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Abstract

Double parton scattering may constitute a significant background to important processes
such as Higgs boson production. This paper examines certain features of double parton
distribution functions, which are required to fully calculate the cross-sections for double
parton interactions. A code for carrying out the leading-order evolution of such PDFs
is described and tested. A product of single PDFs is inputted and evolved, the results
of which are compared to products of single PDFs at different evolution scales. It is
observed that for many PDF sets they correspond closely for low values of the momentum
fraction x. Polarized PDFs are also an important element of the total cross-section of
double parton processes, and some of their features are examined here. The extent to
which doubly polarized double PDFs are washed out by evolution is examined for the
case of a low evolution starting scale, and it is observed that this suppression is slightly
different than in the case of a higher starting scale. This suggests that the starting point
is important when carrying out the evolution of polarized double PDFs. Finally, the
results of rewriting the evolution code for the case where one parton is polarized and one
is unpolarized are described. It is observed that the results are mainly consistent with
an expected relationship between such PDFs and doubly polarized PDFs. It is hoped
that studies of double PDFs like those in this paper will help clarify their structure, and
enable accurate predictions to be made regarding an important background process at
colliders like the LHC.
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1 Introduction

In my project, I focus on the theory of quantum chromodynamics (QCD), and in particular
on double parton scattering between the parton constituents of two protons. Most scattering
processes which take place at a proton-proton collider involve scattering of single partons within
protons - quarks and gluons - off of one another. However, in many cases it can also happen
that two partons within each proton scatter off each other in a single proton-proton collision. It
has been shown that the contribution to background processes at the LHC and other colliders
due to double parton collisions can be significant [1–3], and it is therefore desirable to have
a fuller understanding of them. In this paper, I use a pre-existing evolution code described
in [4], in order to generate and examine some of the features of double parton distribution
functions (dPDFs), which are required to understand double parton scattering. This code
takes input dPDFs at a certain Q scale - Q being the momentum transfer or momentum scale
being considered - and uses the double parton version of the DGLAP evolution equations to
calculate the corresponding dPDF at higher scales. I begin with a theoretical description of
such functions and a description of the code used to generate them. I then describe the results
of putting in a simple product of single parton distributions (sPDFs), and examine how the
evolved dPDFs differ from simple products of sPDFs at higher energy scales. Such a product
is chosen because it is the simplest approximation of dPDFs, which are not well understood.
Another important aspect of calcutions involving dPDF is the significance of spin polarization
correlations. Such spin correlations would have an important effect on the structure of dPDFs.
I examine dPDFs for polarized partons, and particularly how the dPDFs for polarized partons
are washed out by an evolution to higher energy scales. This has previously been done where
the starting scale for evolution is Q2 = 1 GeV2, and where both partons are polarized in the
same direction [5]. I compare this to the case where the starting scale is Q2 = 0.3 GeV2.
Finally, I describe the results of changing the pre-existing code in order to deal with the case
where one parton is polarized and one is unpolarized. I then compare these results to dPDFs
with two polarized partons.

2 Theory

2.1 Parton distribution functions

A very important aim of QCD is the calculation of the cross-section of whatever interaction
is being considered. To calculate the cross section for a proton-proton interaction, one often
uses the factorization formula, which states that the cross section for such a reaction (σ) can
be expressed as a convolution of the cross section for the reaction of constituent partons i and
j (σij), which can be calculated analytically, and the parton distribution functions (PDFs) of
constituent partons fi(x1) and fj(x1). Here the variable x1 describes the fraction of the total
proton longitudinal momentum possessed by the parton, and the parton distribution functions
describe the probability of finding a parton with a momentum fraction x. Examples of PDFs
are shown in Fig. 1. The factorization formula can be expressed thusly [5]:

σ =
∑
ij

∫
dx1

∫
dx1fi(x1)fj(x1)σij. (1)
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The PDFs may be measured experimentally using deep inelastic scattering, but it is impor-
tant to realize that these are not independent of the scale being considered. While this was
once thought to be true (Bjorken scaling), it is now known that these functions vary loga-
rithmically with Q2. One reason for the violation of Bjorken scaling is the assumption made
in the derivation of the parton model that the transverse momenta of partons is negligible in
a large Q2 limit, and that therefore only the longitudinal momentum fraction is significant.
However, as described in [6], it is possible, for example, for a gluon to be emitted by quark
in a transverse direction, thus causing the quark to obtain a non-trivial transverse momentum
itself. As a result, while at low energies we may think of a proton as roughly composed of three
(valence) quarks held together by gluons, at higher energy scales this becomes far more chaotic
with gluons and (sea) quarks spontaneously forming, complicating enormously the picture of
the proton. The evolution of the PDFs with Q2 is described by the well-known Dokshitzer-
Gribov-Lipatov-Altarelli-Parisi (DGLAP) equation. In its simplest form this can be expressed
as [5, 6]

∂

∂ lnQ2
fqv(x,Q) =

αs(Q)

2π

∫ 1

x

dx
′

x′ P
( x
x′

)
fqv(x

′
, Q) (2)

or more compactly
∂

∂ lnQ2
fqv(x,Q) =

αs(Q)

2π
P
( x
x′

)
⊗ fqv(x

′
, Q). (3)

Here, fqv(x,Q) is a valence quark distribution function, αs(Q) is the running strong coupling
constant, and P is known as a splitting function. P is properly expressed as an expansion in
αs, but if we only take the leading order term in this expansion, we can interpret Pab(x) as the
probability that a parton of type b emits a parton of type a with momentum fraction x [6].
This equation, however, only applies to valence quark distributions - full quark distributions,
which include the contribution from sea quarks, are coupled to gluon PDFs fg(x,Q) in the
evolution equation. In order to simplify a calculation of the evolution of all thirteen PDFs
(six quarks, six anti-quarks, and the gluon), an evolution basis is often used, whereby only one
element of the basis - the so-called singlet distribution Σ(x,Q) - is coupled to the gluon, and
the other eleven elements of the basis can be calculated by using Eq. 2. These eleven elements
are the valence distributions Vi = fqi − fqi and other flavour combination which are given on
page 110 of [6]. Σ(x,Q) is simply the sum of the all the quark and anti-quark distributions,
and its evolution, along with that of the gluon, is described by

∂

∂ lnQ2

(
Σ(x,Q)
fg(x,Q)

)
=
αs(Q)

2π

∫ 1

x

dx
′

x′

 Pqq

(
x
x′ , αs(Q)

)
2nfPqg

(
x
x′ , αs(Q)

)
Pgq

(
x
x′ , αs(Q)

)
Pgg

(
x
x′ , αs(Q)

) ×
(

Σ(x
′
, Q)

fg(x
′
, Q)

)
.

(4)
Here, nf is the number of quark flavours at a given energy scale. Given a PDF at a given

input scale, then, we may calculate the corresponding PDF for other scales as well.

2.2 Double parton distribution functions

For the case of double parton scattering, an equation similar to Eq. 1 is used for the calculation
of the cross-section, except that we are now dealing with double PDFs, fij(x1, x2, ~y,Q) which
are a function of the longitudinal momentum fractions of two partons, the vector ~y which
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defines the relative position of the two partons, and of course Q. However, it is often assumed
the ~y-dependence can be factored out [5, 7]. Then evolution fug(x1, x2, Q), for example, then
describes the probability of finding a u quark with momentum fraction x1 and a gluon with
momentum fraction x2 at an energy scale Q. As we might expect, there is also a double DGLAP
equation which describes the evolution of such dPDFs [8]:

∂fij(x1, x2, ~y,Q)

∂ lnQ2
=
αs(Q)

2π

[∑
i′

∫ 1−x2

x1

dx
′
1

x
′
1

fi′j(x
′

1, x2, ~y,Q)Pii′

+
∑
j′

∫ 1−x1

x2

dx
′
2

x
′
2

fij′ (x1, x
′

2, ~y,Q)Pjj′

]
. (5)

As mentioned above, the ~y may be factored out and set to 1. This equation involves two
separate integrals over x1 and x2. If we take the simplest assumption about the form of the
dPDF, that it is a simple product of sPDFs [4,5], such that fij(x1, x2, Q) = fi(x1, Q)fi(x2, Q),
then we note that

∂fij(x1, x2, Q)

∂ lnQ2
=
∂fi(x1, Q)

∂ lnQ2
fj(x2, Q) + fi(x1, Q)

∂fj(x2, Q)

∂ lnQ2
(6)

≈ αs

2π

[
(Pii′ ⊗ fi(x1, Q)) fj(x2, Q) + fi(x1, Q)

(
Pjj′ ⊗ fj(x2, Q)

)]
(7)

for non-singlet states, from Eq. 3. But Eq. 7 is just another way of writing Eq. 5, with the
~y dependence factored out. Hence the product of two sPDFs evolving separately is, ignoring
one simplification, equivalent to the evolution of a dPDF. If we input a product of sPDFs
and evolve them according to Eq. 5, then we should get a similar result to evolving both of
those sPDFs separately and multiplying them, barring effects due to correlations between the
partons in a single hadron.

To see how this result may be inaccurate, we notice that in deriving Eq. 7, we ignored the
fact that the integration limits in the double DGLAP equation do not go up to 1 as they do
in Eq. 2. This is due to the conservation of momentum - i.e. it expresses the obvious fact
that the total momentum fraction of both partons cannot exceed 1. This introduces a simple
correlation between the two partons which, as we will see, has an effect on the form of the
dPDFs.

Correlations which may be significant for cross-section calculations are correlations due to the
spin polarization of constituent partons, even if the protons themselves are unpolarized [7, 9].
It is shown in [9] that the spin polarizations for two partons may be expressed as a spin density
matrix, which may be used to establish upper limits for the possible polarization of partons
within unpolarized hadrons. These spin density matrices includes elements with dPDFs fab,
where a and b can be q/g for unpolarized quarks and gluons, ∆q/∆g for quark and gluons
polarized longitudinal to the beam direction, and δq/δg for transversely polarized quarks and
linearly polarized gluons. They may also be polarized or unpolarized anti-quarks q. These
polarized dPDFs are actually differences between the probabilities of finding the parton in
certain spin configurations. It is interesting to observe how these polarized dPDFs evolve
when put into equation 5, and we will examine such cases below. In order to evolve polarized
distributions, it is necessary to use polarized splitting functions. All splitting functions are
given in [9].
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3 Evolution code
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(a) Single PDFs at Q=10GeV for the MSTW2008
set for the gluon and quarks [10].
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(b) Gluon PDFs at Q=1GeV, demonstrating the
difference between various PDF sets.

Figure 1: Examples of PDFs available in the LHAPDF online repository.

In order to evolve various dPDFs, we use a code developed by Gaunt and Stirling [4]. This
code uses Newton-Cotes rules to solve the integrals on the RHS of Eq. 5 and then uses a
fourth-order Runge-Kutta method to solve the resultant ordinary differential equation. The
grid spacings are logarithmic - they are spaced evenly in u = ln xi

1−xi
. For all of our studies, we

have xmin = 10−6, to reflect the minimum x of many of the publicly available LHAPDF single
PDF sets [11]. Examples of the PDFs in such sets, and how they may differ, are shown in Fig.
1. As described in section 2.1, evolution may take place with leading order (LO) or higher
order splitting functions. This code is designed to deal only with LO splitting functions, and
only LO sPDF sets are used for comparison. Evolution is carried out in the evolution basis
described in section 2.1, where the input values at the starting energy scale are simple products
of the evolution basis single parton distributions at that scale. The code uses a variable flavour
number (VFN) scheme in the evolution. This means that contributions from charm and bottom
quarks are introduced once the energy scale rises above their respective masses. Their masses
are therefore taken as inputs to the code, as well as the value of αs(Q) at the starting scale.
The evolution of αs in the code is also leading order. It is also possible, however, to modify
the code such that the value of αs at every scale is taken directly from LHAPDF.

4 Comparison of dPDFs with products of sPDFs at different
energy scales

We begin by putting in products of sPDFs into the evolution code in order to examine how far
they diverge from simple products of sPDFs at energies higher than the starting scale. There
are many different PDF sets given in the LHAPDF for LO, reflecting different assumptions
and methodologies for generating the PDF sets. Fig.1b, for example, shows how drastically
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(a) The case where αs is calculated by the code
(Q=10GeV).
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(b) The case where αs is calculated by the code
(Q=100GeV).
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(c) The case where αs is taken from LHAPDF
(Q=10GeV).
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(d) The case where αs is taken from LHAPDF
(Q=100GeV).

Figure 2: The fractional difference, as defined in Eq. 8, between the dPDF fuu evolved by our
evolution code and a product of sPDFs taken from LHAPDF. The starting scale for
the evolution is Q = 1.414GeV.

the gluon PDFs for different sets disagree at Q = 1GeV. Every PDF set we examine uses a
VFN scheme, and every set has a LO calculation of αs, with the exception of CTEQ6l which
uses a next-to-leading order (NLO) calculation for αs [12]. Using the CTEQ6l set gives us the
opportunity to observe the importance of how αs is calculated. We use a starting scale for the
evolution of Q2 = 2GeV2. The reason for this is that the starting value of Q2 for the NNPDF
sets is 2GeV2, and the extrapolation subroutine contained in LHAPDF seems to be unable to
output PDF values for lower scales [13]. It is also questionable how reliable this extrapolation
method may be, and it is therefore safer to use a starting scale equal to or higher than the

7



lowest non-extrapolated value of the PDF sets in LHAPDF. We compare the outputted dPDFs
from our evolution code to a product of sPDFs at scales higher than the starting scale for each
of nine PDF sets, where the sPDFs at higher values are taken directly from LHAPDF. We
obtain the fractional difference, defined as

εrel = 1 − fij(x1, x2, Q)

fi(x1, Q)fj(x2, Q)
. (8)
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Figure 3: Fractional difference, as defined in Eq. 8, between the evolved dPDF fuu and a
product of sPDFs at different energy scales for the MSTW2008lo set. The starting
scale is Q = 1.414 GeV.

The results of this comparison are presented in Fig. 2 for Q = 10GeV and Q = 100GeV for
the case x1 = x2 and where αs is calculated in the code. (We will use the line x1 = x2 in all
our analyses of dPDFs.) They are also presented for the case where αs is taken directly from
LHAPDF, rather than explicitly calculated in the code. We notice several features in these
graphs. Firstly, the products of NNPDF sets where the value of αs(MZ) is taken to be 0.130 do
not seem to agree very closely with our dPDFs, especially at lower x values. We have not been
able to explain this difference. However, for other cases there is good agreement at lower x
values. The CTEQ6l distribution, as we might expect, does not present very good agreement
when αs is calculated in the code - for the simple reason that the code calculates it to LO
while CTEQ6l uses a NLO calculation. However, when the LHAPDF values of αs are used,
it presents much better agreement. At lower x values, MRST2007 [14] also tends to disagree
somewhat, but since these sPDFs only have a starting x value of 10−5, they rely upon the
LHAPDF extrapolation subroutine below this value, which may account for the discrepancy.
For MSTW2008lo, there is a also a noticeable divergence at lower x values. This is present
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to a roughly equal extent at all energy scales, and may be due to some numerical instability
at very low x values. In Fig. 3, we present the fractional difference for just the MSTW2008lo
PDF set at different values of Q. This highlights the main point in which the dPDFs and the
products of sPDFs disagree. At higher x values, the fractional difference grows towards 1 as
we get closer to x1 = x2 = 0.5. For higher Q values, this begins earlier and earlier. This is of
course due to the fact that the dPDFs must be zero for values of x1+x2 > 1 due to momentum
conservation, whereas products of sPDFs are not constrained to be non-zero. We see, however,
that this effect is localized to higher x values, and that for lower x values this effect becomes
relatively insignificant.

5 Polarized PDFs at low starting scales

In [5], the evolution of the dPDFs for the case where both partons are polarized in the same
direction is examined. It is there noted that if we assume the polarized distribution is equal
to the unpolarized at the starting scale, then the polarized distribution is quickly suppressed
relative to the unpolarized because of the differing structure of the polarized and unpolarized
splitting functions. The assumption that the polarized distribution is equal to the unpolarized
comes from allowing it to be maximally polarized within the bounds established in [9] and
mentioned above. For the purposes of comparison, we reproduce in Fig. 4 the results for both
gluons and u quarks with both longitudinal and transverse/linear polarization, for the GJR08lo
PDF set [15]. We notice that the polarized dPDFs are suppressed quite quickly under evolution
at low x values. The GJR08lo set is particularly interesting because it provides single PDFs
down to a value of Q = 0.5477GeV, which allows us to compare the evolution of the polarized
distributions at this very low starting scale with those at the starting scale of Q = 1GeV
presented in Fig. 4. In Fig. 5 we present the case where the starting scale of the evolution is
Q = 0.5477GeV.

One interesting feature of these graphs is the differing evolution of the longitudinally and
linearly polarized gluons, as in the case of the evolution with the higher starting scale of Fig.
4. This is evidently due to the differing structure of the respective splitting functions. In both
cases, the polarized distribution is quickly suppressed relative to the unpolarized distribution,
but in the longitudinal case, the ratio remains relatively constant after the initial suppression
due to the growth in the polarized distribution at higher x values compensating for the growth
of the unpolarized distribution. In the linearly polarized case, the distribution continues to be
further suppressed as Q increases. Another interesting feature is that, particularly at lower
x values, the suppression happens much more quickly for the gluon distribution in the case
of the low starting scale. This is due to the differing structure of the polarized distribution
at the lower scale, where it is roughly centred around 0.3, and the different evolution which
follows - it doesn’t blow up at lower x values as it does in the case of the higher starting scale,
which has much higher values at lower x at its starting scale. For the u quark distributions,
on the other hand, it is interesting to note that the suppression occurs more slowly than for
the higher energy case for lower x values. For example, the difference between the ratios of
polarized to unpolarized distributions at twice the starting scale for both scales is presented in
Fig. 6. This demonstrates that the u quark is suppressed at a slower rate for lower x values,
but that the gluon is suppressed more quickly.

9



 0
 50

 100
 150
 200
 250
 300
 350

 1e-05  0.0001  0.001  0.01  0.1

x
1x

2f
∆g

∆g Q=1GeV
Q=2GeV
Q=4GeV

 0
 10
 20
 30
 40
 50
 60

 1e-05  0.0001  0.001  0.01  0.1

x
1x

2f
g
g

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

 1e-05  0.0001  0.001  0.01  0.1

f ∆
g
∆g

 / 
f g
g

x1=x2

(a) Longitudinal polarization of gluons

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

 1e-05  0.0001  0.001  0.01  0.1

x
1x

2f
∆u

∆u Q=1GeV
Q=2GeV
Q=4GeV

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

 1e-05  0.0001  0.001  0.01  0.1

x
1x

2f
u
u

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

 1e-05  0.0001  0.001  0.01  0.1

f ∆
u
∆u

 / 
f u
u

x1=x2

(b) Longitudinal polarization of u quarks.
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(d) Transverse polarization of u quarks.

Figure 4: Comparison between polarized and unpolarized dPDFs under evolution, with a start-
ing scale of Q = 1GeV (GJR08lo) [15].
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(b) Longitudinal polarization of u quarks.
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Figure 5: Comparison between polarized and unpolarized dPDFs under evolution, with a start-
ing scale of Q = 0.5477GeV (GJR08lo).
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Figure 6: Ratio of polarized to unpolarized distributions for twice the starting scale at different
evolution starting scales.

6 dPDFs for one polarized and one unpolarized parton

Finally we look at the case where one parton is polarized and one is unpolarized. Calculating
dPDFs for such cases required the evolution code described in section 3 to be modified, as it
was previously only capable of dealing with cases where both partons were polarized in the
same direction. We looked at a case where the starting scale was Q = 1GeV and examined
how such dPDFs were affected by evolution. In Fig. 7 we present a comparison between the
dPDFs for one polarized parton and for two unpolarized partons, all for the GJR08lo PDF set.
Comparing them with the doubly polarized dPDFs in Fig. 4, we notice a number of differences.
For example, the dPDF of longitudinally polarized gluons increases at smaller x values here,
whereas it decreases for the doubly polarized case. We can understand this by remembering

12



 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800

 1e-05  0.0001  0.001  0.01  0.1

x
1x

2f
∆g
g Q=1GeV

Q=2GeV
Q=4GeV

 0

 5

 10

 15

 20

 1e-05  0.0001  0.001  0.01  0.1

x
1x

2f
g
g

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

 1e-05  0.0001  0.001  0.01  0.1

f ∆
g
g
 / 
f g
g

x1=x2

(a) Longitudinally polarized gluon and unpolarized
gluon.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1e-05  0.0001  0.001  0.01  0.1

x
1x

2f
∆u
u Q=1GeV

Q=2GeV
Q=4GeV

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

 1e-05  0.0001  0.001  0.01  0.1

x
1x

2f
u
u

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

 1e-05  0.0001  0.001  0.01  0.1
f ∆
u
u
 / 
f u
u

x1=x2

(b) Longitudinally polarized u quark and unpolar-
ized u quark.

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1e-05  0.0001  0.001  0.01  0.1

x
1x

2f
δg
g Q=1GeV

Q=2GeV
Q=4GeV

 0

 1

 2

 3

 4

 5

 1e-05  0.0001  0.001  0.01  0.1

x
1x

2f
g
g

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

 1e-05  0.0001  0.001  0.01  0.1

f δ
g
g
 / 
f g
g

x1=x2

(c) Linearly polarized gluon and unpolarized
gluon.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7

 1e-05  0.0001  0.001  0.01  0.1

x
1x

2f
δu
u Q=1GeV

Q=2GeV
Q=4GeV

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

 1e-05  0.0001  0.001  0.01  0.1

x
1x

2f
u
u

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

 1e-05  0.0001  0.001  0.01  0.1

f δ
u
u
 / 
f u
u

x1=x2

(d) Transversely polarized u quark and unpolar-
ized u quark.

Figure 7: Comparison between dPDFs with one polarized and one unpolarized parton, and
dPDFs with two unpolarized partons. The evolution has a starting scale ofQ = 1GeV
(GJR08lo).
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section 4, where we demonstrated that dPDFs are roughly equal to a product of single PDFs,
barring effects due to conservation momentum. We can think of the dPDF as being composed
of a polarized PDF (the square root of the doubly polarized PDF) and an unpolarized PDF.
The growth in the unpolarized gluon PDF is so great that it outweighs the contribution due to
a single polarized parton. Taking the lessons from section 4 further, if we assume that dPDFs
are a product of sPDFs, then the ratio of singly polarized to unpolarized dPDFs given in Fig.
7 should be the square root of the corresponding ratios given in Fig. 4. To test this we plotted
the square of the ratios in Fig. 7 diveded by the ratios in Fig. 4. Some typical results for
GJR08lo are shown in Fig. 8. As we can see, they are very close to the expected value of 1.
However, we did the same thing for the MSTW2008lo PDF set, and as we can see in Fig. 9,
for the gluon case there is some not insignificant divergence from the expected value of 1 at
lower x values.

 0.996

 0.997

 0.998

 0.999

 1

 1.001

 1.002

 1.003

 1e-05  0.0001  0.001  0.01  0.1

(f
∆g
g
 / 
f g
g
)2  / 

(f
∆g

∆g
 / 
f g
g
)

x1=x2

Q=2GeV
Q=4GeV

(a) Longitudinally polarized gluons.

 0.992

 0.993

 0.994

 0.995

 0.996

 0.997

 0.998

 0.999

 1

 1.001

 1e-05  0.0001  0.001  0.01  0.1

(f
δu
u
 / 
f u
u
)2  / 

(f
δu

δu
 / 
f u
u
)

x1=x2

Q=2GeV
Q=4GeV

(b) Transversely polarized u quarks.

Figure 8: The square of the ratios in Fig. 7 divided by the ratios in Fig. 2 (GJR08lo).
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Figure 9: The same as Fig. 8 but for the MSTW2008lo PDF set.
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7 Conclusion

In this paper, we examined how the evolution code described in [4] can be used and modified
in order to gain a fuller understanding of how spin correlations between the partons in double
parton scattering can affect the calculation of QCD cross-sections. Hopefully, once these things
are fully understood, greater light will be thrown upon the phenomenology of Higgs coupling
to other particles, among other things. We first examined how closely simple products of the
various publically available leading order PDF sets correspond to the double PDF generated
by this code at higher energies. We concluded that, for lower x values, they corresponded
very closely to each other. We then showed how the speed with which polarized dPDFs are
washed out can be affected by the starting scale of the evolution. Finally, we looked at the
case of dPDFs where one parton is polarized and one is unpolarized. We observed how the
ratio of such a dPDF to the corresponding unpolarized dPDF is close to the exact square
root of the corresponding doubly polarized ratio. There are many ways in which the work
described here could be extended. The dPDFs described in section could be examined for
many different PDF sets, to observe how differences in the single PDF sets contribute to
differences in the resultant dPDFs. Another interesting project would be to expand the code
to include next-to-leading order splitting functions. Also, the analysis of the polarized dPDFs
could be conducted with the single feed term added - i.e. an ill-understood term in the double
DGLAP which includes a splitting function interpreted as the probability of a single parton
splitting into two partons [4, 8]. In any event, there is much work to be done before double
parton scattering is fully understood.
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