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Abstract

In this report the selection of top quark pair events in the decay modes
tt̄→ (be+νe)(b̄e

−ν̄e) and tt̄→ (bµ+νµ)(b̄µ−ν̄µ) is presented. It is investigated how
the utilization of multivariate analysis techniques, instead of rectangular cuts,
could lead to a more powerful discrimination between signal and background. By
making use of a boosted decision tree in order to classify signal and background
events, the signal efficiency is enhanced from εS = 49% to εS = 80% at a back-
ground efficiency of εB = 2.4% for the ee channel and from εS = 49.5% to εS = 79%
at a background efficiency of εB = 2.2% for the µµ channel.
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1 Introduction

The fundamental building blocks of matter are quarks and leptons. There are six known
leptons in nature, the electron, muon, tau and their associated neutrinos. Among the
six known quarks (up, down, charm, strange, top, bottom), the top quark is by far the
heaviest. The top quark is essential to study the properties of the Higgs boson since its
Yukawa coupling to the Higgs boson, which is proportional to the mass, is the largest.
Furthermore, the top quark is the only quark that decays before it hadronizes, such that
top decays provide an unique window on the bare quark. A precise understanding of
the top quark properties is also crucial in order to probe various beyond the Standard
Model extensions. New physics may give rise to additional top production or decay
mechanisms. Additionally, tt̄ production is a major source of background in almost all
searches for physics beyond the Standard Model [1]. The aim of the analysis presented
in this report is to improve the selection of tt̄ events in the dilepton decay mode by
making use of multivariate analysis techniques.

This report is organized in the following way: In Section 2 a brief overview of the
ATLAS experiment is presented, followed by a discussion of the top quark production
mechanisms and its decay modes. The cut based selection of tt̄ candidates is summarized
in Section 3. Section 4 adresses the utilization of multivariate analysis tools in order to
improve the efficiency of the signal selection. Finally, Section 5 gives a conclusion and
an outlook.
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2 The ATLAS experiment

The ATLAS (A Toroidal LHC Apparatus [2]) experiment is one of the four major ex-
periments at the Large Hadron Collider (LHC) at CERN located in Geneva. The Large
Hadron Collider (LHC) is a proton-proton collider with a circumference of 27 km. In
the following Section the setup of the ATLAS detector and the production mechanism
of top quarks at the LHC are briefly discussed. In the end, the simulated data sets used
in this analysis are introduced.

2.1 The ATLAS detector

The cylindrical geometry of the ATLAS detector provides an almost full solid angle
coverage around the interaction point. The inner detector, which covers a pseudorapidity
range |η| < 2.5 1, consists of multiple layers of silicon pixel and microstrip detectors and
a straw-tube transition radiation tracker (TRT). It is responsible for the reconstruction
of charged tracks and vertices. A superconducting solenoid provides the inner detector
with a 2 T axial magnetic field.

The solenoid is surrounded by high-granularity lead/liquid-argon electromagnetic (EM)
sampling calorimeters and an iron/scintillating-tile hadronic calorimeter. With the aid
of the calorimeter system electrons, photons and jets can be reconstructed.

The outermost part of the detector is dedicated to reconstruct muons. The muons
spectrometer is instrumented with separate trigger and high-precision tracking chambers.
An overview of the ATLAS detector and its subsystems is shown in Figure 1.

Figure 1: The ATLAS detector and subsystems [2].

1The pseudorapidity η is defined as η = − ln[tan(θ/2)], where the polar angle θ is measured with
respect to the LHC beam-axis.

2



2.2 Top pair production and decay modes

The main production mechanism of top quarks at the LHC is the top-pair production
through gluon-gluon fusion (≈ 90% at the design center of mass energy

√
s = 14TeV

[1]) followed by quark anti-quark annihilation (≈ 10% [1]). The corresponding Feynman
diagrams are depicted in Figure [2]. Since the top quark decays almost exclusively into
a bottom quark and a W boson (Br(t → bW ) ≈ 100% [1]), the final state topology is
labeled according to the W boson decay mode. The “alljet” decay mode has the largest
branching fraction (see Figure [3]) but suffers from large multijet background due to
the high event multiplicity at the LHC. In contrast, the “dilepton” decay modes leave
cleaner signatures. In this analysis the two decay modes :

tt̄→ (be+νe)(b̄e
−ν̄e) (1)

tt̄→ (bµ+νµ)(b̄µ−ν̄µ) (2)

are used, denoted as ee and µµ channel in the following.

Figure 2: Feynman diagrams for top production processes at lowest order: (a), (b), and
(c) gluon-gluon fusion, (d) quark-antiquark annihilation [3].
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Figure 3: Top pair decay modes (left) and corresponding branching fractions (right) [4].
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2.3 Simulated event samples

Monte-Carlo (MC) simulation samples are used to study the signal and background
efficiencies of the tt̄ selection described in Section 3 and 4.

The tt̄ signal events are generated with POWHEG [5] and PYTHIA [6].
Single top quark background, which arises from the associated Wt production, is mod-
eled with MC@NLO v4.01 [7]. Background due to diboson production is generated using
Alpgen v2.13 [8] interfaced with Herwig [6]. Finally, Drell-Yan events (Z → e+e−, µ+µ−

plus jets) are modeled using the Alpgen v2.13 generator including leading-order matrix
elements with up to five additional partons. In Section 3.1 further details about the
background composition are given.
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3 Cut based selection of top pair events in the dilepton
decay channel

The tt̄ → (bl̄νl)(b̄lν̄l) event signature involves two b-jets, two leptons and two neutri-
nos, which leave the detector without being detected. The selection exploits this event
topology in order to separate true tt̄ events from several processes which could mimic
the same signature. In this Section a cut based selection is presented (Section 3.1) and
the corresponding cut efficiencies are discussed (Section 3.2).

3.1 Selection criteria

Events with exactly two oppositely charged leptons of the same flavor are selected (either
e+e− or µ+µ−). Furthermore, at least two jets are required, where at least on of them
is tagged as a b-jet. For this purpose, jets originating from b-quarks are identified by
exploiting the long lifetime of b-hadrons (≈ 1.5 ps) which leads to a displaced secondary
vertex [9]. The working point of the neural network algorithm, which combines informa-
tion about the secondary vertex and displaced tracks associated with the jet, is chosen
such that the algorithm identifies b-jets from top quark decays with 70% efficiency [10].

The top mass is much higher than the rest mass of the decay products leading to high
momentum leptons and jets. Therefore, a transverse momentum of at least pT = 25GeV ,
i.e. the momentum in the plane perpendicular to the beam axis, of the decay products
is required in order to suppress low momentum background.

The dominant background originates from Z+ jets events, with Z decaying into ee or
µµ, as shown in Figure [4]. Hence, events where the dilepton invariant mass is consistent
with the nominal Z boson mass are discarded (Z veto: |m(ll) −m(Z)| > 10GeV ). In
addition, the diboson (WW,WZ,ZZ) or single top production, as shown in Figure [4],
could be wrongly reconstructed as a tt̄ decay. The missing transverse energy (Emiss

T ) can
be used as an indicator of unobserved neutrinos. Since the signal decay mode involves
two neutrinos the missing transverse energy is on average much larger for signal than for
background events, as can be seen on Fig. [5]. Consequently the cut Emiss

T > 60GeV is
applied. All selection criteria are summarized in Table 1.

Figure 4: Background sources: Z+Jets (left), diboson (middle) and single top (right) [4].
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Variable Cut
NLeptons = 2
NJets ≥ 2
NbTags ≥ 1

pT (leptons, jets) > 25GeV
m(ll) > 15GeV

|m(ll)−m(Z)| > 10GeV
Emiss
T > 60GeV

Table 1: Selection of top pair events in the dilepton decay channel

3.2 Cut efficiencies

After applying all selection criteria, the signal to background ratio (S/B) is 15.67 (14.5)
for the ee (µµ) channel. By removing one particular cut of the selection (but all others
are applied), it can be checked how powerful or efficient the respective requirement is
(see Figure [6]). The constraint on the missing transverse energy as well as the b-
tagging have the largest impact on the signal to background ratio, i.e. removal of these
requirements lead to a considerably higher background level, as show in Figure [6]. In
particular the requirement Emiss

T > 60GeV decreases significantly the signal efficiency
from εS = 1.05% (εS = 1.15%) to εS = 0.62% (εS = 0.68%) for the ee (µµ) channel.
Altogether the cuts on Emiss

T and m(ll) discard more than half (≈ 51%) of the signal
events . In Section 4, the utilization of multivariate analysis tools is studied, instead of
rectangular cuts on Emiss

T and m(ll), in the hope of devising a more efficient selection.
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4 Multivariate analysis

Instead of a simple cut-based selection, multivariate analysis tools can be used to dis-
criminate signal from background. A multivariate classifier maps the n-dimensional
space of the observable variables ~x = {x1, x2, ..., xn} to an one dimensional output called
the classifier response :

t(~x) : Rn → R (3)

The classifier response combines the information of the input variables, including their
correlation, into one powerful discriminator.

Multivariate analysis techniques are based on supervised machine learning algorithms,
which make use of clean signal and background samples in order to find the mapping
function t(~x). These samples can be taken from MC simulation. Due to the limited
statistics of the training samples the classifier could be overtrained, which means that the
machine learning does not pick up actual signal or background properties, but statistical
fluctuations. The performance of an overtrained classifier is better on the training sample
than on any statistical independent data sample, therefor overtraining can be detected
by comparing the performance between the training and a independent test sample 2.
Finally, the trained classifier can be applied to a data sample with unknown composition.

In Section 4.1 boosted decision trees (BDT), the multivariate analysis technique used
in this analysis, are described. The training phase of the BDT is discussed in Section 4.2.
Finally, the performance of the BDT is compared to the cut based selection (Section
4.3). The Toolkit for Multivariate Data Analysis (TMVA [11]) is used to train and
evaluate the multivariate classifier.

4.1 Boosted decision trees

Decision trees (DT) are a natural extension of simple cuts but instead of discarding
all events that fail a certain cut, wrongly classified events get a second chance to be
classified correctly. Therefor, a much higher signal efficiency can be achieved.

A decision tree categorizes the events of a data sample based on a successive applica-
tion of binary splits, as sketched in Figure [7]. Starting from the root node, a sequence
of cuts divide the data into signal- and background-like subsamples. At each node of the
DT the discrimination variable which provides the best separation power 3 is used to
determine the optimal cut criterion. The division is repeated until a node has reached a
certain minimum number of events (3 % of the total events in this analysis) or the max-
imum tree depth (equal to three in this analysis) is reached. These final ”leaf” nodes are
classified to be either signal or background-like according to the majority of the events
inside the respective leaf. Consequently the discrete valued response function of the DT
returns DT (~x) = +1 (DT (~x) = −1) if an event ~x ends up in a signal (background) leaf.

A shortcoming of decision trees is their instability with respect to statistical fluctuation
in the training sample (e.g. the decision of the optimal cut criterion at a certain node may

2Half of the events are used for training, the other half for testing
3The quality of separation is defined by the so called Gini index: p · (1− p), where p = S

S+B .
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be influenced by a statistical fluctuation in the training sample), i.e. they are sensitive
to overtraining. To stabilize the DT response and significantly improve the performance
a so called boosting is applied. The principle behind boosting is that misclassified events
from the training sample are given a larger weight than events which are in the correct
leaf node. The adaptive boost algorithm (AdaBoost [11]) re-weights misclassified events
with the common boost weight:

α =
1− err
err

, (4)

where err is the fraction of misclassified events. The resulting reweighed training sample
is then used to train a new decision tree. Repeating the boosting procedure several times
(500 times in this analysis) leads to a set of decision trees (called a “decision forest”),
where each tree learns from the errors of the previous ones. In the end, the boosted
classifier response is given by the weighted average of the individual ones :

BDT (~x) =
1

Ntrees

Ntrees∑
i

ln(αi) ·DTi(~x) (5)

Figure 7: Schematic view of a decision tree. Starting from the root node, a sequence of
binary splits using the discriminating variables ~x is applied to the data. [11]
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4.2 Training of the multivariate classifier

The BDT is trained using the MC samples already described in Section 2.3. All cuts
except the requirements on Emiss

T and m(ll) are applied. In addition to Emiss
T and

the absolute value of the difference of the dilepton invariant mass with respect to the
nominal Z boson mass ∆m(ll) = |m(ll) − m(Z)|, the transverse momenta of the two
leptons and of the two leading jets and the angle between the two leptons ∆φ are used
as discrimination variables. A further input variable is the MV1 of the leading jet, which
is the output of the multivariate classifier, already described in Section 3.1, dedicated
to identify b Jets. The signal and background distributions of the training variables are
shown in Figure [8] and [9]. In Table [2] the input variables are ranked according to
their separation 〈S2〉 calculated by [11]:

〈S2〉 =
1

2

∫
(PS(x)− PB(x))2

PS(x) + PB(x)
dx , (6)

where PS(x) and PB(x) are the signal and background probability functions of the
classifier x. For identical signal and background shapes the separation is zero and one
in case of no overlap at all. The classifier response, which has a much better separation
power of 〈S2〉 = 76% than the individual training variables, is plotted in Figure [10].

Variable Separation [%]
m(ll) 56.9
Emiss
T 39.8

Leading pT (jet) 4.7
MV 1 3.7

Sub-leading pT (jet) 3.7
Sub-leading pT (lep) 2.2

Leading pT (lep) 2.0
∆Φ 0.5

Variable Importance [%]
m(ll) 23.0
Emiss
T 20.1

∆Φ 11.2
MV 1 11.1

Leading pT (lep) 10.6
Leading pT (jet) 9.8

Sub-leading pT (lep) 7.3
Sub-leading pT (jet) 6.8

Variable Separation [%]
m(ll) 56.9
Emiss
T 40.1

Leading pT (jet) 5.0
MV 1 4.6

Sub-leading pT (jet) 3.8
Leading pT (lep) 2.1

Sub-leading pT (lep) 2.0
∆Φ 0.6

Variable Importance [%]
Emiss
T 22.1

m(ll) 20.7
∆Φ 11.3
MV 1 10.6

Leading pT (lep) 10.2
Leading pT (jet) 8.7

Sub-leading pT (lep) 8.3
Sub-leading pT (jet) 8.0

Table 2: BDT input variables ranked according to their separation (left) and importance
(right) for the ee channel (top) and µµ channel (bottom).
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Figure 8: Input variables used to train the BDT (ee channel).
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Figure 9: Input variables used to train the BDT (µµ channel ).
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A measure of the variable importance can be derived by counting how often the
variable is used to split decision tree nodes, and by weighting each split occurrence
by the separation gain-squared 4 it has achieved and also by the number of events
in the node [11]. Note that this does not fully reflect the variable importance since
removing one variable could be compensated by correlated variables and sometimes
only combination of variables makes sense. For the latter, ∆φ can serve as an good
example since it is not immediately obvious why this discriminator takes third place at
the importance ranking, shown in Table [2], although the separation power is very low.
The reason for this becomes evident when inspecting the correlation between the training
variables. In Figure [11], it is clear that there is a positive correlation between ∆φ and
pT (lep, jet) for signal events whereas the correlation is negative for background events.
The training algorithm makes use of the different correlation to discriminate between
signal and background. Consequently only the combination of ∆φ and pT (lep, jet) is
useful.

For the purpose of an overtraining check, the BDT response evaluated with the training
sample and the independent test sample are plotted superimposed on Figure [10]. The
BDT shows similar performance in both cases, hence, there is clearly no indication of
overtraining.
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Figure 10: Signal and background distributions for the BDT response (test and training
samples are superimposed to probe overtraining).
Left: ee channel. Right: µµ channel.

4The separation gain is defined as : g(parent node)− g(daughter node 1)− g(daughter node 2), where
g = p(1− p) is the Gini index.
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Figure 11: Correlation between input variables. Top: ee channel. Bottom: µµ channel.
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4.3 Performance of the multivariate classifier

The purpose of the selection is to reduce the background level as much as possible
while maintaining a high signal yield. It is desirable to maximize the signal significance
S/
√
S +B, which is a measure of the statistical precision of the measurement. The

corresponding cuts on the classifier response are BDT > 0.026 and BDT > 0.020
achieving the significance S/

√
S +B = 113.1 and S/

√
S +B = 122.0 for the ee and µµ

channel, respectively. In contrast, the significance obtained with the cut based selection
described in Section 3 is only S/

√
S +B = 81.8 (S/

√
S +B = 84.5) for the ee (µµ)

channel. In order to compare the BDT performance to the cut based selection properly,
the signal efficiencies should be compared at a fixed background rejection or vice-versa
(see Table [3]). At a background efficiency of εB = 2.4% the application of the BDT
enhances the signal efficiency from εS = 49% to εS = 80% for the ee channel (εS = 49.5%
to εS = 79% at a background efficiency of εB = 2.2% for the µµ channel).

Note that the performance of the two different lepton channels is almost equal. Al-
though these channels are similar from a pure physical point of view (lepton universality)
this is not immediately obvious given that the way how electrons and muons are recon-
structed is completely different (calorimeters versus muon chambers).
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Figure 12: Signal and background efficiencies, significance and purity as a function of
the BDT cut value. Left: ee channel. Right: µµ channel.
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Selection εS[%] εB[%] S/B S/(S+B) S/
√
S +B

Preselection 100 100 0.75 0.43 81.8
Cut 0.49 0.024 15.67 0.94 84.8
BDT > 0.026 0.90 0.062 10.9 0.916 113.1
BDT > 0.132 0.80 0.024 24.7 0.96 109.2
BDT > 0.291 0.49 0.003 114.7 0.99 87.2

Selection εS[%] εB[%] S/B S/(S+B) S/
√
S +B

Preselection 100 100 0.64 0.39 84.47
Cut 0.495 0.022 14.5 0.94 92.0
BDT > 0.020 0.9 0.065 8.95 0.90 122.0
BDT > 0.138 0.79 0.022 23.1 0.96 117.7
BDT > 0.302 0.495 0.003 105.4 0.99 94.7

Table 3: Comparison of the multivariate classification with the cut based selection.
Top: ee channel. Bottom: µµ channel.

Finally, the performance of the BDT is cross-checked using different multivariate clas-
sifiers. Among them are artificial neural networks , linear fisher discriminants and projec-
tive likelihood estimators (a detailed description of these multivariate analysis techniques
can be found in Ref. [11]) . A good indicator of the performance of a multivariate clas-
sifier is the integral of the receiver operating characteristic (ROC) curve, which is given
by the background rejection as a function of the signal efficiency, as shown in Figure
[13]. None of the others classifiers have a better performance than the BDT.
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Figure 13: ROC curve: Signal and background efficiency as a function of the cut on
the classifier output for boosted decision tree (BDT), artificial neural net-
works (MLP), linear fisher discriminants (Fisher) and projective likelihood
estimator (Likelihood). Left: ee channel. Right: µµ channel.
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5 Conclusions

In this analysis the cut based selection of tt̄ candidates using the ee and µµ decay chan-
nels is studied. Especially, the requirements on the missing transverse energy (Emiss

T >
60GeV ) and the dilepton invariant mass (m(ll) > 15GeV , |m(ll) −m(Z)| > 10GeV )
discarding more than half of the signal events are found to be too tight. Consequently,
these rectangular cuts are removed and a boosted decision tree is trained instead in order
to discriminate signal from background. In doing so, the signal efficiency is enhanced
from εS = 49% to εS = 80% at a background efficiency of εB = 2.4% for the ee channel
and from εS = 49.5% to εS = 79% at a background efficiency of εB = 2.2% for the
µµ channel. Furthermore, a maximum signal significance of S/

√
S +B = 113.1 and

S/
√
S +B = 122.0 for the ee and µµ channel, respectively, can be achieved. In con-

clusion, the selection of tt̄ events in the dilepton decay modes ee and µµ is significantly
improved by using a multivariate classifier instead of rectangular cuts.

The selection of tt̄ events in the eµ channel does not suffer from large Drell-Yan
background, such that a cut based selection, similar to the one presented in Section
3, is already very powerful [10]. Nevertheless, the application of multivariate analysis
techniques may lead to a gain in signal efficiency, too.
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