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Abstract  

In this report, the details of the lens-less microscopy approach are described. A test geometrical entity 

(icosahedron) has been built and filled by polystyrene spheres. Further, using the calculated intensity 

distribution and given field of the phase wave front, the internal structure of the object has been 

retrieved. The elaborated algorithms might be incorporated in the future Free Electron Laser 

applications and organic matter.  
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1. Introduction 

Colloidal crystals have potential applications as functional materials (figure 1). They play 
significant role in the optical computing, as they can be formed into any shape to attain certain 

reflectance properties. Where optical computing is a research area that focuses on the 
development of the optical computer components, which would process binary data faster 
than the current based ones. Furthermore, colloidal crystals are used in the elaboration of the 
future solar cells (figure 3). 

 
Figure 1: Self-organized colloidal crystals 

 
Figure 2: Solar cells 

 
   

In order to research the properties of the crystal it is necessary to understand its inner 

structure. X-ray crystallography utilizes diffraction theory for the reconstruction and analysis 
of the atomic grid of the crystal. Internal structure of the crystal can be identified by the 
distribution of the electron density in the crystal. The high quality in the reconstruction of the 
crystals electron density distribution is one of the main objectives in the Photon Science X-Ray 
Crystallography group at DESY (German Electron Synchrotron).   

To test the reconstruction methods performing with the measurements from the divergent beam, the 

real experiment was simulated and the methods were applied to the simulated data.   

In the chapter 2 theoretical background is discussed. The experimental problem is stated in chapter 3. 

The simulation of the experiment is explained in chapter 4. Experiment setup and properties of the CXDI 

(Coherent X-Ray Diffraction Imaging) are presented in chapters 5 and 6, respectively.   Results are 

discussed in chapter 7. Chapters 8, 9 and 10 are dedicated to Conclusion, Outlook and 

Acknowledgments.  References are given in chapter 11. 
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2. Theoretical background 

 In this work we investigated the interaction of the synchrotron radiation with a Finite 
Size Crystal.  Synchrotron radiation is an electromagnetic radiation, with a wave length below 
0.2 - 0.1 nm, emitted by electrons, oscillating in the periodic electromagnetic field. Modern 
synchrotron radiation sources can provide coherent and intense x-ray beam. Such sources 
have application in the number of imaging techniques. While investigating the interaction of 
the crystal with x-rays, we are interested in the electron density distribution of the sample in 
the real space: 
 

𝜌(𝑟) 
 

(1) 

The Fourier transform of the electron density distribution (1) gives the complex scattered 
amplitudes in three dimensional reciprocal space of the sample: 

 

𝑨(�⃗⃗⃗�) =  ∫𝝆(�⃗⃗�)𝒆−𝒊�⃗⃗⃗��⃗⃗� 𝒅�⃗⃗�, 

(2) 

where �⃗⃗⃗� is the momentum transfer vector: 

 

�⃗� = �⃗⃗�f – �⃗⃗�I, 

(3) 

where �⃗⃗�f is the scattered wave vector and �⃗⃗�i is the incident wave vector.  Figure 1 depicts the 

scattering process and the intensities on the detector can be expressed as follows: 

 

I(𝑞𝑥 , 𝑞𝑦) = |𝐴(𝑞𝑥 , 𝑞𝑦)|
2
, 

(4) 
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Figure 3: momentum transfer vector 

The next step is to define the two dimensional complex function of the wave in the far-field in 

the reciprocal space: 

 

𝑤(𝑞𝑥 , 𝑞𝑦) =  |𝐴(𝑞𝑥 , 𝑞𝑦)|𝑒
−𝑖∗𝜑 (𝑞𝑥 ,𝑞𝑦), 

(5) 

where  |𝐴(𝑞𝑥 , 𝑞𝑦)| are the amplitudes in the two dimensional space, retrieved form the 

measured intensities (4) and  𝜑 (𝑞𝑥 , 𝑞𝑦) are the corresponding phases. In the real experiment 

𝜑 (𝑞𝑥 , 𝑞𝑦) are obtained by means of the phase retrieval algorithm and during the simulation 

of the experiment they are provided by the simulation software.  

The Fourier transform of 𝑤(𝑞𝑥 , 𝑞𝑦) (5) is the two dimensional projection of the electron 

density in the beam direction in the real space: 

 

𝑝(𝑥,  𝑦) = ℱ2𝐷 (|𝐴(𝑞𝑥 , 𝑞𝑦)|𝑒
−𝑖∗𝜑 (𝑞𝑥,𝑞𝑦)) 

(6) 

After measuring the sample from all perspectives (3600) with a certain angle step, the two 

dimensional complex scattered amplitudes  𝑤(𝑞𝑥 , 𝑞𝑦) (5) are merged into the three 

dimensional scattered amplitudes: 

 

𝑀𝑒𝑟𝑔𝑒[|𝐴(𝑞𝑥 , 𝑞𝑦)|𝑒
−𝑖∗𝜑 (𝑞𝑥 ,𝑞𝑦)] = |𝐴(�⃗�)|𝑒−𝑖∗𝜑 (�⃗⃗�) 

(7) 

The three dimensional Fourier transform of (7) gives the three dimensional distribution of the 

electron density in the real space: 
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𝜌(𝑟) = ℱ3𝐷(|𝐴(�⃗�)|𝑒
−𝑖∗𝜑 (�⃗⃗�)) 

(8) 

Consider the 2D projections of the electron densities obtained from the curved wave and 

plane wave fronts in the real space: 

 

�̃�(𝑥,  𝑦) = ℱ2𝐷(|�̃�(𝑞𝑥 , 𝑞𝑦)|𝑒
−𝑖∗𝜑 (𝑞𝑥,𝑞𝑦)) → Curved wave front 

(9) 

𝑝(𝑥,  𝑦) = ℱ2𝐷(|𝐴(𝑞𝑥 , 𝑞𝑦)|𝑒
−𝑖∗𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡) →  Plain wave front, 

(10) 

where the projections of the electron densities with a plane wave front have constant phase.  

And consider the Gaussian beam function: 

 

𝑔(𝑥, 𝑦) 

(11) 

Then  ℱ2𝐷
−1{�̃�(𝑥,  𝑦)} can be written as the result of the convolution of ℱ2𝐷

−1{𝑔(𝑥, 𝑦)} with 

ℱ2𝐷
−1{𝑝(𝑥,  𝑦)}:  

 

ℱ2𝐷
−1{�̃�(𝑥,  𝑦)} = ℱ2𝐷

−1{𝑔(𝑥, 𝑦)} ⊗ℱ2𝐷
−1{p(𝑥, 𝑦)} 

(12) 

The convolution takes place in the reciprocal space. Where: 

 

|ℱ2𝐷
−1
{�̃�(𝑥,  𝑦)}| = �̃�(𝑞𝑥 , 𝑞𝑦) 

(13) 

is the distribution of the amplitudes on the detector  in the two dimensional reciprocal space. 

In this experiment we deal with the curved wave front, hence, it is reasonable to deconvolve  

ℱ2𝐷
−1{�̃�(𝑥,  𝑦)}  with ℱ2𝐷

−1{𝑔(𝑥, 𝑦)} and approximate the distribution of the amplitudes on the 

detector  in the two dimensional reciprocal space from the plain wave front : 
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𝐴(𝑞𝑥 , 𝑞𝑦)𝑑𝑒𝑐𝑜𝑛𝑣  =  |ℱ2𝐷
−1
{
�̃�(𝑥,  𝑦)

𝑔(𝑥,  𝑦)
}| 

(14) 

And the corresponding phases from the plane wave front in the reciprocal space: 

 

𝜑(𝑞𝑥, 𝑞𝑦)𝑑𝑒𝑐𝑜𝑛𝑣  = 𝑎𝑛𝑔𝑙𝑒(ℱ2𝐷
−1
{
�̃�(𝑥,  𝑦)

𝑔(𝑥,  𝑦)
}) 

(15) 

After performing the deconvolution for all perspectives (3600) with a certain angle step, the 

two dimensional complex scattered amplitudes (14) are merged into the three dimensional 

scattered amplitudes: 

 

𝑀𝑒𝑟𝑔𝑒 [𝐴𝑑𝑒𝑐𝑜𝑛𝑣  𝑒−𝑖∗𝜑(𝑞𝑥 ,𝑞𝑦)𝑑𝑒𝑐𝑜𝑛𝑣] = |𝐴𝑑𝑒𝑐𝑜𝑛𝑣(�⃗�)|𝑒
−𝑖∗𝜑 (�⃗⃗�)𝑑𝑒𝑐𝑜𝑛𝑣  

(16) 

The three dimensional Fourier transform of (16) gives the three dimensional distribution of 

the electron density in the real space: 

 

𝜌(𝑟) = ℱ3𝐷{|𝐴𝑑𝑒𝑐𝑜𝑛𝑣(�⃗�)|𝑒
−𝑖∗𝜑 (�⃗⃗�)𝑑𝑒𝑐𝑜𝑛𝑣} 

(17) 

3. Experimental problem 

We have a Coherent X-ray Diffraction Imaging (CXDI) experiment with a 
monochromatic beam and a photon-counting pixel detector positioned in transmission 
geometry. The sample is a colloidal crystal placed downstream the focal plane.  

It is essential for us to get the best possible resolution of the measured intensities on the 
detector from the sample.  An important premise for the higher resolution is having a plane 
wave front. This can be achieved by placing the crystal in focus.  
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Figure 4: The sample is placed in the focus 

In our experiment the size of the sample is larger than the size of the beam in the focus  (Figure 
5). The solution is to move the sample out of the focus. 

 
Figure 5: The sample is positioned out of the focus 

Since, the sample is placed out of the focus we get curved wave front. The goal of this work is to 

investigate the influence of the curved wave front on the reconstruction quality and to improve it. 

4. Simulation of the experiment 
First, we used Wolfram Mathematica to construct the shape of the colloidal crystal with its 

predefined properties (colloidal spheres and sphere packing).  The resulted Wolfram Mathematica 

simulation of the crystal was formatted to PDB (Protein Data Bank) file.  Then the simulated colloidal 

crystal (in the PDB format) was processed by Moltrans – simulation program of the synchrotron beam 

propagating through the sample, written by Prof. Dr. Edgar Weckert.  Moltrans returns the distribution 

of the intensities on the detector (diffraction image of the sample) with the corresponding phases of 

the wave in the far-field. All further computations with two dimensional Moltrans data have 

been performed in Matlab. Merging of the two dimensional Matlab results into three 

dimensional distributions of intensities, amplitudes, phases and electron densities has been 

done in C++ program.  

 

 

http://www.desy.de/sites2009/site_www-desy/content/e410/e56047/e58555/e66836/infoboxContent66839/LebenslaufProf.EdgarWeckert_ger.pdf


10 
 

5. Experiment setup 

During the real experiment the sample was placed on the carbon fiber downstream the focal plane 

and was cooled with flow of nitrogen from the Cryojet.  Compound refractive lenses (CRL) have been 

used.  

Here are the parameters of the experiment: 

 

Figure 6: Experiment setup 

The experiment has the following properties: 

 CXDI – Coherent X-ray Diffraction Imaging experiment 

 Monochromatic coherent X-ray beam, 7.9 keV 

 Photon-counting pixel detector positioned in transmission geometry. 

 Sample detector distance: 5.1 [m] 

 Detector size: 28x28 [mm],  516x516[pixel], pixel size: 55 [μm] 

 Gaussian beam size: 𝜎z= 2.1 [um], 𝜎y = 1.4 [um] 

 Sample positioning:  11 [mm] downstream the focal plane (size of the focal spot  0.64x0.41 

[μm2]) 

 Wave front curvature: Rz = 16.15 [mm], Ry = 15.4 [mm] 

The same parameters have been used for the simulation of the experiment. 
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6. Properties of the sample in the CXDI 
experiment 

For the simulation of the crystal the icosahedron shape has been chosen. This shape corresponds to 

the generic one existing in the nature (so called geometrical primitives). On the other hand, it has faces 

and that means the diffraction image will contain fringes. It is valuable to have fringes, because they 

help to evaluate the quality of the diffraction image and its credibility. Here are the properties of the 

simulated sample (Figure 9) in the experiment: 

 Sample: Colloidal crystal made of polystyrene spheres 220 nm in diameter. Grain size = 3 

[um] 

 Shape:  Icosahedron (Figure 8) 

 Structure: FCC – face centered cubic structure (layer sequence ABC). Figures 10 and 11. 

 

 
 

Figure 7: Icosahedron 
 

 
 

 
Figure 8: Simulation of the sample 

 

 
 

Figure 9: Face centric cubic structure (FCC) 

 
 

Figure 10: ABC sequence 
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7. Results 

Diffraction images 

In the presented two dimensional diffraction images, projection of the electron density distribution 

and phases in the real space, obtained from the simulation, the Gaussian beam hits icosahedron 

shaped colloidal crystal directly in one of the faces.  

First, the diffraction images from the sample were obtained – with the plane (equation 5, figure 12), 

curved (equation 5, figure 13) wave fronts and then the result from the deconvolution (equations 14 

and 15, figure 14).  

The main goal of the deconvolution (equations 14 and 15) was to get rid of the blur on the diffraction 

images from the curved wave front.  The blur caused lower resolution of the image.  In order to 

compare the results and to draw conclusions Bragg peaks, Streaks, Fringes and Form factor of the 

colloidal particle are analyzed: 

 Bragg peaks from the curved wave front are less clear compared to the Bragg peaks from the 

plane wave front. After the deconvolution Bragg peaks become rather clearer. 

 Form factor is clearly recognizable from the curved and plain wave fronts, but practically 

vanishes after the deconvolution.  

 Streaks after the deconvolution become clearer compared to the plane and wave fronts.  As 

mentioned above, in this simulation the beam hits the icosahedron shaped colloidal crystal 

directly in one of the faces. The projection of the icosahedron in the beam direction on the 

plane is a hexagon. The direction of the Streaks, originating from the Bragg peaks, form 

hexagonal projection. 

 Fringes after the deconvolution become clearer as well. All diffraction images are presented 

in the logarithmic scale. 

Projection of the electron density distribution  

The two dimensional projections of the electron density distributions from the plane (equation 10), 

curved (equation 9) wave front and deconvolution (equation 14) are presented on the figures 15, 16, 

17. Here we can see only a slight improvement of the projection of the electron density distribution 

after the deconvolution.  

Phases in the real space 

When analyzing the phases 𝜑 (𝑞𝑥 , 𝑞𝑦) on the figures 18, 19, 20 only values inside hexagon are of 

interest to us, the rest are artifacts. 

Phases from the curved wave front that are near the hexagon sides are closer to zero (white region).  

The highest phase value is in the middle of the hexagon. Figure 18. Plain wave front has a constant 

phase and that is what we observe on the figure 19. The result of the deconvolution (equation 15) is 

a constant phase inside the hexagon, which is good result.  
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Figure 11: Plain wave front 
 

𝑨(𝒒𝒙, 𝒒𝒚) 

 
 

Figure 12: Curved wave front 
 

�̃�(𝒒𝒙, 𝒒𝒚) 

 

 
 

Figure 13: Deconvolution of 
the curved wave front with 
the Gaussian beam function 

 

|𝑭𝑻(
�̃�(𝒙, 𝒚)

𝒈(𝒙,𝒚)
)| 

 

 
 
Figure 14: Plain wave front 

 
𝒑(𝒙,  𝒚) = |𝑨(𝒒𝒙 , 𝒒𝒚)|𝒆

−𝒊∗𝒄𝒐𝒏𝒔𝒕𝒂𝒏𝒕 

 
 

Figure 15: Curved wave front 
 

𝑝(𝑥,  𝑦) = |�̃�(𝑞𝑥 , 𝑞𝑦)|𝑒
−𝑖∗𝜑 (𝑞𝑥,𝑞𝑦) 

 
 

Figure 16:  Deconvolution of 
the curved wave front with 
the Gaussian beam function 

 

|
�̃�(𝑥, 𝑦)

𝑔(𝑥, 𝑦)
| 

 
 

Figure 17: Plain wave front 
 

𝑎𝑛𝑔𝑙𝑒(ℱ2𝐷{�̃�(𝑥,  𝑦)}) 

 

 
 

Figure 18: Curved wave front 
 

𝑎𝑛𝑔𝑙𝑒(ℱ2𝐷{p(𝑥, 𝑦)}) 
 

 
Figure 19: Deconvolution of 
the curved wave front with 
the Gaussian beam function 

𝒂𝒏𝒈𝒍𝒆(𝓕𝟐𝑫 (
�̃�(𝒙,𝒚)

𝒈(𝒙,𝒚)
)) 
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3D amplitudes distribution 

After measuring the sample from all perspectives (3600) with a certain angle step, the two 

dimensional complex scattered amplitudes  𝑤(𝑞𝑥 , 𝑞𝑦) (5) were merged into the three 

dimensional scattered amplitudes (equations 7 and 16; figures 21, 22 and 23).  

3D electron density distribution 

Figures 24, 25 and 26 depict the result of the three dimensional Fourier transform of the three 

dimensional scattered amplitudes, where the icosahedron shape of the colloidal crystal is 

recognizable.  When comparing the electron density distribution from the plain wave front to the 

curved wave front, we can see that the electron density distribution from the curved wave front 

contains less colloidal particles. Deconvolution improves this matter significantly and more colloidal 

particles are present on the figure 26 than on the figure 24.  
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Figure 20: Plain wave front 
 

𝑀𝑒𝑟𝑔𝑒 [|𝐴(𝑞𝑥 , 𝑞𝑦)|𝑒
−𝑖∗𝜑 (𝑞𝑥,𝑞𝑦)]   

 

 

 
 

Figure 21: Curved wave front 
 

𝑀𝑒𝑟𝑔𝑒[|�̃�(𝑞𝑥 , 𝑞𝑦)|𝑒
−𝑖∗𝜑 (𝑞𝑥,𝑞𝑦)]  

 
Figure 22: Deconvolution of 
the curved wave front with 
the Gaussian beam function 

𝑴𝒆𝒓𝒈𝒆 [𝑨𝒅𝒆𝒄𝒐𝒏𝒗  𝒆−𝒊∗𝝋
(𝒒𝒙,𝒒𝒚)𝒅𝒆𝒄𝒐𝒏𝒗] 

 
 

Figure 23: Plain wave front 
 

𝜌(𝑟) = ℱ3𝐷{|𝐴(�⃗�)|𝑒
−𝑖∗𝜑 (�⃗⃗�)} 

 

 
 

Figure 24: Curved wave front 
 

𝜌(𝑟) = ℱ3𝐷{|�̃�(�⃗�)|𝑒
−𝑖∗𝜑 (�⃗⃗�)} 

 

 
 

Figure 25:  Deconvolution of 
the curved wave front with 
the Gaussian beam function 

 
𝜌(𝑟)

= ℱ3𝐷{|𝐴𝑑𝑒𝑐𝑜𝑛𝑣(�⃗�)|𝑒
−𝑖∗𝜑 (�⃗⃗�)𝑑𝑒𝑐𝑜𝑛𝑣} 

 
 

8. Conclusion 
The complex amplitude distribution, electron density distribution, and phases (real space) in the 

approximation of the curved and plain wave fronts were obtained. Further, deconvolution of the 

complex scattered amplitudes with the Gaussian beam function (in reciprocal space) was performed.   

Gaussian beam intensity distribution causes blur on the diffraction image in the reciprocal space and 

curved phase and lower resolution of the electron density distribution in the real space. The results 

indicate that blur of the diffraction image can be substantially minimized by the deconvolution, so the 

phase in the real space becomes constant and resolution of the electron density distribution is 

enhanced. The obtained results extend the existing technique of the coherent x-ray diffraction 

imaging.  
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9. Outlook 
Next steps are to perform the complete phase retrieval algorithm first with the simulated data and 

then with the experiment data. Experimentally, the imitation of higher energies permits to increase 

resolution in the real space up to atomic range.  The results are of interest for the Coherent X-ray 

Diffractive Imaging and for the study of the colloidal structures.   
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