, the Hamiltonian becomes:

H(q1, q2, t) = −1
2

∂2

∂q2
1
− 1

2
∂2

∂q2
2

+ 1
2
mω2

1q
2
1 + 1

2
mω2

2q
2
2 + λ.q2

1.q2 + A(t).q1. cos(ωt+ φ)

For our second model, we introduce the morse potential. Our aim in using this potential
is to change the harmonicity of the system. Basically, a morse potential is a way to
describe the potential energy of a diatomic molecule. Unlike the energy levels of the
harmonic oscillator potential, which are equally spaced by a distance h̄.ω, morse poten-
tial spacing between energy levels decreases as the energy appoaches the dissociation
energy, since after this limit, the bond in the molecule is broken. A morse potential can
be written as; M(x) = D.(exp(−α(x−x0))− 1)2, where D is the dissociation energy, x0

is the equilibrium position and α is defined as; α2 = m.ω2

2.D
. So, for this second model the

Hamiltonian becomes;

H(q1, q2, t) = −1
2

∂2

∂q2
1
− 1

2
∂2

∂q2
2
+D.(exp(−α(q1))−1)2+ 1

2
mω2

2q
2
2+λ.q

2
1.q2+A(t).q1. cos(ωt+φ)

Finally, we define all the constants of the hamiltonian as follows: for ω1 and ω2 we
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take the same frequency values of the Raman and IR modes in the article, Ref[1]. So,
ω1 = 622cm−1 and ω2 = 155cm−1. For the value of the λ we take the g value for PMO in
the article, Ref[1], λ = 51.74 meV

amu3/2Å2
, but we have to be careful about its units. As we

deal with a system in a molecular scale, we use atomic units throughout in this project.
After having done the appropriate conversion we get, λ = 1, 889.10−6a.u.. For the width
of the pulse, σ, we will use different values to make the electric field more wide since
in this way much more photons are transmitted from the pulse to the system, which,
obviously changes the excitation levels of the system.

4 Molecular Hamiltonian with two harmonic oscillators

For the first case we use the hamiltonian :

H(q1, q2, t) = −1
2

∂2

∂q2
1
− 1

2
∂2

∂q2
2

+ 1
2
mω2

1q
2
1 + 1

2
mω2

2q
2
2 + λ.q2

1.q2 + A(t).q1. cos(ωt+ φ)

And we write it in a operator directory which has the form:

Figure 1: The hamiltonian operator with corresponding functions

Here; we include the term ’m’ which obviously stands for the mass and it is not appear
in the above hamiltionian since we are using a mass-weighted coordinate system. But
we have to add this term to get atomic units in the system, so, actually the value of
m = 1 a.m.u. On the other hand, the E stands for the electric field which is a gaussian
function and it is defined in the MCTDH user’s guide, Ref [2]. Then we multiply it with a

periodic function where we used a cosine function (A(t) = 100.exp(−(t−500)2

1002 )cos(622t)).
For the amplitude of the pulse times dipole, we used 100cm−1 which is a reasonable
number and with this number we can reach sufficiently high levels. Additionaly, we used
the same frequency of q1 which is 622cm−1 for the cosine function and this is basically
to have a resonance between the field and the first degree of freedom. So; the electric
field for our system has the following shape:

6



Figure 2: The electric field

This pulse excites the first degree of freedom q1 by transmitting energy to it, this is
because we multiply the Gaussian envelope with q1 as a dipole operator, and in the
potential energy it climbs up to higher levels as long as the pulse is resonant with the
energy separations. Since the energy levels are discrete, when the photon energy h̄ω and
the energy of the first degree of freedom h̄ω1 is h̄ω ≈ h̄ω1 then we get an excitation. This
regime continues until the pulse calms down and ultimately dies. While the exitation
happens, obviously there is a displacement or a oscillation on q1 that we will show the
plot. However, as there exists an interaction between two degrees of freedom by the
coupling term, we expect a displacement in q2 created by the displacement in q1. After
the calculations, we get the following graphs which shows the variation of position with
respect to time for two degrees of freedom:

Figure 3: Variation of q1 Figure 4: Variation of q2

Recall the coupling term: λ.q2
1.q2. The first degree of freedom q1 appears quadraticaly in

the coupling. So it is not surprising that the oscillation of q1 is symmetric with respect
to the y = 0 axis. And also notice that the oscillations start when the pulse becomes
active i.e. between 200-400 fs. Now, we can make a correlation between the variation of
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q1 and q2. Until the pulse starts to be active q2 oscillates around y = 0. However, when
the electric field excites the first degree of freedom, q2 has a very sharp fall until the pulse
calms down and keep oscillating again. Because of the coupling term the displacement
in q1 causes an obvious change in the displacement of q2. We can also have a look at the
excitation level that q1 reaches by the following graph:

Figure 5: exitation level of q1

This plot shows the population density of the first degree of freedom. Notice that the
peak of the curve stands approximately at 14 or 15th level. The excitation up to this
level causes an energy change of the system. From the output file that the MCTDH
program creates after the calculation, we can read the initial energy of the system as
Eintitial = 0.048168eV and the final energy is Efinal = 1.086881eV , which gives us an
energy difference of ∆E = 1.038713eV . We can do the same calculations by changing
the value of sigma i.e. by widening the pulse. In this way, the pulse acts longer time on
the system and we expect to reach higher levels. So, if we put σ = 1000fs instead of
100 fs, the electric field is like :

Figure 6: The electric field with longer
puls witdh
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As you can see, the pulse is wider and there are more oscillations inside the Gaussian
envelope. With this new pulse, the population density of the system is like:

Figure 7: Excitation level of q1 with a
wider pulse

The top of the curve reaches around the 20th level, obviously higher than the previous
one. The initial energy of the system is again Eintitial = 0.048168eV but the final energy
is Eintitial = 1.762525eV and the energy difference (∆E = 1.714357eV ) is remarkably
changed and increased. After these calculations we can see the relation between pulse
witdh, excitation levels and the energy change. Now, we continue by changing the
harmonicity of the system by using the morse potential in the following section.
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5 Morse Potential: Anharmonic Case

For the second case, we change the potential of the first degree of freedom. Instead
of the harmonic oscillator potential, now we consider a morse potential with different
dissociation energy values. In the plots below, one can see the shape of the morse
potential in comparison with the harmonic potential:

Figure 8: Morse potential with D =
10000 cm−1

Figure 9: Morse potential with D =
350000 cm−1

In these graphs, we plotted two extreme cases with a small and a very large dissociation
energy, D. The morse potential with small D tends to diverge from harmonic potential
in a very short range, however, if we put D a very huge number the morse and harmonic
potentials gets closer. Now, we do the same calculations with different D values to see
how the harmonicity of the system effects the excitation levels. The hamiltonian for this
model is explicitly written as:

H(q1, q2, t) = −1
2

∂2

∂q2
1
− 1

2
∂2

∂q2
2

+D.(exp(−αq1)− 1)2 + 1
2
mω2

2q
2
2 + λ.q2

1.q2 +A(t).q1. cos(ωt)

For the beginning we use the first electric field that we used in the previous section
where σ = 100fs. With D = 10000cm−1 the variation of position with respect to time
for two degrees of freedom is as follows:

Figure 10: Variation of q1 Figure 11: Variation of q2
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The displacement of q1 is again symmetric as in previous section, but here the interesting
one is the second degree of freedom. There is only a slight change in the displacement of
q2 which is obviously different from the two harmonic oscillator case where we had a very
sharp fall in the the displacement of q2. We can also have a look at the energy difference
for this system from the output file. The initial energy for this system is Einitial =
0.048699eV and the final energy is Efinal = 0.090379eV , so, the energy difference is only
∆E = 0.04168eV which is a small number if we compare with the case of two harmonic
potentials. Additionaly, the population density for the first degree of freedom is:

Figure 12: Excitation level of q1 forD =
10000cm−1

The excitation of the first degree of freedom reaches only 2 or 3th level which is quite
low when it is compared again to the previous model. The obvious reason for this low
excitation level is the resonance of the pulse with the first degree of freedom. As the
dissociation energy is a small number, the energy separations of the morse potential gets
narrower in a very short time so that the pulse cannot excite any more. We can have
the same deduction with the following example. We change the dissociation energy from
D = 10000cm−1 to D = 35000cm−1. In this case the variation of position with respect
to time for two degrees of freedom is shown below:

Figure 13: Variation of q1 Figure 14: Variation of q2

As you can see, the displacement of q2 is more than the above example but the fall is
not as sharp as the two harmonic oscillator case. The initial energy of the system is
Einitial = 0.048318eV , the final energy is Efinal = 0.175568eV and the energy difference
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is ∆E = 0.12725eV which means that more energy is transmitted from the pulse to the
system when we compare to the above example. Also, the population density for the
first degree of freedom is:

Figure 15: Excitation level of q1 forD =
35000cm−1

The peak of the curve reaches approximately 5th energy level which is also higher than the
above example. So, these to examples shows us the correlation of the value of dissociation
energy and the excitation levels. If D increases, we approach to the harmonic case where
we have more excitations.
Finally, we have this last example with a huge D. We put D ten times larger than the
previous one D = 350000cm−1 and we have the following results:

Figure 16: Variation of q1 Figure 17: Variation of q2

This results are not surprising since we are geting closer to the harmonic case. In
the displacement of the second degree of freedom we have the similar sharp fall as
in the example of two harmonic oscillators. the energy difference of this system is
∆E = 0.939893eV because much more energy is transmitted to the system by the pulse.
The population density for this last example is shown by the following plot:
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Figure 18: Excitation level of q1 forD =
350000cm−1

The peak of the curve is around approximately the 15th excitation level which is very
close to the level that we observed with two harmonic oscillators.

To sum up, have a look at the following plot which shows the displacement of q2 for
different D values and also with the example of two harmonic oscillator:

Figure 19: displacement of q2 for differ-
ent D values

The brown curve is the case where we used a small D value and the blue curve is the
two harmonic oscillator example. So, this plot shows clearly that the system converges
to the harmonic case when D gets larger.

13



6 Conclusion

In this project, we demonstrated mainly the relation between the harmonicity of the
system and the excitation levels. In our first exemple with two harmonic potentials, we
can excite the system as long as the pulse is active, and also the excitation amount is
dependent on the amplitude and the width of the pulse as well as the coupling coefficient
λ. Obviously if we use a wide pulse with a high amplitude, more energy is transmitted
to the system. However, when we consider the morse potential, the harmonicity of
the system is broken. Even if we use a very wide pulse, it is impossible to excite the
system near the dissociation energy where the pulse is no longer resonant with the energy
separations of the potential and the system reaches saturation. Another important result
that we observe during our calculations is the effect of D value on the system. As we
increase the dissociation energy the system converges to the harmonic case and with a
very large D value we can reach very high excitation levels.
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