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Abstract

The aim of the project was to extend the XATOM toolkit by adding the relativistic
correction. XATOM can calculate of cross section of photoionization, decay rates: fluorescence
rates and Auger rates, elastic x-ray scattering form factor for all atomic species and all possible
electronic configurations. All basic components have already been developed and the working
non-relativistic Hartree-Fock-Slater code is available. However the relativistic effects have not
been taken into account for atomic energy level calculations. | extended XATOM to include
the relativistic effects via the first-order perturbation correction.
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Introduction

Future progress in the synchrotron radiation studies is connected with the progress in
development of fourth generation synchrotron radiation sources which are related to the
progress of Self-Amplified Spontaneous Emission Free-Electron Lasers (SASE FELs). The X-ray
free electron laser (XFEL) produces X-ray radiation during a single pass of electron beam
through a long undulator. XFEL offers many possibilities that have not been conceivable with
conventional light sources. Because of their very high fluence within very short pulse duration,
materials interacting with XFEL undergo significant radiation damage with ejection of
electrons and possibly become highly ionized. A lot of different atomic processes can occur as
the result of interaction of electromagnetic radiation generated by this laser with the matter
(Picture 1). For instance, the most probable process in the range of VUV and soft X-ray is the
photoionization process creates a core-level state, followed by another photoionization or
relaxation process. In the process of relaxation from the excited state to the ground state the
fluorescence and the Auger decay can be observed.

It is necessary to have a good theoretical base which can completely describe all these
processes in order to understanding detailed ionization and relaxation dynamics in atoms
during XFEL pulses. The XATOM toolkit was developed to treat detailed ionization, relaxation,
and scattering dynamics for atoms during FEL pulses. It was employed a consistent theoretical
framework based on non-relativistic quantum electrodynamics and perturbation theory,
within the Hartree-Fock-Slater model. This program is useful because we can apply it for all
possible n-hole and +n charge electronic configurations of any elements. XATOM is used for
calculating the following values: the photoionization cross sections, Auger decay rates,
fluorescence rates, elastic x-ray scattering form factor and their dispersion correction. The
ionization and relaxation dynamics are described by rate equations.

Picture 1. Diagrams of x-ray—atom interaction - P: photoionization, A: Auger (Coster-Kronig)
decay, F: fluorescence, SO: shake-off, S: elastic x-ray scattering, RS: resonant elastic x-ray
scattering. This figure is taken from [1].



The speed of the majority of the electrons in the atom is slow as compared to the speed of
light. The velocity of electrons in the helium atom equals 0.02 speed of light. However the
velocity of electrons, in the inner shells of heavy atoms increases significantly and equals a
few tenths of the speed of light. Under these conditions, changing of mass is visible and must
be taken into account. There are three important relativistic effects: the relativistic mass-
velocity correction, the spin-orbit interaction correction, and the relativistic s-shift (Darwin
term).

In the experiments of the multiphoton multiple ionization of xenon atoms, using SPring-8
Angstrom Compact free electron LAser (SACLA), experimental and theoretical charge states
distributions of Xe were compared [2]. There is the discrepancy between experimental and
theoretical data, which were obtained using XATOM with applying the Monte Carlo
procedure, in this experiment and in other investigation on ionization dynamics of Xe atoms
induced by XFEL pulses [3]. The discrepancy can be assigned to the non-relativistic treatment
in the current theoretical model. Without including fine-structure splittings, some of possible
transitions in Xe atom are energetically impossible and these transitions are completely
missing in the HFS method [2], [3], [4]. Hence, it is necessary to include relativistic corrections
into this calculation.

My main goal during my work is the calculation of the relativistic corrections of the atomic
energy levels by the first order perturbation method. My studies throughout the programme
can be separated into two parts. The first part is to investigate the main relativistic atomic
effects and understand the way of solving equations with these additional terms within the
framework of the first order perturbation theory. The second part of my work is to work with
a program code. | analyze all necessary components of the XATOM code, and modify the
program code by including the parts which describes the relativistic effects.

Non - relativistic Hartree-Fock-Slater method

For the pure hydrogen-like systems, it is possible to solve the Schrodinger equation
analytically. More general many-electron systems cannot be treated with such precision. A
majority of the elements in the periodic table are many-electron systems where the motion of
every electron is coupled to the motion of all the other electrons as well as to the nucleus. To
study such systems we have to rely on some approximation method. One widely used
approximation method is the Hartree-Fock method. It is based on the natural approximation
that every electron moves in the potential created by the nucleus plus the average potential
of all the other electrons. This assumption leads to the independent-particle model, which
essentially reduces the many-electron problem to the problem of solving a number of coupled
single-electron equations.

The other major approximation is the replacement of the Hartree-Fock exchange potential
terms with a simple exchange potential. The Hartree-Fock-Slater model employs a local
density approximation to the exact exchange interaction, with the Latter tail correction.



Schrodinger equation with the non-relativistic Hamiltonian operator:
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Where V(r) - the potential, which is defined like: v(r)=
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the Slater exchange potential, where Z - the atomic number, p(r)— the electrons density
NE
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Theory of relativistic effects

For a hydrogenic atom, the structure of energy levels only depends on the principal
guantum number n. However, for heavy atoms it is necessary to take into account relativistic
and spin effects, which break the degeneracy of the energy levels and split the spectral lines.
The scale of the fine structure splitting relative to the structure splitting is on the order of

(Za)?, where Z is the atomic number and a is the fine-structure constant, a dimensionless

number equal to approximately o =1/137.037 .

The Hamiltonian, including the relativistic corrections, can be separated into three
corrective terms: the kinetic energy term, the spin-orbit term, and the Darwinian term [5]. The
radial Pauli wave equation:

[Ho(r)+Hp(r)+ Hy (r)+ Hoo (NIR(r) = ER(r) (2)
where R(r) - radial wave function.

Here Ho(r) is the non-relativistic Hamiltonian operator:

_(1YdY.,d 1(+1)
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Where | — orbital quantum number, v(r) is defined like (2).




The relativistic variation of the mass with velocity is accounted for by the term H_(r), which is

most conveniently written form:
0(2 0 2
Ha()= % [E° —v(n)] (4)

where E° - zero order (the non-relativistic) energy eigenvalue. The relativistic mass-velocity
correction is negative for all orbitals. This term is related to considering special relativity
equation.

The relativistic Darwin correction produced by the operator H, (r):

{2

The Darwin term changes the effective potential at the nucleus. It can be interpreted as a
smearing out of the electrostatic interaction between the electron and nucleus due to rapid
guantum oscillations, of the electron. In the special case of a coulomb potential, the Darwin
correction is positive for all orbitals with | = 0 and zero for all orbitals withl = 0. However, in
my case, the potential is not the pure Coulomb potential and the Darwin correction is not zero
for all orbitals withl = 0.

The spin-orbital energy is given by the term Hso(r):

- R

The upper quantity [—I] refers to j =1+1/2, and the lower guantity [I +1] to J =1-1/2

wherel # 0. In the case of | =0, spin-orbital correction equals zero. The spin-orbit interaction
causes shifts in an electron's atomic energy levels due to electromagnetic interaction between
the electron's spin and the magnetic field generated by the electron's orbit around the
nucleus.

The zero-order non-relativistic wave equation has been solved for all orbitals (n,l):
Ho(r)R3(r)=Ea R (r) (7)

We solved our radial Pauli wave equation within the framework of the first-order perturbation

theory, where a2 plays role of the perturbation parameter. The energy, correct to order a?, is
given by:

EL = B + [ dr r2R(F)[H,, () Hy (F) + Ho (DIRS (1) @
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where Er?, - zero order (the non-relativistic) energy eigenvalue.

The notation for the energy corrections for each of these terms are following:
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where E_ - the energy correction connected with the relativistic variation of mass with

(10)

velocity, E, - the energy correction connected with Darwin term, E_ - the energy correction
connected with spin-orbital interaction, y(r)=r-RS(r) is the normalized non-relativistic self-

consistent Hartree-Fock-Slater radial function corresponding to EJ, .

The total effect, obtained by summing the three components up, is given by the following
expression:

Incaseofl=0: E(j)=E,+E, +E,
Incaseofl 20: E(j=1-1/2)=E,+E, +E, +(-1 -1)E_,
E(j=1+1/2)=E,+E, +E, +(1)E,,

The energy shifts are showed in Picture 2.
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Picture 2. Energy levels of the fine structure with including Darwin, Kinetic and Spin-orbital

correction. This figure is taken from [6].

XATOM program and GPS method

The XATOM program has wide application [7], and it provides good results for different
atomic processes can occur as the result of interaction of electromagnetic radiation with the
matter. The Herman-Skillman code is one of the simplest Self-Consistent Field computational
codes for determining one-electron wave functions and the associated potential for any free
atom or ion. Both of these programs were obtained within the same framework of first-order
perturbation theory but with different numerical techniques.

There is one important numerical difference between XATOM and the Herman-
Skillman code. XATOM uses non-uniform radial grids for bound states and uniform radial grids
for continuum states instead of other kind of non-uniform grids with for both states in the
Herman-Skillman code. The difference between these grids is different method of distribution
of points. The main advantage of XATOM'’s non-uniform grid it is easy to increase the density
of points near the origin; it is useful for heavy elements, the radial functions of electrons of
these elements are very close to the origin and therefore it requires denser grid near this
area.

For the solving a second-order differential equation, for instance, radial Schrodinger
equation, it is applied a special technique - generalized pseudospectral method (GPS) is
employed in the program XATOM [8]. The central part of the pseudospectral method is to
approximate the exact function f (x) defined on the interval [-1, 1] by Nth-order polynomial

fN(X):
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where N — quantity of grid points, P, (X) - Legendre polynomials.

F(x;)=PRux; A (14)
for the frequently used Dirichlet boundary conditions,

A=A, =0 (15)

For atomic calculations involving the Coulomb potential, one typical problem with the grid
methods is the Coulomb singularity at r=0 and the long-range nature of the interaction. First
map the semi-infinite domain re[r,, ,r... ] is transformed into the finite domain Xe[—l,l]

min ? * max

using the mapping transformation:
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The Darwin correction (5) and spin-orbital correction (6) include the first derivative of
potential and the first derivative of radial wave function. In order to calculate this term we
need to know the pseudospectral approximation for the first derivative of the wave function.
It can be express through the coefficients A:

dy(r)
dr J)
i'=0,.,N

=Py (Xj )[r’(xj, )]MZZN: D) A,

i=0 (17)

With the matrix Dﬁ-) represented by

DY = [r'(x; )2 [r(x; |2 (18)

where d},lj) is the first derivative of the cardinal function (13) with respect to x :
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Results and discussion

| have modified the XATOM code with adding the extra module and obtained results of the
calculations relativistic corrections. For reference, Table 1 contains results for orbital energies
of Fe and Xe without relativistic corrections.

1s | -7017.95 | 1s -33121.49
2s | -829.40 | 2s -5061.86
2p | -722.30 | 2p -4776.21
3s | -98.95 3s -1046.92
3p | -66.59 3p -923.99
4s | -7.43 4s -193.02
3d | -13.14 3d -693.31
4p -148.65
5s -21.80
4d -71.56
5p -11.41

Table 1. Orbital energies for Fe (left) and Xe (right) without relativistic corrections. (all of these
energy levels are presented in eV)

The relativistic corrections can be presented separately - three corrective terms: the
kinetic energy term, the spin-orbit term, and the Darwinian term. Table 2 contains results of
the calculations of all of these terms and the comparison between data from the Herman-
Skillman book [5] and findings for Fe and Xe. Even for very light elements near Z = 10 the
relativistic effects make a contribution to the energy levels. The relativistic effects grow with
increasing Z and become significant for all the shells in the atom, especially for the inner
shells. | compared the results were obtained by the Herman-Skillman code and by the XATOM
program in order to check my results, as both of these results were obtained within the
framework of first order perturbation theory. For the kinetic energy term and the spin-orbit
term the discrepancies between the two data are insignificant. If we consider the Darwinian
term, the value of electrons energy levels in the inner shells from these different sources are
different. For instance, difference between Eq — E4 (book) = 24.625 eV for 2s shell of Xe. This
difference varies depending on the parameters L — mapping parameter (15) and N - number of
grid points. | tried the different variations of these parameters; dependence of the difference
between E4 - E4 (book) = delE4 and the parameter L and N is shown on the Picture 3.
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Picture 3. Dependence of the difference between E;— E; (book) and the parameter L and N. (Eg4
— E, (book) = delEd is presented in eV).

The difference between the two values does not converge to zero. The value of E; — E; (book)
grows with increasing of number of grid points N and decreasing of parameter L. The Darwin term
includes the first derivative of potential. The shape of potential is the following:

v(r)—>—l r— o
! (20)
v(r)—>—? r—0

The first derivative matrix in XATOM program is defined in the pseudospectral approximation (17).
But we cannot use this matrix for calculating of the first derivative of potential because boundary
conditions (15) for the function of potential are not satisfied. One of the probable way to solve this

issue is to explicitly include end points with matrix d},lj) (19) or to find the derivative in the usual

way, for example, the finite-difference method with grids equally-spaced.
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Fe (Z=26)

Em Em(book) Em - Em(booK) Eq Eqa(book) | Eq- E4(book)
1s 398.762 398.762 0 1s | -319.4454 | -297.81345 | -21.632
2s 46.556 46.556 0 2s | -29.4004 -29.4140 0.0136
2p 6.965 6.952 0.013 2p | 0.19047 0.19047 0
3s 7.078 7.077 0.001 3s | -4.2747 -3.9931 -0.2816
3p 1.113 1.113 0 3p | 0.0231285 | 0.0231285 | O
s 0.468 0.468 0 4s | -0.280263 | -0.280263 | O
3d 0.139 0.139 0 3d | 0.0068025 | 0.0068025 |0

Eso Eso(book) | Eso - Eso(book)
s |0 0 0
2s |0 0 0
2p -4.231155 | -4.231155 0
3s 0 0 0
3p -0.529235 | -0.5292345 0
as 0 0 0
3d -0.035373 | -0.035373 0

Xe (Z=54)

Em Em(book) | Em - Em(book) Ed Ed(book) | Ed - Ed(book)
1s 7547.918 7548.1901 -0.2721 1s | -6041.8445 | -6048.3749 | 6.5304
2s 1023.6402 | 1023.6538 -0.013605 2s | -638.6187 | -613.99365 | -24.625
2p 168.77003 | 168.77003 0 2p | 2.462505 2.462505 0
3s 216.33991 | 216.33447 0.005442 3s | -127.7319 | -127.90469 | 0.172784
3p | 42.965951 | 42.961869 0.004082 3p | 0.4693725 | 0.4693725 | O
as 48.274622 | 48.267819 0.006802 4s | -28.046708 | -26.956947 | -1.08976
3d 11.245893 | 11.244533 0.00136 3d | 0.2897865 | 0.2897865 | O
4p 9.341193 9.3398325 0.00136 4p | 0.092514 0.092514 0
5s 7.1793585 | 7.1575905 0.021768 5s | -4.1536065 | -4.1318385 | -0.02177
4d 2.184963 2.1836025 0.00136 4d | 0.043536 0.043536 0
5p 1.0516665 | 1.0516665 0 5p | 0.010884 0.010884 0

Eso Eso(book) | Eso - Eso(book)
1s 0 0 0
2 |0 0 0
2p -99.62942 | -99.629415 0
3s 0 0 0
3p -18.95313 | -18.954486 0.0013605
as 0 0 0
3d -2.701953 | -2.701953 0
4p | -3.832529 |-3.8325285 |0
55 |0 0 0
4d -0.428421 | -0.4282854 -0.000136
5p -0.424612 | -0.42434 -0.000272
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Table 2. Table with data from two different sources: results were obtained by XATOM and
results were obtained the Herman-Skillman code and difference between these results (all of
these energy levels are presented in eV). These results were obtained for the following
parameters of the grid: N=600, L=0.15

Enl Experim k1(%)

(relativistic ental*
&
BB 346275635  -34,620  -34,555  -34,754  -34,561 | 0.022 0.19
P -5446.8815 5578 -5417  -5509  -5453  [2.351  [0.11
-5166.5946  -5166  -5104  -5161  -5107 | 0.011 1.167
-4847.7064  -4848  -4774 4835  -4787 [0.006 | 1.268
=5 11355528 11353 -1122.2  -1170  -1148.7 [0.02 1.147
-1005.25 -1005.3 -989.7  -1025  -1002.1 |0.0049 |o0.314
-948.3950  -948.4  -926.5  -961 -940.6 [ 0.0005 |o0.828
VY 2132479 2143 2085 -229 2132 [0.4909 |o0.022
-712.882 7129  -690.9  -708 -689 0.0025 | 3.466
-699.3704  -699.4  -677.4  -695 676.4 |0.004 [3.395
TSP -165.797 -165.7  -160.8  -176 - 0.054 |-
-154.2072  -154.2  -1480  -163 1455 |0 5.984
0 248257 -24.8 -23.7 -27.5 -233 0 6.548
-75.0315 -75.0 -69.9 -73.8 -69.5 0 7.958
-72.8928 -72.9 -67.7 -71.7 -67.5 0 7.989
2V -13.2942 -13.3 -12.4 -13.4 -13.4 0 0.789
-12.0214 -12 -11.0 -12 -12.1 0 0.649

Table 3. Orbital energies of Xe for two cases: without relativistic corrections and taking into
account the relativistic effects and data for level of energy for Xe from relativistic HFS
calculation. The last column and penultimate column are k = (HFS - Enl (relativistic case)*100)/
HFS and k1 = (Experimental - Enl (relativistic case)*100)/ Experimental respectively in percent
(all of these energy levels are presented in eV). *K. Siegbahn et al., ESCA Applied to Free
Molecules, North Holland Publishing Co., Amsterdam (1969)

In the Hartree-Fock-Slater (HFS) case and in my code the relativistic effect is added as a
perturbation. It is interesting to compare eigenvalues obtained from other methods and with
experimental binding energies of Xe. In the Table 3 three different relativistic Self-Consistent-
Field (SCF) solutions and experimental binding energies are presented [9]. My results from the
XATOM are in the first column, results from Herman-Skillman book (Hartree-Fock-Sleter
method + relativistic correction) are in the second column; the relativistic Hartree-Fock-Slater
(RHFS) solution which includes the relativistic effect in a self-consistent method but uses an
approximate form for the exchange integral - results from applying Dirac-Fock-Slater method
are presented in the third column; the relativistic Hartree-Fock (RHF) solution in which

13



exchange is properly calculated is based on the most sophisticated theory — results from
Dirac-Fock method are presented in the fifth column. It can be seen that there is a difference
between experimental data and calculated data. The last column and penultimate column are
k = (HFS - Enl (relativistic case)*100)/ HFS and k1 = (Experimental - Enl (relativistic case)*100)/
Experimental respectively in percent. These columns are presented the difference between
obtained results and HFS calculation — Hermann-Skillman, obtained results and experiment
respectively. Hence, it is necessary to take into consideration other effects. To obtain
substantial improvement for the outer shells, correlation effects need to be evaluated, and for
the inner shells radioactive corrections must be calculated.

Conclusions

The primary purpose of this project was to make a modification of XATOM program, which
would be used to calculate of the relativistic corrections by the first order perturbation
method. The program written during this project has been tested in various setups and
conditions; and the energy orbital levels of various atoms were obtained with relativistic
corrections. The results were compared with the experimental data and with data obtained by
other theoretical methods.
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