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Abstract 

     The aim of the project was to extend the XATOM toolkit by adding the relativistic 

correction. XATOM can calculate of cross section of photoionization, decay rates: fluorescence 

rates and Auger rates, elastic x-ray scattering form factor for all atomic species and all possible 

electronic configurations. All basic components have already been developed and the working 

non-relativistic Hartree-Fock-Slater code is available. However the relativistic effects have not 

been taken into account for atomic energy level calculations. I extended XATOM to include 

the relativistic effects via the first-order perturbation correction. 
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 Introduction 

    Future progress in the synchrotron radiation studies is connected with the progress in 

development of fourth generation synchrotron radiation sources which are related to the 

progress of Self-Amplified Spontaneous Emission Free-Electron Lasers (SASE FELs). The X-ray 

free electron laser (XFEL) produces X-ray radiation during a single pass of electron beam 

through a long undulator. XFEL offers many possibilities that have not been conceivable with 

conventional light sources. Because of their very high fluence within very short pulse duration, 

materials interacting with XFEL undergo significant radiation damage with ejection of 

electrons and possibly become highly ionized. A lot of different atomic processes can occur as 

the result of interaction of electromagnetic radiation generated by this laser with the matter 

(Picture 1). For instance, the most probable process in the range of VUV and soft X-ray is the 

photoionization process creates a core-level state, followed by another photoionization or 

relaxation process. In the process of relaxation from the excited state to the ground state the 

fluorescence and the Auger decay can be observed.  

     It is necessary to have a good theoretical base which can completely describe all these 

processes in order to understanding detailed ionization and relaxation dynamics in atoms 

during XFEL pulses. The XATOM toolkit was developed to treat detailed ionization, relaxation, 

and scattering dynamics for atoms during FEL pulses. It was employed a consistent theoretical 

framework based on non-relativistic quantum electrodynamics and perturbation theory, 

within the Hartree-Fock-Slater model. This program is useful because we can apply it for all 

possible n-hole and +n charge electronic configurations of any elements. XATOM is used for 

calculating the following values: the photoionization cross sections, Auger decay rates, 

fluorescence rates, elastic x-ray scattering form factor and their dispersion correction. The 

ionization and relaxation dynamics are described by rate equations.  

 

Picture 1. Diagrams of x-ray–atom interaction - P: photoionization, A: Auger (Coster-Kronig) 

decay, F: fluorescence, SO: shake-off, S: elastic x-ray scattering, RS: resonant elastic x-ray 

scattering. This figure is taken from [1]. 
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    The speed of the majority of the electrons in the atom is slow as compared to the speed of 

light. The velocity of electrons in the helium atom equals 0.02 speed of light. However the 

velocity of electrons, in the inner shells of heavy atoms increases significantly and equals a 

few tenths of the speed of light. Under these conditions, changing of mass is visible and must 

be taken into account. There are three important relativistic effects: the relativistic mass-

velocity correction, the spin-orbit interaction correction, and the relativistic s-shift (Darwin 

term).  

     In the experiments of the multiphoton multiple ionization of xenon atoms, using SPring-8 

Angstrom Compact free electron LAser (SACLA), experimental and theoretical charge states 

distributions of Xe were compared [2]. There is the discrepancy between experimental and 

theoretical data, which were obtained using XATOM with applying the Monte Carlo 

procedure, in this experiment and in other investigation on ionization dynamics of Xe atoms 

induced by XFEL pulses [3]. The discrepancy can be assigned to the non-relativistic treatment 

in the current theoretical model. Without including fine-structure splittings, some of possible 

transitions in Xe atom are energetically impossible and these transitions are completely 

missing in the HFS method [2], [3], [4]. Hence, it is necessary to include relativistic corrections 

into this calculation.  

    My main goal during my work is the calculation of the relativistic corrections of the atomic 

energy levels by the first order perturbation method. My studies throughout the programme 

can be separated into two parts. The first part is to investigate the main relativistic atomic 

effects and understand the way of solving equations with these additional terms within the 

framework of the first order perturbation theory. The second part of my work is to work with 

a program code. I analyze all necessary components of the XATOM code, and modify the 

program code by including the parts which describes the relativistic effects. 

Non - relativistic Hartree-Fock-Slater method 

     For the pure hydrogen-like systems, it is possible to solve the Schrödinger equation 

analytically. More general many-electron systems cannot be treated with such precision. A 

majority of the elements in the periodic table are many-electron systems where the motion of 

every electron is coupled to the motion of all the other electrons as well as to the nucleus. To 

study such systems we have to rely on some approximation method. One widely used 

approximation method is the Hartree-Fock method. It is based on the natural approximation 

that every electron moves in the potential created by the nucleus plus the average potential 

of all the other electrons. This assumption leads to the independent-particle model, which 

essentially reduces the many-electron problem to the problem of solving a number of coupled 

single-electron equations.  

    The other major approximation is the replacement of the Hartree-Fock exchange potential 

terms with a simple exchange potential. The Hartree-Fock-Slater model employs a local 

density approximation to the exact exchange interaction, with the Latter tail correction.  
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    Schrödinger equation with the non-relativistic Hamiltonian operator: 
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eingevalue of Hamiltonian. For the case of crr  , we amply the Latter tail correction. 

Theory of relativistic effects 

    For a hydrogenic atom, the structure of energy levels only depends on the principal 

quantum number n. However, for heavy atoms it is necessary to take into account relativistic 

and spin effects, which break the degeneracy of the energy levels and split the spectral lines. 

The scale of the fine structure splitting relative to the structure splitting is on the order of 
2)( Z , where Z is the atomic number and α is the fine-structure constant, a dimensionless 

number equal to approximately  = 1/137.037 . 

    The Hamiltonian, including the relativistic corrections, can be separated into three 

corrective terms: the kinetic energy term, the spin-orbit term, and the Darwinian term [5]. The 

radial Pauli wave equation: 
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where  rR  - radial wave function. 

Here  rH0  is the non-relativistic Hamiltonian operator: 
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Where l – orbital quantum number, )(rv  is defined like (2). 
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The relativistic variation of the mass with velocity is accounted for by the term  rHm , which is 

most conveniently written form: 

                                                               20
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where 0E  - zero order (the non-relativistic) energy eigenvalue. The relativistic mass-velocity 

correction is negative for all orbitals. This term is related to considering special relativity 

equation.  

    The relativistic Darwin correction produced by the operator  rHd : 
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The Darwin term changes the effective potential at the nucleus. It can be interpreted as a 

smearing out of the electrostatic interaction between the electron and nucleus due to rapid 

quantum oscillations, of the electron. In the special case of a coulomb potential, the Darwin 

correction is positive for all orbitals with l  = 0 and zero for all orbitals with 0l . However, in 

my case, the potential is not the pure Coulomb potential and the Darwin correction is not zero 

for all orbitals with 0l .  

    The spin-orbital energy is given by the term  rH so : 
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The upper quantity  l  refers to 2/1 lj , and the lower quantity  1l  to 2/1 lj  

where 0l . In the case of 0l , spin-orbital correction equals zero. The spin-orbit interaction 

causes shifts in an electron's atomic energy levels due to electromagnetic interaction between 

the electron's spin and the magnetic field generated by the electron's orbit around the 

nucleus.  

    The zero-order non-relativistic wave equation has been solved for all orbitals (n,l): 

                                                              rRErRrH nlnlnl

000

0                                                       (7) 

We solved our radial Pauli wave equation within the framework of the first-order perturbation 

theory, where 2  plays role of the perturbation parameter. The energy, correct to order 2 , is 

given by: 
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http://en.wikipedia.org/wiki/Special_relativity
http://en.wikipedia.org/wiki/Charles_Galton_Darwin
http://en.wikipedia.org/wiki/Electron
http://en.wikipedia.org/wiki/Energy_level
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where 0

nlE  - zero order (the non-relativistic) energy eigenvalue.   

 The notation for the energy corrections for each of these terms are following: 
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where mE - the energy correction connected with the relativistic variation of mass with 

velocity, dE  - the energy correction connected with Darwin term, soE - the energy correction 

connected with spin-orbital interaction,    rRrr nl

0  is the normalized non-relativistic self-

consistent Hartree-Fock-Slater radial function corresponding to 0

nlE . 

The total effect, obtained by summing the three components up, is given by the following 

expression: 

In case of 0l :       dm EEEjE  0  

In case of 0l :         sodm ElEEEljE 12/1 0   

                                  sodm ElEEEljE  2/1 0   

The energy shifts are showed in Picture 2. 
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Picture 2. Energy levels of the fine structure with including Darwin, Kinetic and Spin-orbital 

correction. This figure is taken from [6]. 

XATOM program and GPS method 

    The XATOM program has wide application [7], and it provides good results for different 

atomic processes can occur as the result of interaction of electromagnetic radiation with the 

matter. The Herman-Skillman code is one of the simplest Self-Consistent Field computational 

codes for determining one-electron wave functions and the associated potential for any free 

atom or ion. Both of these programs were obtained within the same framework of first-order 

perturbation theory but with different numerical techniques.  

    There is one important numerical difference between XATOM and the Herman-

Skillman code. XATOM uses non-uniform radial grids for bound states and uniform radial grids 

for continuum states instead of other kind of non-uniform grids with for both states in the 

Herman-Skillman code. The difference between these grids is different method of distribution 

of points. The main advantage of XATOM’s non-uniform grid it is easy to increase the density 

of points near the origin; it is useful for heavy elements, the radial functions of electrons of 

these elements are very close to the origin and therefore it requires denser grid near this 

area. 

    For the solving a second-order differential equation, for instance, radial Schrodinger 

equation, it is applied a special technique - generalized pseudospectral method (GPS) is 

employed in the program XATOM [8]. The central part of the pseudospectral method is to 

approximate the exact function f (x) defined on the interval [-1, 1] by Nth-order polynomial

 xfN : 
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Where  - eigenvalue ,  xg j  -  are the cardinal functions defined by: 
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where N  – quantity of grid points,  xPN  - Legendre polynomials. 

                                                                    jjNj AxPxf                                                                  (14) 

for the frequently used Dirichlet boundary conditions, 

                                                                     00  NAA                                                                   (15) 

    For atomic calculations involving the Coulomb potential, one typical problem with the grid 

methods is the Coulomb singularity at r=0 and the long-range nature of the interaction. First 

map the semi-infinite domain  maxmin ,rrr  is transformed into the finite domain  1,1x  

using the mapping transformation: 
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where L – is a mapping parameter, 
 minmax

2
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L


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    The Darwin correction (5) and spin-orbital correction (6) include the first derivative of 

potential and the first derivative of radial wave function. In order to calculate this term we 

need to know the pseudospectral approximation for the first derivative of the wave function. 

It can be express through the coefficients A:  
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With the matrix )1(
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jjd   is the first derivative of the cardinal function (13) with respect to x : 
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Results and discussion 

    I have modified the XATOM code with adding the extra module and obtained results of the 

calculations relativistic corrections. For reference, Table 1 contains results for orbital energies 

of Fe and Xe without relativistic corrections. 

1s -7017.95 1s -33121.49 

2s -829.40 2s -5061.86 

2p -722.30 2p -4776.21 

3s -98.95 3s -1046.92 

3p -66.59 3p -923.99 

4s -7.43 4s -193.02 

3d -13.14 3d -693.31 

  4p -148.65 

  5s -21.80 

  4d -71.56 

  5p -11.41 

Table 1. Orbital energies for Fe (left) and Xe (right) without relativistic corrections. (all of these 

energy levels are presented in eV) 

       The relativistic corrections can be presented separately - three corrective terms: the 

kinetic energy term, the spin-orbit term, and the Darwinian term. Table 2 contains results of 

the calculations of all of these terms and the comparison between data from the Herman-

Skillman book [5] and findings for Fe and Xe. Even for very light elements near Z = 10 the 

relativistic effects make a contribution to the energy levels. The relativistic effects grow with 

increasing Z and become significant for all the shells in the atom, especially for the inner 

shells. I compared the results were obtained by the Herman-Skillman code and by the XATOM 

program in order to check my results, as both of these results were obtained within the 

framework of first order perturbation theory. For the kinetic energy term and the spin-orbit 

term the discrepancies between the two data are insignificant. If we consider the Darwinian 

term, the value of electrons energy levels in the inner shells from these different sources are 

different. For instance, difference between Ed – Ed (book) = 24.625 eV for 2s shell of Xe. This 

difference varies depending on the parameters L – mapping parameter (15) and N - number of 

grid points. I tried the different variations of these parameters; dependence of the difference 

between Ed - Ed (book) = delEd and the parameter L and N is shown on the Picture 3. 
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Picture 3. Dependence of the difference between Ed – Ed (book) and the parameter L and N. (Ed 

– Ed (book) = delEd is presented in eV).  

    The difference between the two values does not converge to zero. The value of Ed – Ed (book) 

grows with increasing of number of grid points N and decreasing of parameter L. The Darwin term 

includes the first derivative of potential. The shape of potential is the following:  
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The first derivative matrix in XATOM program is defined in the pseudospectral approximation (17). 

But we cannot use this matrix for calculating of the first derivative of potential because boundary 

conditions (15) for the function of potential are not satisfied. One of the probable way to solve this 

issue is to explicitly include end points with matrix )1(

jjd   (19) or to find the derivative in the usual 

way, for example, the finite-difference method with grids equally-spaced.  
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Fe (Z=26) 

 Em Em(book) Em - Em(book)  Ed Ed(book) Ed – Ed(book) 

1s 398.762 398.762 0 1s -319.4454 -297.81345 -21.632 
2s 46.556 46.556 0 2s -29.4004 -29.4140 0.0136 

2p 6.965 6.952 0.013 2p 0.19047 0.19047 0 
3s 7.078 7.077 0.001 3s -4.2747 -3.9931 -0.2816 

3p    3p 1.113 1.113 0 3p 0.0231285 0.0231285 0 

4s 0.468 0.468 0 4s -0.280263 -0.280263 0 

3d 0.139 0.139 0 3d 0.0068025 0.0068025 0 

 Eso 
 

Eso(book) 
 

Eso - Eso(book) 
 

    

1s 0 0 0     
2s 0 0 0     
2p -4.231155 -4.231155 0     
3s 0 0 0     
3p -0.529235 -0.5292345 0     
4s 0 0 0     
3d -0.035373 -0.035373 0     

Xe (Z=54) 

 Em Em(book) Em - Em(book)  Ed Ed(book) Ed – Ed(book) 

1s 7547.918 7548.1901 -0.2721 1s -6041.8445 -6048.3749 6.5304 

2s 1023.6402 1023.6538 -0.013605 2s -638.6187 -613.99365 -24.625 

2p 168.77003 168.77003 0 2p 2.462505 2.462505 0 

3s 216.33991 216.33447 0.005442 3s -127.7319 -127.90469 0.172784 

3p 42.965951 42.961869 0.004082 3p 0.4693725 0.4693725 0 

4s 48.274622 48.267819 0.006802 4s -28.046708 -26.956947 -1.08976 

3d 11.245893 11.244533 0.00136 3d 0.2897865 0.2897865 0 

4p 9.341193 9.3398325 0.00136 4p 0.092514 0.092514 0 

5s 7.1793585 7.1575905 0.021768 5s -4.1536065 -4.1318385 -0.02177 

4d 2.184963 2.1836025 0.00136 4d 0.043536 0.043536 0 

5p 1.0516665 1.0516665 0 5p 0.010884 0.010884 0 

 Eso Eso(book) 
 

Eso - Eso(book) 
 

    

1s 0 0 0     
2s 0 0 0     
2p -99.62942 -99.629415 0     
3s 0 0 0     
3p -18.95313 -18.954486 0.0013605     
4s 0 0 0     

3d -2.701953 -2.701953 0     

4p -3.832529 -3.8325285 0     

5s 0 0 0     
4d -0.428421 -0.4282854 -0.000136     
5p -0.424612 -0.42434 -0.000272     
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Table 2. Table with data from two different sources: results were obtained by XATOM and 

results were obtained the Herman-Skillman code and difference between these results (all of 

these energy levels are presented in eV). These results were obtained for the following 

parameters of the grid: N=600, L=0.15 

 

     Enl 
(relativistic 
case) 

HFS RHFS RHF Experim
ental* 

k(%) k1(%) 

1s -34627.5635 -34,620 -34,555 -34,754 -34,561 0.022 0.19 

2s -5446.8815 -5578 -5417 -5509 -5453 2.351 0.11 

2p1/2 -5166.5946 -5166 -5104 -5161 -5107 0.011 1.167 

2p3/2 -4847.7064 -4848 -4774 -4835 -4787 0.006 1.268 

3s -1135.528 -1135.3 -1122.2 -1170 -1148.7 0.02 1.147 

3p1/2 -1005.25 -1005.3 -989.7 -1025 -1002.1 0.0049 0.314 

3p3/2 -948.3950 -948.4 -926.5 -961 -940.6 0.0005 0.828 

4s -213.2479 -214.3 -208.5 -229 -213.2 0.4909 0.022 

3d3/2 -712.882 -712.9 -690.9 -708 -689 0.0025 3.466 

3d5/2 -699.3704 -699.4 -677.4 -695 676.4 0.004 3.395 

4p1/2 -165.797 -165.7 -160.8 -176 - 0.054 - 

4p3/2 -154.2072 -154.2 -148.0 -163 -145.5 0 5.984 

5s -24.8257 -24.8 -23.7 -27.5 -23.3 0 6.548 

4d3/2 -75.0315 -75.0 -69.9 -73.8 -69.5 0 7.958 

4d5/2 -72.8928 -72.9 -67.7 -71.7 -67.5 0 7.989 

5p1/2 -13.2942 -13.3 -12.4 -13.4 -13.4 0 0.789 

5p3/2 -12.0214 -12 -11.0 -12 -12.1 0 0.649 

Table 3. Orbital energies of Xe for two cases: without relativistic corrections and taking into 

account the relativistic effects and data for level of energy for Xe from relativistic HFS 

calculation. The last column and penultimate column are k = (HFS - Enl (relativistic case)*100)/ 

HFS and k1 = (Experimental - Enl (relativistic case)*100)/ Experimental respectively in percent 

(all of these energy levels are presented in eV). *K. Siegbahn et al., ESCA Applied to Free 

Molecules, North Holland Publishing Co., Amsterdam (1969) 

      In the Hartree-Fock-Slater (HFS) case and in my code the relativistic effect is added as a 

perturbation. It is interesting to compare eigenvalues obtained from other methods and with 

experimental binding energies of Xe. In the Table 3 three different relativistic Self-Consistent-

Field (SCF) solutions and experimental binding energies are presented [9]. My results from the 

XATOM are in the first column, results from Herman-Skillman book (Hartree-Fock-Sleter 

method + relativistic correction) are in the second column; the relativistic Hartree-Fock-Slater 

(RHFS) solution which includes the relativistic effect in a self-consistent method but uses an 

approximate form for the exchange integral - results from applying Dirac-Fock-Slater method 

are presented in the third column; the relativistic Hartree-Fock (RHF) solution in which 
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exchange is properly calculated is based on the most sophisticated theory – results from 

Dirac-Fock method are presented in the fifth column. It can be seen that there is a difference 

between experimental data and calculated data. The last column and penultimate column are 

k = (HFS - Enl (relativistic case)*100)/ HFS and k1 = (Experimental - Enl (relativistic case)*100)/ 

Experimental respectively in percent. These columns are presented the difference between 

obtained results and HFS calculation – Hermann-Skillman, obtained results and experiment 

respectively. Hence, it is necessary to take into consideration other effects. To obtain 

substantial improvement for the outer shells, correlation effects need to be evaluated, and for 

the inner shells radioactive corrections must be calculated.  

 Conclusions 

    The primary purpose of this project was to make a modification of XATOM program, which 

would be used to calculate of the relativistic corrections by the first order perturbation 

method. The program written during this project has been tested in various setups and 

conditions; and the energy orbital levels of various atoms were obtained with relativistic 

corrections. The results were compared with the experimental data and with data obtained by 

other theoretical methods.  
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