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Abstract

Supercontinuum laser pulses in the visible and near infrared region find themselves

in a wide range of applications from biology to meteorology and their generation is

a delicate procedure dependent on a variety of linear and nonlinear effects. Part of

this project concerns the optimisation of the stability and spectral bandwidth of the

supercontinuum pulses created by self-phase modulation in a hollow-core fiber. By

modifying the experimental setup and using optimal energy and pressure conditions,

a maximum bandwidth of (575± 22)nm was achieved; similar to other SPM-induced

bandwidths using different beam input parameters [1]. A primary requirement of

supercontinuum applications is a constant peak amplitude of the pulse, determined

by the carrier-envelope phase (CEP) amongst other factors. It is therefore vital to

control the CEP in order to maintain a constant peak amplitude; one of the earliest

methods involved the use of an f-to-2f interferometer [2], and one was built for later

use on the Ti:Sapphire laser utilised in this project.
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1 Introduction

1.1 Creating ultrashort supercontinuum pulses

Supercontinuum ultrashort pulses are produced as a result of both linear and nonlinear optical

effects. The main nonlinear phenomena involved in supercontinuum generation include self-phase

modulation (SPM), four-wave mixing, intrapulse Raman scattering and soliton self-frequency shift

[3]. In a hollow-core fiber (HCF) the predominant method of spectral broadening is via SPM [4],

caused by the optical Kerr effect: the polarization in a dielectric medium is not proportional to

the electric field at high intensities. This creates an instantaneous change in the refractive index

n(t, ~x) = n0 + n2I(t, ~x), (1)

where this change produces a phase shift in the highest intensity parts of the beam, with n2 of

order 10−16cm2/W [5]. The transverse and longitudinal components of the Kerr effect produce

different nonlinearities in the beam, as can be seen in Figure 1, and this is a result of the third

order nonlinearity in the optical susceptibility (a full derivation can be found in [6]).

Figure 1: Transverse and longitudinal Kerr effect, taken from [5].

The transverse effect retards the most intense parts of the beam, acting like a focusing lens,

whereas the longitudinal effect creates a red shift in the leading end of the pulse and a blue shift

in the trailing end; this is SPM. The pulse can then be shortened using dispersion compensation,

which advances the blue end of the pulse and delays the red end to remove any dispersion produced

in the gas. For a pulse propagating over a distance L in a nonlinear medium, it picks up a phase

Φ(t) =
ω

c
n2I(t)L, (2)

which, in the limit ∂I
∂t →

I0
τ where I0 is the peak beam intensity and τ is the pulse width, the

maximum spectral broadening due to SPM is

∆ω(t) =
ω

c
n2L

I0
τ
. (3)

From the Fourier transform of the broader frequency spectrum, a shorter pulse in the time

domain is henceforth produced.

1.2 CEP and f-to-2f interferometry

In an optical pulse, the peak of the envelope and carrier waves may not necessarily align,

causing a reduction in the peak intensity of the pulse. This phase difference between the two
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waves is known as the carrier-envelope phase (CEP), also referred to as the ‘absolute phase’ [7],

and causes the form of the pulse’s electric field to become

E(t) = A(t) cos(ωt+ φ), (4)

where φ is the CEP.

As the phase and group velocities of the pulses may not be equal (this can be caused by disper-

sion in optical components, as well as pressure and temperature fluctuations), the pulse-to-pulse

CEP could vary. This change in the pulse-to-pulse CEP is known as the carrier-envelope offset

(CEO). In the frequency domain, the corresponding offset frequency is related to the evolution of

the CEP by

f0 =
1

2π

dφ

dt
, (5)

which in turn is related to the CEO (δφ) in the time domain by

δφ = 2π
f0
frep

, (6)

where frep is the repetition frequency between pulses. From this it is clear that control of the

CEO will result in control of the CEP, thus allowing a series of pulses with equal intensity to be

produced.

One of the earliest methods for CEP control and measurement uses an f-to-2f interferometer,

for which a typical design [7] is shown in Figure 2.

Figure 2: The f-to-2f interferometer.

In the frequency domain, the broadband pulses form a frequency comb with the nth comb line

represented by:

fn = nfrep + f0, (7)

and so by looking at the frequency spacing between two combs of differing n , it is possible to find

the CEO frequency. The f-to-2f interferometer does this by referencing an octave-spanning source

with itself, firstly by splitting it into low and high frequency components fl and fh repectively,

where h = 2l . The low frequency component is then passed through a frequency doubling crystal,

with an output of 2fl . Next, the offset frequency can be calculated by the difference between the
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two interfering frequency combs at the avalanche photodiode:

fh = 2lfrep + f0, (8a)

fl = lfrep + f0, (8b)

2fl − fh = f0. (8c)

In a mode-locked laser, the interferometer is connected to a feedback loop to allow for effective

CEP control.

2 Experimental Setup

2.1 Hollow Core Fiber

Figure 3: Setup for broadband generation in the HCF.

A HCF was used to generate a broadband spectrum from the Ti:Sapphire laser. It was enclosed

in an isolated tube, and a pressure gradient of a noble gas was run through the fiber to produce the

nonlinear refractive index, as shown in Figure 3. The pressure gradient was chosen to compromise

between the need for beam stability at the entrance of the fiber (which is optimal in a vacuum),

minimisation of energy loss due to absorption by the gas, and the high gas pressure required for

supercontinuum generation. An adjustable half-wave plate and polarizing filter were included to

allow control over the input beam energy in the HCF. Several modifications were made to the

previous setup in order to maximise broadening and minimise energy loss, including:

• the lens to focus the laser beam at the entrance of the HCF was replaced to shorten the

focal length and produce a smaller beam diameter at the HCF entrance,

• the first part of the HCF tube (which did not contain the fiber) was replaced to reduce the

overall length of the tube to accommodate the shortened focal length,

• the windows at the front and rear of the HCF tube was replaced to reduce its thickness,

minimising the nonlinearities and dispersion produced from the propagation of the beam

through glass;

• a thicker tube was used to connect the vacuum pump to the HCF tube, to increase the

pump’s power;

• Ar was used for the pressure gradient instead of Ne, as it has a lower first ionisation energy

and thus will produce a broader spectrum, and

• blue and green chirped mirrors were used to compensate for the phase difference between

the red and blue ends of the light, removing any dispersion in the pulse.
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2.2 f-to-2f interferometer

The interferometer was constructed as in Figure 2, using silver mirrors and a 400nm filter.

3 Results and Analysis

3.1 Beam profile and spectrum

The spectrum was initially measured with an input energy of 1.30mJ, output energy of 0.96mJ

and HCF output pressures between 100mbar and 500mbar. It was found that the spectrum broad-

ened with increased pressure gradient (as shown in Figure 4), as expected due to the increasing

nonlinear susceptibility. An exponential fit and a linear fit were applied to the graph, but it is

unclear as to which pattern the data follow. This could be due to the low range of data points; if

the data only forms part of a larger exponential curve it could be approximated as linear. Both

fits did not pass through the origin, which is expected as the laser output spectrum is not a delta

function, so broadening exists even in the absence of SPM.

Figure 4: Spectral bandwidths for Ein = 1.30mJ, Eout = 0.96mJ, Pin = 0mbar, with exponential

fit parameters.

A problem with this measurement is the high energy, which caused a large instability in the

beam profile. This created large errors in the data and meant high pressure gradient measurements

were impossible. For this reason, the measurements were repeated with a lower input energy of

0.60mJ and output energy of 0.45mJ. This showed a much more stable beam profile over a larger

range of pressure gradients, meaning a larger supercontinuum was achievable with a maximum

bandwidth of (575 ± 22)nm. The bandwidths from this experiment can be seen in Figure 5. It

was chosen not to include results from higher or lower pressure gradients, as very low gradients

were not sufficient to induce SPM at such a low energy, and high gradients caused the beam to

become very unstable. An exponential fit was once again applied, and it worked well. These

results do not appear to also follow a linear progression, which is likely due to the larger range of

the data set. The wide variation in spectral bandwidth can also be seen in Figure 6, where the

spectra for the minimum and maximum Pout are compared; the bandwidth was seen to increase

by (429± 26)nm.
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Figure 5: Spectral bandwidths for Ein = 0.60mJ, Eout = 0.45mJ, Pin = 0mbar, with exponential

fit parameters.

Figure 6: Spectra for Ein = 0.60mJ, Eout = 0.45mJ, Pin = 0mbar at high and low Pout .

Despite both data sets following close to an exponential distribution, their fitting parameters

are very different. This could suggest that these parameters are energy-dependent, or that the

data follows another, non-exponential distribution.

The effectiveness of the vacuum pump was also investigated; clearly it is impossible to have

Pin = 0, and the results are displayed in Figure 7 for both argon and neon. It was found that at

high pressures Pin seemed to decrease linearly, but after a minimum at 800mbar Pin was seen to

increase linearly for both gases. A possible reason for this could be the play-off between higher gas
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input pressure versus the power of the pump. As the pump’s power decreases with input pressure

[8], a point must be reached when the pump’s power is so low that it can no longer facilitate the

higher vacuum produced for lower input gas pressures. It can also be seen, however, that all Pin

values remain below 0.1% of the corresponding Pout , so it is safe to assume a total vacuum at

the beam input of the HCF.

Figure 7: Variation in beam input pressure with beam output pressure.

4 Conclusion

This project included modifying the HCF setup to improve its production of supercontinuum

femtosecond pulses, and the construction of an f-to-2f interferometer.

First, the experimental equipment was exchanged in order to optimise energy transmission and

beam stability. The main aims of this were to reduce the thickness of glass the beam travelled

through (to reduce the effect of uncontrollable nonlinearities), minimise the beam diameter at

the entrance to the HCF to ensure optimal transmission through the fiber, and effectively shield

the beam from any causes of disturbance (for example air and mechanical movement). The

modifications listed under Experimental Setup were found to significantly improve the output

beam, so that optimal conditions for SPM could be sought. With beam stability still in mind,

it was seen that a lower input energy resulted in drastic improvements in the range of pressure

gradients that could be used. Using an input energy of 0.60mJ, output energy of 0.45mJ, input

pressure of 0mbar, and output pressure of 1200mbar, a maximum spectral width of (575± 22)nm

was produced. The effectiveness of the vacuum pump was also investigated, and it was seen that

the assumption of Pin = 0mbar is justified.

The next step in this stabilisation is to revert the gas back to Ne, to allow higher energies

and gradients to be used stably. Another option is to use induced-pulse modulation to generate

broader spectra [9].

The construction and alignment of the f-to-2f interferometer was successful, and it will be used

in the future to monitor the CEP stability of the Ti:Sapphire laser used with the HCF. Along with

this, the next steps in this experiment will involve the compression of the pulse and measurement

of the pulse duration using a FROG [10]. Afterwards, the output beam will be redirected in order

to be used in high harmonic generation [11] and further experiments.
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