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Abstract

The report shows what I was learning and calculating during the DESY Summer
Student Program 2013. This is basically idea of effective field theory on example of
Soft-Collinear Effective Field Theory and calculation of second order correction to
quark beam function which is proportional to the number of quark flavours. Report
show necessary ingredients that one needs to learn to perform those calculations
and get a basic insight in physics which it describes.
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1 Introduction

I would like to mention at the beginning that all discussion is presenting the problems
from my point of view. It is not necessarily the same as widely presented. I would like
to also mention that I only recently started learning about effective field theories and
factorization theorems in QCD. Actually getting familiar with this totally new for me
concepts was a significant part of my activities on DESY Summer Student Program and
practically all introductory things I am describing I learned about on the program.

1.1 Effective (field) theories

Basically an effective theory is simplification of the full theory which neglects some ir-
relevant degrees of freedom or interactions. For example if we want to study hydrogen
atom, the Schrödinger equation with standard 1/r potential is an effective theory of
the Standard Model, where we neglect a bunch of effects. For example neglecting pro-
ton structure basically means that we neglect momenta corresponding via uncertainty
principle to scales shorter than a proton radius. Another example is a weak interaction
which corresponds to energy scales of order of W boson mass mW , which we are also
neglecting in Schrödinger equation approximation. Effective field theories are connected
with power expansions of full theory. For example a Schrödinger equation is obtained
from a Dirac equation when we expand it in parameter ( 1

me
), where me is electron mass.

Actually the Dirac equation coupled to an external potential is already an effective
field theory, but this simplification from Dirac equation to Schrödinger equation already
explains a lot of concepts of Effective theories. When we go to constructing effective
theories in quantum fields we simply apply the same principles as above. We expand
the existing theories(possibly already effective) in some parameters which are small in
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our problems like ( Q2

M2
W

), where Q2 is square of exchanged momenta between scattering

particles. Actually this is how we obtain Fermi electroweak effective field theory.

1.2 Factorization of cross sections

There is well known inconvenience of QCD that there is no free quarks and gluons,
hence the whole theory is non-perturbative. One could think that because of that there
is little or no use of such theory. That is not the case due to asymptotic freedom.
One can believe that because of that effect the high energy processes could be somehow
described by perturbative QCD. Actually this is the case. It is rather obvious that bound
states can’t be described using Feynamn diagram technique which assumes existence
of asymptotically free states. One can heuristically and intuitively argue that when
we deal with hard processes, states similar to asymptotically free occur during some
part of interaction. This is actually basic idea on which factorization theorems are
build. Typically we have to deal with some scattering processes of QCD bound states
such as protons or pions with other particles. What we interested in such processes
is some differential cross section.We are interested in processes, where the factorization
theorems of such cross sections hold. More precisely we can state for two body scattering
(Explanation of constituents is below equation):

dσ

dz
=

∫ ( N∏
n=1

dxk

M∏
m=1

dym
∏
l

SXl(x, µ)
∏
m

SYk(y, µ) ·Hlk(x, y, z, µ)

·Soft(x, y, z, µ)

)[
1 +O

(
Λ

Q

)]
(1)

x = (x1, x2..., xN) - variables describing structure of particle 1
y = (y1, y2..., yM) - variables describing structure of particle 2
z = (Q, z1, z2.., zL)
Soft(x, y, z, µ) - soft part of interaction representing low energy processes during the
interaction
µ - renormalization scale
SX,SY - functions describing non-perturbative structure of first and second particle re-
spectively,they oftentimes are products of functions of separate variables(this is the case
in processes described by SCET, where they decouple to soft and collinear part)
Hlm - perturbative function describing interaction between constituents l and m
Λ - dimensional scale, typically ΛQCD

Q - energy scale of a process - the precise meaning is defined by an explanation of fac-
torization
Actually it may seem at first glance that factorization is useless, especially the functions
SX and SY may differ between processes. It seems like we are simply fitting some func-
tions to results. What actually make factorization useful is that the structure functions
are the same for wide range of processes in question, so we can actually check theory.
It is also true that typically the dependence of SX and SY from only one variable with
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other variables fixed, is sufficient to determine the dependence of SX and SY with re-
spect to other variables, for example for PDF’s that are functions of µ ans x(f(x, µ))
we know differential equations with respect to µ that must be obeyed, so knowing value
f(x0, µ0) = v0 for fixed x0, µ0 we can calculate f(x0, µ) for any given µ. What I am
going to need in the following parts of the report is two families of structure functions:
already mentioned above parton distribution functions(PDF’s) and beam functions.

1.2.1 Parton distribution function

The hadrons are bound states of quarks and gluons. Parton distribution function de-
scribes the probability of finding specified constituent inside the hadron, which carry
specified momentum fraction of a hadron. Let us consider an example of two hadron
scattering. Denote the PDFs of first hadron F as fj(x, µ) and PDFs of second hadron
G as gk(y, µ).Here j and k denote the specified gluon or quark. We will be interested in
processes F +G→ Y +X, where Y is product of hard scattering. It may be also state
which is not asymptotically free but will become some hadrons and other particles later
on. Lets not consider complicated case of Y going into hadron jets and instead consider
Drell-Yan process Y = l+l− - pair of lepton, anti-lepton. Then Q is momenta exchanged
between initial hard colliding partons and final state particles. So the natural scale of

the process is Q2. Intuitively from that we conclude that our error will be of order
Λ2
QCD

Q2 ,
where ΛQCD is the scale of non-perturbative interactions forming hadrons. We can state
it more precisely in terms of cross section factorization:

dσ (F +G→ l+l− +X)

dQ2
=∑

jk

∫ (
dxdy fj

(
x,
√
Q2
)
· gk
(
y,
√
Q2
)
· dσ (j + k → l+l−)

dQ2

)[
1 +O

(
Λ2
QCD

Q2

)]
(2)

1.2.2 Beam Function

The following discussion is based by reference [1]. Beam functions are generalization of
PDFs to describe initial jets that hadron is made from. The beam functions are based
on the idea that partons inside hadrons are forming incoming jet radiations. The beam
function Bi(t, x, µ) is precisely defined by the parton distribution functions fj(ξ, µ) and
jet functions Iij(x, t, µ) by following equation [1]:

Bi(t, x, µ) =
∑
j

∫ 1

x

[
dξ

ξ
Iij

(
x

ξ
, t, µ

)
fj(ξ, µ)

]
(3)

Similarly to PDFs there are also factorization theorems for beam functions for some
processes more exclusive than described by PDFs.
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2 Soft-Collinear Effective Theory(SCET)

This section is based on the lecture notes [2] as well as [1]. I will use terms soft and
collinear degrees of freedom. Collinear degrees of freedom are those connected with ener-
gies of order of interaction scale Q. Collinear degrees of freedom are placed along direc-
tion defined by momentum directions of initial hadrons in the centre of mass frame(For
decay processes some other directions are specified). Soft degrees of freedom correspond
to emissions and interactions that have no preferred direction in space and all momen-
tum components small with respect to Q. SCET is an effective field theory used to
describe interaction between soft and collinear degrees of freedom ”during” the hard
interaction process. There is always some typical momentum scale of interaction Q, to
which SCET is referring. It is always the case that Q � ΛQCD and collinear momenta
|~pc| ∼ Q so as soft momenta |~psoft| � Q. Sometimes soft momenta are perturbative
|~psoft| � ΛQCD and sometimes not |~psoft| ∼ ΛQCD. There is a lot features of SCET that
makes it interesting as an effective field theory:

• In SCET we usually refer to power counting parameter as λ, which is not neces-
sarily

ΛQCD
Q

• There are normally two fields for every particle representing soft and collinear
degrees of freedom which lead to transparent separation of scales.

• 1-loop calculation in SCET leads to renormalization group equations which sum

up Sudakov double logarithms
∑

k ak

(
αs log p

Q

)k
.

• Wilson lines appearing in SCET are related with various symmetries.

• There is integration of energy scales without integrating out entire degrees of
freedom as opposite to classical effective quantum field theories.

2.1 SCET ingredients

In SCET we use the other then usual coordinates in Minkowsky space. To define them
we use two null-vectors n and n̄. The n vector is parallel to the direction of collinear
particles. Vectors n and n̄ obey relations:

n2 = n̄2 = 0 n · n̄ = 2 (4)

They define a decomposition of every four vector p to light-cone coordinates as following:

p+ = n̄ · p p− = n · p (5)

p =
np−

2
+
n̄p+

2
+ p⊥ (6)
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It is straightforward to see that p⊥ · n = p⊥ · n̄ = 0. We define also two projection
operators that decompose the whole space of dirac spinors.

Pn =
/n/̄n

4
Pn̄ =

/̄n/n

4
(7)

They are used to define collinear and soft fields from the quark field ψ in the following
way

ξ̂n = Pnψ φn̄ = Pn̄ψ (8)

In our basis we can write each momenta us p = (p+, p−, p⊥) In SCET we can uniquely
decompose momenta p to label pl and residual pr component which scales according to
rules:

p = pl + pr pl ∼ Q(0, 1, λ) pr ∼ Q(λ2, λ2, λ2) (9)

Now our field ξ̂n(x) can be written as discrete fourier transformation, because label
momenta are in fact discrete (we are excluding pl = 0, because than it is not collinear
mode).

ξ̂n(x) =
∑
pl 6=0

ξn,pl(x) (10)

Where ξn,pl create mode with label momentum pl. Now we define new operators and
fields as follows:

Pξn,pl(x) = plξn,pl(x) P̄ = n̄ · P ξn =
∑
pl 6=0

ξn,pl(x) = eiP ·xξ̂n (11)

The newly defined fields ξn are fields used in SCET. (Actually there is another field
redefinition connected to the opposite sign in exponent of anti-particle operators in
fourier expansion [2]). We also do the same operations for gluon fields. The Feynman
Rules that will be used further are in references [2] and [3].

2.2 Wilson Lines in SCET

There are two types of Wilson lines in SCET. The first is collinear Wilson line and the
second is ultrasoft Wilson line. Lets consider collinear Wilson lines first. They can be
expressed as ([1],[2]):

Wn(x) =

[∑
perms

(
−g
P̄

)
n̄ · An(x)

]
(12)

Where sum over permutations is understood as including all permutations of indices in
QCD matrices products such as

∑
perms T

aT b = T aT b+T bT a. This collinear Wilson lines
appear in SCET lagrangian. It is possible because scaling of gluon field is An(x) ∼ Q
and appear beacuse of integrating out degrees of freedom with significant offshellness.
To each collinear Wilson line there are corresponding Feynman rules on every order of
perturbation expansion.
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The soft Wilson lines are used in SCET to decouple soft degrees of freedom from collinear
ones by another field redefinition:

ξn,p(x) = Yn(x)ξ(0)
n,p An,p(x) = Yn(x)A(0)

n,p(x)Y †n (x) (13)

This new fields ξ
(0)
n,p and A

(0)
n,p are the fields that we use in calculating PDFs and Beam

functions and I will drop the superscript later on.

2.3 SCET PDF definition

To define PDF in terms of SCET It is necessary to define new fields [1]

χn = W †
n(x)ξn(x) Bn⊥ =

1

g

[
W †
n(x)iDn⊥Wn(x)

]
(14)

where Dn⊥ = P⊥+gAn⊥. We also denote a state of hadron with momentum p as |Pt(p)〉
(p is fully collinear momentum p = np−/2). Then We define three bare operators [1]:

Qb
q(ω) = Θ(ω)χ̄n(0)

/̄n

2

[
δ(ω − P̄n)χn(0)

]
,

Qb
q̄(ω) = Θ(ω)tr

{
/̄n

2
χ̄n(0)

[
δ(ω − P̄n)χn(0)

]}
,

Qb
g(ω) = −ωΘ(ω)Bc

n⊥µ(0)
[
δ(ω − P̄n)Bµc

n⊥(0)
]

(15)

Now PDF is defined as:

fi(ω/p
−, µ) = 〈Pt(p)|Qi(ω, µ) |Pt(p)〉 (16)

Where matrix elements will always be averaged over hadron spins which are suppressed
in the notation. Obviously we don’t know the hadron state, so we only can calculate
renormalization group equations for PDFs by inserting highly unphysical gluon or quark
free states instead of hadron state in the PDF definition. We actually do that in cal-
culations. Its not hard to see that operators Qb

i are time ordered T
{
Qb
i(ω)

}
= Qb

i(ω),
so we can use usual Feynman rules to calculate the renormalization group equations of
PDFs in SCET.

2.4 SCET beam function definition

For beam functions we define similar operators and have analogous definition of beam
functions for hadrons. For example quark operator and its fourier transform are(y−

corresponds to fourier transform of p+ component):

Õb
q(y
−, ω) = e−ip̂

+y−/2χ̄n

(
y−
n

2

) /̄n
2

[
δ(ω − P̄n)χn(0)

]
Ob
q(|ω|b+, ω) = χ̄n(0)δ(ωb+ − ωp̂+)

/̄n

2

[
δ(ω − P̄n)χn(0)

]
(17)
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Now the definition of Beam function is:

Bi(t, x = ω/p−, µ) = 〈Pt(p)|Θ(ω)Oi(t, ω, µ) |Pt(p)〉 (18)

Now if we calculate beam function and PDF for the same hadron state up to the same
order ε0 in regularization parameter ε, then by equation 3 we can derive the jet structure
functions Iij by matching our results. The equation 3 do not hold precisely for beam
functions and PDFs defined in terms of SCET, instead one can prove satisfying analogue
[1]:

Bi(t, x, µ) =
∑
j

∫ 1

x

[
dξ

ξ
Iij

(
x

ξ
, t, µ

)
fj(ξ, µ)

] [
1 +O

(
Λ2
QCD

t

)]
(19)

Actually the main goal of my work was to calculate second order correction to quark
beam function which is proportional to number of quark flavours nf . To calculate beam
functions we define a new operator Ti = T{Oi} and then one can prove that [1]:

〈Pt(p)|Θ(ω)Oi(t, ω, µ) |Pt(p)〉 =

δ(t)δ(ω − p−) 〈Pt(p)| χ̄n(0)
/̄n

2
|Pt(p)〉connected 〈Pt(p)|χn(0) |Pt(p)〉connected

+Disct>0 〈Pt(p)|Tq(t, ω) |Pt(p)〉connected (20)

Where subscript connected stands for connected feynman diagrams, where disconnection
in diagrams comes from separation of χ and χ̄ in position space in Oi operator (equation
17). Discontinuity of function g is defined as:

Discx>x0g(x) = lim
B→0

Θ(x− x0) [g(x0 + iB)− g(x0 − iB)] (21)

3 Two loop correction to beam function into PDF
matching

All calculations are made using MS renormalization scheme with dimension D = 4− 2ε

3.1 Calculation of fermion loop correction to collinear gluon
propagator

Figure 1 shows diagram corresponding to fermion loop correction of collinear gluon
propagator. This correction should be the same as in full theory(QCD), because we
have only one direction in calculation. I wanted to do some cross check but didn’t had
time to do it, so I will only state a bare result known from QCD [4]:

Πµν(l, µb) = 8infTf

(
µ2
be
γE

4π

)ε (
l2gµν − lµlν

)
(−l2)−ε

−g2

(4π)d/2

∫ 1

0

dx (x(1− x))1−ε Γ (ε)

(22)
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In final calculation the counter term should be also added, but I haven’t calculate the
counterTerm part so I will only show the result without counterTerm subtracted .

Figure 1: Fermion loop correction to gluon propagator

3.2 2 loop diagrams proportional to number of flavours

As was said before to do matching between PDFs and beam functions we can calculate
them for artificial states of quarks and gluons. For matching we are supposed to use
quark and gluon states with momenta proportional to n. I will use following variables:

p = (0, p−, 0) t = ωb+ z =
ω

p−
(23)

With this variables we can write Oq(t, z, µb) and Qq(z, µb). For calculating diagrams
we will use rule from equation 20. Lets first consider diagram 2a. Amplitude for this
diagram after some simplifications can be expressed as:

Cora = −
(
µ2
be
γE

4π

)ε
g2CF

θ(z)

z∫
ddl

(2π)d

1
2
tr
{
V µ
n (p, p+ l)V ν

n (p+ l, p)
/̄n/n

4

}
Πµν(l, µb) (p− + l−)

2

(p+ l)2 · (l2)2
δ(ω − (p+ l)−)δ(b+ + l+)

(24)

Where

V µ
n (p, k) = nµ +

/k⊥γ
µ
⊥

k−
+
γµ⊥/p⊥
p−
−
/k⊥/p⊥
p−

n̄µ (25)

and it corresponds to SCET gluon fermion vertex igT aV µ
n
/̄n
2

. Further calculation of this
diagram goes in several steps:

• Changing integration variables to l+, l−, l⊥ with Jacobian equal 1/2

• Integrating delta functions
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• Introducing Feynman parameters for denominator(If we consider loop counter term
there would be 0 instead of ε):

1

(~l2⊥ + t)2
[
~l2⊥ − t(1/z − 1)

]2+ε =

∫ 1

0

dx(1−x)x1−ε Γ(4 + ε)

Γ(2)Γ(2 + ε)

1[
~l2⊥ − t

(
x
z
− 1
)]4+ε

(26)

• Integrating terms
(~l2⊥)2

[~l2⊥−t(
x
z
−1)]

4+ε ,
~l2⊥

[~l2⊥−t(
x
z
−1)]

4+ε ,
1

[~l2⊥−t(
x
z
−1)]

4+ε ,

• Taking the discontinuity Disct>0 of an amplitude.

• Integrating over Feynamn parameter.

It is worth mention that using MS scheme of renormalization we are making use of
analytical continuation of integration results from regions where results are converging.
During calculation I weren’t aware of that so I always wanted to have results converging
for some ε from any neighbourhood of 0(< 0 or > 0 depending of the type of diver-
gence). That wasn’t the case for Feynamn parameter integral at the end .That was a
reason why my calculations were a little bit more complicated, because I had to de-

pending on which situation I was dealing, 1

(~l2⊥+t)2[~l2⊥−t(1/z−1)]
2+ε or

~l2⊥

(~l2⊥+t)2[~l2⊥−t(1/z−1)]
2+ε or

(~l2⊥)2

(~l2⊥+t)2[~l2⊥−t(1/z−1)]
2+ε do once, twice or none decomposition of denominators:

1

(l2 − A)(l2 −B)
=

1

A−B

(
1

l2 −B
− 1

l2 − A

)
The Final Result up to order 1

ε
was:

cora =
α2CfnfTfθ(z)

32π2µ2

θ (t/µ2)

(t/µ2)1+2ε

{
2(1− z)

3ε
+

16

9

[
− 2z + 6(z − 1)log(1− z)−

9(z − 1)log(z) + 8
]

+O(ε)

}
(27)

Where we have to use expansion:

θ(t/µ2)

(t/µ2)1+2ε =
δ (t/µ2)

2ε
+

(
1

(t/µ2)

)
+

− ε
(

ln (t/µ2)

(t/µ2)

)
+

+ ε2
(

ln2 (t/µ2)

(t/µ2)

)
+

(28)

The whole result include also order ε0, but I decided that it is not necessary to show
that order, especially because it is really long term. It shouldn’t be taken for granted
that this result is correct, especially when you take into account, that I was finding a
lot of errors in my calculations.
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(a) (b)

(c)

Figure 2: Diagrams corresponding to second order correction to beam functions proportional
to nf

Now lets consider the second diagram 2b. There is mirror graph which corresponds to
exactly the same amplitude. The whole amplitude corresponding to this two diagrams
may be written after some simplification as:

Corb = −2

(
µ2
be
γE

4π

)ε
g2CF

θ(z)

z∫
ddl

(2π)d

1
2
tr
{
V µ
n (p, p+ l)

/̄n/n

4

}
n̄νΠµν(l, µb) (p− + l−)

(p+ l)2 · (l2)2
δ(ω − (p+ l)−)δ(b+ + l+) (29)

Another again it is amplitude without fermion loop counter term. The calculation
procedure of this amplitude is pretty much the same as for diagram 2a with one difference
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that denominator is now 1

(~l2⊥+t)[~l2⊥−t(1/z−1)]
2+ε . The calculation leads to result:

corB =
−α2CfnfTfθ(z)

16π2µ2

θ (t/µ2)

(t/µ2)1+2ε

{
8zδ(1− z)

3ε2
+

16
(
δ(1− z)− 3z

(
1

1−z

)
+

)
9ε

−

4

27
[δ(1− z)(9π2 − 44)12

(
1

1− z

)
+

(5z + 9zlog(z)− 3)− 72z

(
log(1− z)

1− z

)
+

] +O(ε)

}
(30)

Where you have to use the identity 28 for term θ(t)
t1+2ε It is another again to order of 1

ε
and

is not full result in a sense that term proportional to ε0 should also be fully included.
Finally I only state the result for third diagram 2c:

corC =
α2CfnfTfθ(z)

32π2µ2

θ (t/µ2)

(t/µ2)1+2ε

{
8δ(1− z)

3ε
+

16

9

[
(δ(1− z)−

3

(
1

1− z

)
+

]
− 4

27
ε

[
(δ(1− z)(9π2 − 44) +

24

(
1

1− z

)
+

(3 ln(z) + 1)− 72

(
ln(1− z)

1− z

)
+

]
+O

(
ε2
)}

(31)

Where now it is a full result.
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