MICROMIRROR ARRAY (MMA):
A PROMISING CANDIDATE FOR MICRO -
ELECTROMECHANICAL SYSTEMS (MEMYS)

Kittiwat Kamlungsua
DESY Summer Student 2013, Chulalongkorn University, Thailand

Supervisors

Andreas Przystawik and Sergey Usenko (Ph.D.)
September 5™ 2013

Abstract

This summer student report contains all important data for controlling the
MMA operation cycle, including basic instrumental information about the
MEMS Phase Former Kit by Fraunhofer IPMS and programming in LabVIEW.
Besides, the front panel and the block diagram are successfully created and their
functions still work well for the basic MMA operation. However, further

advanced optimization process 1is required to enhance the program’s
performance.

ACKNOWLEDGEMENT

First of all, I am extremely grateful to Andreas Przystawik, my supervisor,
for helping me in every way even though I am a chemist, having no experience
in programming before. Besides, the thankfulness would come to Sergey
Usenko, Ph.D., and Elisabeth, a summer student fellow. They are also very kind
and friendly and always persuade me to have a conversation more or less
although I’'m not quite talkative. On top of that, the very encouraging
wholehearted comments are from Tim Laarmann, the group leader of the
Femtochemistry.

Next I would like to thank Olaf Behnke, Andrea Schrader, and Doris
Eckstein for organizing this very impressive DESY summer school. This city is
very nice and suitable for studying any disciplines. I will be missing this place
where all of summer student spent their time together. Thank you again for
everything. It will be in my memory forever.

Of course, many summer student fellows deserve the praise. Sometimes,
we have just a little chat. Sometimes, we just meet at the kitchen and also just
say ‘Hi’. Anyway, they are friendly and amicable, I bet. I hope that we will meet
again and can create a huge connection of young scientists from all over the
world. Thank for your friendship, fellows.

Finally I would like to thank NSTDA under the patronage of HRH
Princess MahaChaki Sirinhorn for this invaluable chance to participate this
prefect summer camp and I hope that I will bring the knowledge I have
experience to develop the country more or less.

Contents.

The importance of micro — electromechanical system (MEMS)

MEMS Phase Former Kit by Fraunhofer IMPS
Graphical User Interface (GUI) for Autonomous MMA operation

Simulation in LabVIEW
Programming and Simulation in LabVIEW
Conclusion

References

19
25
27
46
47

CHAPTER 1

The importance of micro — electromechanical system
(MEMNS)

1. Root of the problem.

Optics and Photonics are branches of Physics dealing with the study of
behaviors and properties of light and optically — involving electronic devices.
However, the development of so — called optical wavefront controls has
increasingly grown in popularity and importance nowadays. This piece of
research plays a crucial role in various disciplines, covering scales from
enormous as in astronomical telescope to extremely small as in retinal
microscopic imaging. An example of the astronomical problem is demonstrated.

Sciantific objact
W]
Pt =
Almaspheara !

=

a1
-w__j Salallita

N
Telascopa *\
A

\

lI J Toglader

Figure 1.1 The distortion of the wavefront, one major problem in Astronomy.

One major challenge in astronomical observations is called ‘wavefront
aberration’ caused by the atmospheric turbulence. This phenomenon renders the
wavefront of the incoming light from distant stars distorted when passing
through the Earth’s atmosphere. To illustrate, the atmosphere must be perceived
as a set of air bubbles having slightly different properties such as temperature
and pressure. According to the Snell’s Law, the speed of light varies in different
medium of different properties. Therefore, the light travels with different speed
after coming into the Earth. In other words, its wavefront is changed by the
atmosphere, resulting in the data containing errors.

Flat. undistorted wavefront t0

Average refractive index

Lower than average refractive index
e.g. higher than average temperature

ShemwES T
/S \—

Distorted wavefront t0+t

—_—

Figure 1.2 The graphical representation of the Earth’s atmosphere. The circles with different
shades represent the air bubbles with different properties.

2. Adaptive — optics system.

To solve the aforementioned problems, an adaptive — optics system
becomes a promising solution. The adaptive - optics system is a state — of — the
— art technology used to reduce the effect of wavefront distortions, thus
enhancing the performance of the optic system. Most typical adaptive — optics
systems consist of five main parts as follows.

1. Wavefront corrector. The wavefront corrector performs the
physical correction of the distorted wavefront. It comes in many
types, sizes and shapes. As named, its purpose is to optically
compensate the incoming distorted wavefront to be as correct as
possible compared to the original one before perturbed by the
wavefront — distorting medium. After the correction, the light is
reflected to the beam splitter.

2. Dichroic beam splitter. The beam splitter is used to divide the
corrected light beam from the wavefront corrector into two parts.
One is sampled by the wavefront sensor for the analysis and
optimization. The other goes to the detector for demonstration.

3. Wavefront sensor. The wavefront sensor is employed to measure
the phase aberration and subsequently sends the data to the
wavefront control system for iterating computation. Due to its
simplicity and manufacturability, Shack Hartmann sensor (SHS)
i1s responsible for the measurement, which is called ‘slope
method’. The sensor consists of the array of miniature lenslets
focusing the wavefront onto a Charge Couple Device (CCD)

5

camera. The local displacement of each lenslet from the normal
wavefront is then measured and integrated for reconstructing the
wavefront shape. Other types of the sensors also exist like

Curvature Sensor (CS) and Pyramid Sensor (PS).
plans

-
Plane Tited Plane wavefiont B

Wavefront Wavefront
— _II
s abarmated ¢
5 waveffont |
—y !
ey H’“‘Ml

&

¢

Hartmann spots
on CCD detector

(a) (b)

Figure 1.3 (a) Shack Hartmann Wavefront Sensor and (b) slope measurement method.

4. Wavefront control system. The wavefront control system is
actually computer software automatically performing iterating
calculations. It receives the measurements from the sensor and
calculates the corrective movement of the wavefront corrector.
Strehl ratio, one necessary value for the calculation, indicates the
degree of compensation, which is inversely proportional to the
variance of the wavefront aberration. Therefore, new
measurements and more corrective movement are received and
done repetitively to mathematically minimize this variance,
which is the ultimate goal of the system.

5. Detector and High — resolution camera.

Light From
Telescope

Wavefront %
Correcto

Distorted
Wavefront

Corrected
Wavefront

High-resolutiomn
Wavefront Camera
Sensor

Figure 1.4 Closed — loop feedback control system for typical adaptive optics systems.

3. Dynamic and static adaptive — phase devices.

The most important part of the adaptive — optics system is definitely the
wavefront corrector because the quality and degree of phase compensation
depends on how well — organized and well — fabricated it is. The wavefront
corrector comes in variety but it is, generally speaking, coarsely divided into two
main types.

1. Static adaptive — phase device. Static devices imprint a fixed
phase pattern by either reflective or transmissive means. Their
well - known advantages are their high quality of production and
ease of use. Such devices always come to users’ mind if one is
interested in only a specific phase pattern. However, the
specificity inherently becomes the major severe problem if more
than one pattern is required.

2. Dynamic adaptive — phase device. Dynamic devices, or spatial
light modulators, provide more pattern flexibility for users. They
are mainly classified into two types, liquid crystals (LCs) and
deformable mirrors (DMs). Speaking of the liquid crystals, the
operational speed is relatively comparable to that of the
deformable mirrors and they still have better resolution and
lifetime expectation. Yet, a common severe drawback which
makes most users reject them is the suffering from the
unwanted polarization effect. In case of the deformable mirrors,
they are not affected by polarization effect and, even better, able
to attain reflectivity close to 100% due to the specular reflection.
Those latter reasons make the deformable mirrors prevailing
and become the better choice than the liquid crystals.

4. Deformable mirrors and micro — electromechanical
system (MEMS).

Deformable mirrors (DMs) are mirrors whose surface can be deformed,
mostly electrostatically — driven mechanism. They are designed to achieve
wavefront control and the correction of optical aberrations and used in
conjunction with the wavefront sensor and the real — time processing wavefront
control system. Several types of these deformable mirrors are available which

7

are different in fabrications and mechanisms of deformation but have the same
ultimate goal to compensate for the wavefront distortion. For example,
segmented DMs which are light — weight, scalable and have high — quality
surface, membrane DMs which are made of conductive reflective metallic
membrane, bimorph DMs and ferrofluid DMs. However, all of them cannot still
break through the high price threshold of the conventional spatial light
modulators.

Recently, micro — electromechanical systems (MEMS) have been
introduced as an interesting implementation. They are the state — of — the — art
photonic technology which has been of increasingly growing importance among
scientists. They comprise a large array of micron — sized mirrors (10* — 10°
mirrors) independently acting as piston/tip — tilt actuators. Also, the
micromirrors are usually fabricated on top of the CMOS circuitry with cutting —
edge bulk and surface micromachining techniques. How each micromirror
works is based on electrostatically — driven piston mechanism by which the
micromirror is originally be at the highest position. When the voltage is applied
to each address electrode below the mirror, the electrostatic attraction causes the
mirror to bend towards the electrode. As a result, the mirror is said to be
deflected from the normal position. Typically, MEMS has several advantages
over other deformable mirrors. For example, high response rate, high precision,
no hysteresis effect, large temporal bandwidth, compactness and cheapness.
Because of these good points, MEMS becomes widely used in various
disciplines from scientific to industrial application as in medical imaging, laser
pulse technology, open — air communication, astronomy, ophthalmology and
weapon tracking. In this report, the MEMS provided by Fraunhofer [IPMS will
be studied in greater details.

Figure 1.5 Micro — electromechanical system (MEMS).
8

CHAPTER 2
MEMS Phase Former Kit by Fraunhofer IMPS

The MEMS Phase Former Kit is a piston — type micromirror array
provided by Fraunhofer IPMS. It is also a complete spatial light modulator, used
for high — resolution, high — precision and high — speed wavefront control and
designed for the convenient integration into the user’s own application. Apart
from the micromirror itself, it still consists of the complete electronic devices
with easy — to — use software interface for any operating systems. All detailed
description related to its components and how it works has been introduced in
this chapter.

1. Kit components.

1.1 Micromirror Array Board (MMA Board)

. IEEE1394 interfa
 connection

hardware
synchronization
(optional)

i

Figure 2.1 (left) MMA board with ZIF socket shown and (right) MMA board correct wiring.

MMA board is a central printed MMA driving board containing all
necessary electronic components. It also acts as a headquarter to control other
parts of the whole MEMS and to transfer data from internal computational
system to external sources and vice versa. Provided by Fraunhofer, it has many
interesting special features and provisions different from other integrated circuit
boards as follow.

- Easily — replaceable ZIF socket.
- On — board power supply for logic electronics, Data Acquisitions
(DACs), amplifiers and the MMA device.
- Digital — to — analog data conversion and the amplification of
MMA data.
- High — speed data communication provided by the IEEE 1394
9

Firewire interface.
- Surveillance of the MMA operational conditions.
- Software and hardware synchronization with external devices.

In order to achieve the smooth normal operation, the PC and the power
supply are essentially required to connect to the board via IEEE 1394 Firewire
interface. The two available on — board IEEE connectors are equivalent and inter
- exchangeable. Furthermore, a rigid Al back plate is closely attached to the rear
for the purposes of better heat dissipation, mechanical stability mounting of the
optical instrumentation.

Figure 2.2 MMA board connectors and buttons. (1) IEEE 1394 Firewire connectors, (2) —(7)
Ports for external hardware control, (8) Power supply connector 20 ... 26 V/2.5A, (9) Fuse
2.5 A, time — lag, (10) ZIF socket for the MMA device, (11) Connector for temperature
control, (12) Reset button and (13) Board temperature connector.

10

1.2 Micromirror Array Chip (MMA Chip)

Figure 2.3 (left) MMA chip and (right) detailed description of housed MMA chip.

Micromirror array chip is an electronic device containing an array of
functional micromirrors. The chip provided by Fraunhofer IPMS has several
outstanding characteristics as shown below.

- Integrated 200 X 240 micromirror arrays.
- Chip programming > 5 kHz.
- Overall data transfer up to 100 fps.

1.3 Micromirror Array

Figure 2.4 (left) Magnified image of micromirror array and (right) the diagram of each
mirror element.

11

Micromirror array is a functional building block of the MEMS Phase
Former Kit. Unlike other types of deformable mirrors, many properties have
been provided by Fraunhofer IPMS as followings.

- Single — element size of 40 X 40 pm®.

- Mirrors suspended from their supporting posts by flexible hinges.

- Substrate fabricated from a monolithic aluminum — metal — alloy
integrated on top of a CMOS circuitry.

- Independently — addressing electrodes and 8 bit — resolution
deflection.

- Possible range of deflection up to 400 nm.

- 29 - phase modulation suitability for the visible spectral region.

- Long recovery time after deflection, preventing from the
permanent deformation of the microscopic hinges.

- Operation cycle with 1:17 on/off rate.

The mechanism of deflection is based on electrostatically — driven piston
mechanism. Originally, the hinge is positioned at the highest level or, in other
words, at the same level as the post. When the voltage is applied to a particular
address electrode, the positive charge is generated on the electrode whereas the
negative charge on the mirror. Consequently, the electrostatic attraction causes
the mirror to bend towards the electrode or deflect from the original position.
The degree of deflection varies with the amount of applied voltage.

support post hinge stopper

address electrode

Figure 2.5 Mechanism of how each element can be deflected. The mirror moves from the
position 1 to 2 after the voltage is applied, resulting in the ‘deflection’.

12

2. Dataflow in the closed — loop MMA operation.

Wavefront Data MMA deflection i MMA ActiveX
Data > Pattern ——>| Control by
Acquisition Calculation IPMS

N A A

Sequence roperties

Data Control Methods
Control Events Data
v v
[o | | IEEE 1394 |
| |
Wavefront MMA Board
Sensor by IPMS

Figure 2.6 Software integration block diagram.

The ActiveX control provides the user with the incorporation of the MMA
data transfer and the control of functionalities into his own software
environment, thus enabling the automation of the data transfer from data sources
to the MMA for closed — loop operation. The interaction between the user’s
controlling software and the ActiveX control is illustrated in figure 2.6 Three
items called properties, methods and events describe the interface of an ActiveX
control. Properties typically define the behavior of the control. In this case, they
are primarily used to set various configuration values of the MMA board and the
chip. Moreover, some certain assigned functions make them readable and
editable during the run — time simulation. Speaking of methods, they are meant
to initiate actions of the ActiveX control and able to call parameters and return
values. Most of the methods here are used for the data transfer and the execution
of the commands on the MMA board. Finally, events can be understood as a
kind of software trigger.

13

3. General data transfer.

3.1 Mode of data transfer from PC to MMA board.

- Single Pattern Mode

UPLOAD

Single selected pattern Pattern on the board
Figure 2.7 Only a single pattern is transferred in Single Pattern Mode.

In Graphical User Interface, only a single pattern currently selected
from the file list in the GUI mainframe is transferred to the MMA board only if
the ‘load’ button (in LabVIEW, UPLOAD) is activated.

- Sequence Mode

1) % 1 " %
UPLOAD] : START - >

o 2nd

3rd

Selected patterns Bufferedin-PC.RAM Tiic of prese maIﬁanatarﬁadmatt@JIq)

Figure 2.8 Several data patterns are sequentially transferred in Sequence Mode.

In Graphical User Interface, the user is allowed to select several
data patterns at a time. When the ‘load’ button (in LabVIEW, UPLOAD) is
pressed, all selected data are first buffered in the PC RAM waiting for another
transfer. Then the buffered data patterns are sequentially transferred to the board
after the activation of the ‘start’ button (in LabVIEW, START) on the GUI
mainframe, with regard to the order they have been chosen. Anyway, the
procedure automatically keeps going repetitively unless the ‘stop’ button is
pressed.

14

3.2 MMA operation cycles.

tovae

tore

g

| |
| |
| |
| teros !
MMA nominal i i
deflection b |
| | |
status zero |
P ;e
high -
Pattern
ready H
ouT low

active
Pattern

Upload ready
To Board

S S 2 N
=

high

Pattern
Upload
low

ouT

Figure 2.9 Typical MMA operation cycle.

Typical MMA operation cycles are performed based on a timely discrete
basis. Firstly, the user is required to select data patterns and then press the button
‘load’ on the GUI mainframe. After that, ‘Pattern Upload To Board’s status
changes from ready to active, waiting for the time ttrans to expire. Following the
expiration of the time ttrans 1S the change in the status of ‘Pattern Upload OUT’
from low to high, indicating that the data patterns are being transferred. At the
same time, the MMA deflection status gradually increases from zero to a
nominal value until it levels off and the data transfer is also completely finished
,which is illustrated by the falling edge of the ‘Pattern Upload OUT’s status.
This period of time is called tprog. However, the ‘MMA deflection status’
remains at the nominal value for a period of time ton. Within this duration, the
user is allowed to adjust the time margins tp; and tp, for fine — tuning the
‘Pattern Ready Signal’ tpr. The purpose of fine — tuning is for special trigger
modes. When the time toy is no longer valid, the deflection status returns to zero
for a long period of time topr. Notice that the time topr has been made user —
accessible to facilitate the synchronization with the external hardware. Anyway,
one operation cycle includes three periods of time, tprog, ton and topr, which
leads to the definition of the term tcycig.

In term of programming, a new MMA operation cycle is always done
after the complete upload of the previous data patterns onto the on — board
RAM. Yet, the new data patterns available in the RAM buffer cannot be written

15

into the MMA unless the previous operation cycle is truly finished. Therefore,
the maximum possible re —programming rate depends on the MMA cycle rate as
shown in the expression below.

ton

fevcie = -~ and D = ..equation 1

ON LeyeLE

where fcyc g represents the rate of operation cycle and D is the duty factor.
More importantly, the frame rate or the overall data transfer must be properly
adjusted and should not be equal to or greater than the rate of operation cycle. If
not, the new MMA pattern may not be fed into the MMA in time.

3.3 Modes of Cycle Trigger

- Auto

= Auto

feyee

I
toros | ton torr

MMA nominal !
deflection ﬁ /T
status zero !

I I
ety

high
Pattern i

ready i H
ouT low !

tirans

active i
Pattern
Upload ready
To Board -
high

Pattern ‘
Upload
it low)

ouT

o
3
=
i

Figure 2.10 Auto trigger mode.

In case of ‘Auto’, each MMA operation cycle automatically starts
after the previous cycle has finished, taking either already — existing pattern or
the new one into the operation. Repeated programming with the same pattern is
basically suitable for this triggering mode.

16

- New Pattern

= New pattern
tovee

MMA nominal ;
deflection ﬁ
status |

zero

o G
high !

Pattern i
ready i H
ouT low !
1

tirans

e

active

Pattern
Upload ready

To Board

iev
:
o

high

Pattern
Upload
low

ouT

Figure 2.11 New Pattern trigger mode.

For ‘New Pattern’, a new MMA operation cycle is started only
upon a switchover of the memory buffers after a complete upload of a new
pattern to the on - board RAM. As a result, this triggering mode provides the
synchronization of the pattern transfer to the board and the MMA programming.
Anyway, proper and careful time adaptation is required in order to avoid any
data overwriting.

- External

It is possible that a new MMA operation cycle can be started by an
external Cycle Trigger IN signal applied via an external port on MMA board.

4. Timing conditions

The following equations and the table are the summaries of the timing
conditions mentioned in the previous chapters.

t
pD="" <59% ...equation 2

teyeLE

tevere = tproc + ton + torr ---€quation 3
toy =0.2...1000 ms = tp, + tpy + tpg ...equation 4
torr = 17 * toy ...equation 5
frrame < feycre - equation 6

17

SYMBOL MIN TYP MAX UNIT COMMENT
tprOG tprog = 1100 / ferx
ton 0.2 1000 ms
torF 17* ton
fork 1000 kHz
tb 50 us ton> tp1 T tpo
tp2 50 us ton> tp1 + 2
tTRANS 15 ms Depends on PC
hardware
tFRAME teycLe

Table 2.1 Summary of important timing conditions and relationships.

18

CHAPTER 3

Graphical User Interface (GUI) for Autonomous
MMA operation

The Graphical User Interface (GUI) provides the user with a convenient
and uncomplicated access to MMA programming with individual deflection
patterns and to the hardware control features for the MMA autonomous
operation. The data source of the GUI is based on pre — defined data patterns
previously stored by the user in the Windows file systems using a common file
format (Bitmap or ASCII). Also, the selection of a single pattern or complete
pattern sequences for transferring to the MMA board is allowed in the GUI. In
this chapter, some fundamental requirements for the operation and basic
instructional commands in GUI are introduced here.

. MEMS Phase Former Kit GUT M= E3
File Edit View Options Help
E- R IR IEREIEL

Power

Load

Start

[BOARD OFFLINE | 4

Figure 3.1 GUI mainframe.

19

1. Loading patterns.

In order to load data patterns into the MMA, a directory containing the
Bitmap or ASCII data files must be selected by pressing @ which is embedded
onto the toolbar. The selected patterns will be displayed in the lower left
preview frame, getting ready for the transfer to the MMA board. Multiple
selections can be done by pressing the Shift or Ctrl key while selecting them.

Speaking of the input files for GUI, each file must contain 240 X 200
elements of the mirror deflection arranged in the same orientation as appearing
on the MMA chip. The (0,0) — mirror element is located at the lower left of the
chip. Thereby, the degree of deflection has to be linearly encoded by an 8 — bit
value and the maximum deflection (tilt or stroke) is represented by the number
255. Anyway, two acceptable file types are valid by GUI.

1. Window Bitmap Format (extension BMP). It must be 240 X 200
pixel monochrome ranging from 4 to 32 bit color resolution. Additionally, both
grayscale and colored images are allowed but only 8 — bit values are solely for
colored images.

2. ASCII Format (extension ASC or CSV). It must also be 240 X
200 pixel with 8 — bit values as well, ranging from 0 to 255. Each column is
separated by a comma, semicolon or tabulator and each line with CR/LF.

If a particular pattern is larger than 240 X 200 pixels, other portions in the upper
right exceeding this boundary will be truncated. In contrast, if the pattern is
smaller than 240 X 200 pixels, all missing pixels in the upper right part are
supplemented with an entry zero.

2. Basic board operations.

There are four main controlling buttons in the GUI mainframe that you
should carefully consider and think twice before using them, tabulated as follow.

20

Operation

Description

Lt

Four main actions will be proceeded if this button is activated,
the loading of the driver for IEEE 1394, the initialization of the
interface, the resetting of the MMA driving board and the
transfer of all initial parameters required for the initialization.
Moreover, a selection dialogue box appears if more than one
MMA board is connected. Anyway, the button becomes
enabled when the initialization succeeds.

Power |

When the ‘Power’ button is activated, it causes the board
supply voltage to be applied to the MMA board and to energize
the amplifiers for the analog MMA data channels as well. In
case of power — off state, all pins of the ZIF socket are idle and
the MMA device can be exchanged without any risk.

The pre — selected files in the list of the GUI mainframe will be

Load transferred to the board when this button is pressed. Two modes
of data transfer are involved, single pattern mode and sequence
mode as mentioned in the previous chapter.

Start Using the Start button can really start and terminate the MMA

operation cycle

Table 3.1 Description of all necessary buttons in the GUI mainframe.

3. Configurations.

3.1 General parameters.

General | Temperaturel Sequence Model IEEE13394 Busl
— Chip Configuration
Chip Configuration File
— Clack,
tatris Clock Source ID - intern j
tdatrix Clock Frequency 000 kHz
— Cycle Timing
Or Tirme I 0om - s Cff Timne I My =
— Cycle Trigger
Cycle Trigaer Source
K I Cancel | Apply |

Figure 3.2 Options Dialog — Page General.

21

- Chip Configuration. The chip configuration file contains all
important chip — related characteristic data needed for the proper and smooth
MMA operation. It is obligatory that the user select this file. Otherwise, the
initialization of the MMA driving board fails with an error message shown. Be
careful, wrong configuration files with potentially — problematic data patterns
may result in incorrect deflection values. Even worse, the MMA board and other
electronic components can be severely damaged.

- Cycle Timing. ‘On Time” denotes the time of the nominal
deflection, i.e. the time during which each deflection pattern is statically applied
to the MMA. In term of the ‘Off Time”, the values which are greater than 17
times of the ‘On Time’ are acceptable.

- Cycle Trigger. The description of how each mode works is already
described in Chapter 2. Keep in mind that this triggering mode is set to be read —
only during the MMA operation cycle.

3.2 Temperature control.

A peltier element mounted on a cooper block is the MMA temperature
controller, which is in close contact with the back of the MMA housing. Its
nominal value can be set as well. Moreover, two sensors are used to monitor the
temperature. One is the peltier sensor inside the cooper block (Peltier sensor)
and the other is on the backside of the cooling plate (Board sensor).

Options

General Temperature | Sequence Model IEEE13594 Eusl

— Set Point

Mominal Temperature Chip I B C

Dizable Temperature Contral [

 Measurament

Temperature Peltier Senzor I °C
Temperature Board Sensor I °C

0K I Cancel | Apply |

Figure 3.3 Options Dialog — Pate Temperature.

22

3.3 Sequence mode parameters.

Options [x|

Generall Temperature Sequence Mode | IEEE13534 Busl

Sequence Frame Rate i-={ H=

QK I Carncel | Apply |

Figure 3.4 Options Dialog — Page Sequence Mode.

The ‘Sequence Frame Rate’ represents the number of transferred MMA
data patterns per second from the PC to the board. Furthermore, it is limited by
the PC hardware’s performance. If it is set to be greater than the value offered
by the hardware, the data transfer will proceed only at the maximum rate
without any data loss.

3.4 IEEE 1394 bus parameter.

Generall Temperaturel Sequence Mode |EEE1334 Bus |

|IEEE1334 Diata Transmission

Mumber of Boards Sharing |zochronous Bandwidth I 3:

Data Transfer Mode Iisochronous "l

0k I Cancel Apply

23

Figure 3.5 Options Dialog — Page IEEE 1394 Bus.

- Data Transfer Mode. Three methods of the data transfer are
available, i.e. asynchronous, isochronous and isochronous with external IEEE
1394 sources. For isochronous mode, the data transfer is allocated within certain
timing constraints via a broadcast data delivery at regular time intervals.
Normally, the control commands for the interaction of the PC with the MMA
board abide by this method. However, the method can be changed and it is
highly recommended to use the isochronous mode.

- Number of Boards Sharing Isochronous Bandwidth. 1f more than
one board is connected to the IEEE 1394 bus, each allocated bandwidth must be
reduced in order to equally share the bandwidth to other boards. Therefore, the
maximum frame rate for each further additional board linked to the bus is
decreased.

24

CHAPTER 4

Simulation in LabVIEW
1. LabVIEW’s advantages

LabVIEW stands for Laboratory Virtual Instrument Engineering
Workbench. It is a programming environment in which the program is created
by graphical notations. However, it is not only a programming language but also
an interactive program development and execution system widely used by
scientists and engineers of several disciplines. Compared to other types of
programming, LabVIEW provides users with stunning interesting advantages to
be given as examples below.

1. LabVIEW can greatly reduce the amount of time the user needs
to create one particular program. Because of the special design for taking
measurements, analyzing the data, presenting the results and versatile graphical
user interface, it increases the productivity of the user’s work several orders of
magnitude.

2. LabVIEW offers more flexibility than standard laboratory
instruments. Due to being software — based, the program exactly created can be
modified in moments. Moreover, a fraction of the cost of traditional instruments
is able to achieve with virtual instrument.

3. LabVIEW has the extensive libraries of functions and
subroutines helping the user solve most programming tasks. Furthermore, the
userdo not have to face difficulties of the fuss of the pointers, memory
allocation, and arcane programming problems.

4. LabVIEW eliminates a lot of syntactical details associated with
text — based languages. Thus, even an amateur programmer or a person who has
no experience in programming can create such a powerful virtual instrument.

5. LabVIEW performs parallel and multiple executions at the same
time. Based on the flow of the data, the program is executed only if the dataflow
reaches that object. Moreover, the wiring of multiple nodes is allowed so that
data flows into many applications simultaneously.

25

DESY LISER
DESY
Z71M33942

Lab¥IEW Professional Development System

Service Pack

Wersion 12,0, 1F3 {32-bit) - Initializing plug-ins

Figure 5.1 LabVIEW starting window.

2. LabVIEW’s components.

All programs created by LabVIEW consist mainly of three main parts.
2.1 Front panel.

The front panel is the interactive user interface of a program. As
named, it simulates the front panel of a physical instrument. It can contain
knobs, push buttons, graphs and many other controls and indicators.

2.2 Block diagram.

The block diagram is the program’s source code, constructed in
LabVIEW’s programming language. It is also the actual executable program,
comprising lower — level programs, built — in functions, constants and program
execution control structure. Noticeably, the front panel objects have
corresponding terminals on the block diagram so that data can pass from the
user to the program and back to the user.

2.3 Icon.

The icon is a program’s pictorial representation and is used as an
object in the block diagram of another program.

26

CHAPTER S
Programming and Simulation in LabVIEW

1. Front panel.

Front panel is simply the interactive window for a user to communicate
with a program. While running the program, the front panel must be open to
allow the user to input data to the executing program. It could be very simple,
consisting of a few controls and indicators, or sophisticated so that several
comments should be implanted on it. In this project, the front panel controlling
the MMA operation has been created and its description will be discussed here.

el e T Indication Display Pattern - management commands
B Initialization Start
i i ' ' save the result Open a new pattern
Quelle
o G SAVE | OPEN |
| Parameter Setting
Number of Board
ASKM4EkCEE On Time (ms) ‘Mode of Data Transfer Time Delay 1 {microsecond) ’r) 1 8
A B e
s o “l|sE-5
/0.2 . 7, This praperty &5 used to tal
O Time = 0210 100078 5 = orpronous Time Delay 2 (microsecond) ;x féﬁﬁgg ﬂ”fhéh‘mdj
G e o= DTS 5 oty JFEEL304 bus has to be
OFf Time (ms) shareed to assure that ol
o 2 = irochronous extan; Cycle Trigger Mode boards can Alocate anough
RS 'rj o bandwigts
& = quto

1 = new pattat

2 = axtant
Pattern. !
0 —1— Operatlng commands.
1255
107 Create the pattern.
20 -240
- o PATTERN
40—
50| I*ZUU Upload the pattern to board,
60 -]
70 et UPLOAD Pattern Creating Panel.
zsi -160 ,_? Commence the operation cycle. Rows & Columns.
= J C i Row. Column.
g 1o 140 ; START 'j 1 'j 1
110+ s
120-] R = Terminate the operation Degree of Deflection.
130} = g— Value 1. Yalue 2.
140- T ST 0 P ot 1
e il v tiled

160- Stop running the program.

170-]
180-] a0
190
2003

i

-3
=]

EXIT

Program - created pattern.
1 1 1 []] 1 [|] I I A 221
20 40 &0 60 100 120 140 180 160 200 220 240 7 1 0
COLUMN -0 !
r) 199

Figure 5.1 Front panel for controlling the MMA operation cycle.

1. Error display. This message board displays any errors occurring during
the flow of data. Additionally, software error codes are usually shown in order
to help the user solve the problem or debug the program.

27

2. ASKM48kCEK ActiveX container. This container is a displaying
window showing the deflection pattern of a particular micromirror array during
the MMA operation cycle.

3. Intensity graph ‘Pattern’. This graph illustrates the deflection pattern of
the only currently — existing pattern after the user creates it.

4. Indication display. The indication display contains two BOOLEAN
indicators, square LEDs, indicating the status of the initialization and the power.
If these processes are successfully triggered, the LEDs automatically light up.

5. Parameter setting panel. The panel provides the user with the real —
time manipulation of the modifiable parameters for controlling the MMA
operation cycle.

6. Operating command panel. All basic commands to control the MMA
operation cycle are included here.

7. Pattern — management command panel. This panel deals with file
management, either saving or opening the patterns.

8. Number of board control. This control receives the number of MMA
boards for sharing the bandwidth. However, after the initialization process, it is
set to be read — only.

9. Pattern creating panel. The panel is responsible for designing the
pattern either a random pattern or a tiled pattern, by alternatively checking the
‘tick box’.

10. Program — created pattern array indicator. The array indicator
demonstrates the value of degree of deflection for each element in the pattern.

2. Block diagram.

These following block diagrams are created to help control the
instrumental system for the pump — probe experiment. Many important
functional parts are included in the diagram and most of them correspond to the
objects on the front panel. Keep in mind that the diagram works by the left — to
right dataflow, by which the order of action is indicated by the number in the
block diagram, and multiple wiring is allowed. Therefore, the subsequent
explanations are mainly described part by part for short.

28

2.1 Pre — setting step.

A5KM4ERCEE

3 4 > 6

=

1

= [0 v ASKM4BKCEK § D = ASKM4BKCEK § B =0 ASKIM4BKCEK RII7 =5 ASKM4SKCEK pil

A
o Skop i v ChipCFgFile P _MNumberOfBoards | [Simulationtode
2 i Number of Board

=_:\Program Files\MEMS Phase Former Kit\WiC1589-20-37, ccf#

Hzs]
T3

Figure 5.1 Pre - setting part of the block diagram in LabVIEW.

1.

4.

ActiveX container ASKM48kCEK. The container provides the
program with information and ActiveX objects needed for the
MMA operation cycle and the simulation.

. Automation open. The purpose of this function is to return the

‘automation refnum’, pointing to the specific ActiveX object.
Furthermore, the BOOLEAN value ‘F’ wired to function
indicates that LabVIEW tries to reach the ‘instance’ of the
refnum which is already open. If it fails, LabVIEW will create a
new instance. Noticeably, the error information is first produced.

. Invoke node ‘Stop’. This node is placed at the very first part of

the block diagram to stop the running MMA operation cycle if
the user forgets to stop it before exiting the program.

Property node ‘ChipCfgFile’. The node reads all necessary
characteristic data of an individual MMA chip contained in the
chip configuration file for the preparation of the new operation.
The file path is wired to the node as shown.

. Property node ‘NumberOfBoards’. 1t is required to tell the driver

how many MMA boards of which the bandwidth has to be shared
is currently used by receiving the number from the ‘Number of
board control’. However, the property is set to be read — only
after the initialization process.

. Property node ‘SimulationMode’. The ActiveX control, this

node, is set to allow testing of the container software without
board connection. Anyway, it is performed only if the
BOOLEAN value ‘T’ is wired to the node and, similarly, set to
be read — only after the initialization process.

29

2.2 Initialization step and MMA board preparation.

Initialization Checkpoint
]

I'_l Mo Erfor "'t -
| b b ASKMABRCER E;g B =z AskM4BkCER B[R b ASKM4ERCER Rl f =t ASKIM4BKCER Al
Tt | C Tnttate M- Poweron | Powerstate M-
1 Indication Display
il
4 ' _.
" " " B = AskmeBkCEK 5]
2 Cperakionstate b Pattern.

Initialization Checkpoint

= b ASKM4BkCEK |

Init i

1

B wd ASKMABKCER 3 5 6
P OFF - 1 -
- a '==E B = ASKM4BKCEK B[o "+ AskmaakcEr BIT5 =t AskMaskcek B

E Errar 't

Poteron v PowerStake H

InitState &

Indication Display

% sk pSKMagkcEr §
e I n
% = AskmaskcEK §|
2 OperationSkate W Pattern.
K]

Figure 5.2 (top) Initialization checkpoint in case of (top) no error and (bottom) any errors.

1. Invoke node ‘Init’. The node initializes the MMA board, the

IEEE1394 bus driver and opens the interface. However, this step
1s highly crucial for the MMA operation and requires the
checkpoint. Therefore, the subsequent ‘Case structure’ is created
to examine whether the initialization process succeeds.

. Case structure ‘Initialization checkpoint’. This is meant to fix the

problem when the initialization fails. The structure is also
connected to the previous ‘Property node Init’ via the error —
containing wire. If the initialization process is successful, no
errors are found and the structure does nothing here whereas if it
fails, the node transfers the error information to the structure,
causing the power applied to the board to be shut and the board
will be re — initialized.

3. Property node ‘InitState’. This node returns the BOOLEAN

value ‘TRUE’ to the LED indicator ‘Initialization” when the
initialization succeeds, causing the LED to light up. In contrast,

30

it returns “FALSE’ to the indicator, provided that the
initialization fails, and the LED does not light up.

4. Property node ‘OperationState’. The node returns the
BOOLEAN value ‘TRUE’ to the LED indicator ‘Start’ if
the MMA operation is still running, causing it to light up.
However, it returns ‘FALSE’ to the indicator provided the MMA
operation is stopped. As a result, the LED does not glow up.

5. Invoke node ‘PowerOn’. The node is responsible for the
application of the voltage to the board.

6. Property node ‘PowerState’. The node returns the BOOLEAN
value ‘TRUE’ to the LED indicator ‘Power On’ when the
initialization succeeds, causing the LED to light up. In contrast,

it returns “FALSE’ to the indicator, in case of the failure, and the
LED does not light up.

Initialization Initialization Power On Power On

P | —[d |a —

- -

Figure 5.3 The glowing of ‘Initialization’ and ‘Power On’ indicators when they obtain

‘TRUE’ BOOLEAN value.

2.3 MMA operation cycle.

- Error.

il

I: Errar 't

Figure 5.4 Error condition of the Case Structure. No executions are performed.

The next step after the Initialization Checkpoint is the MMA

operation cycle. However, in case of the emergence of the errors no matter
where they come from, the operation cannot be executed to avoid any possible
errors and eventual damage to the board. Consequently, the ‘Case structure’
linked to the error — containing wire does nothing here. Eventually, the MMA

31

operation is terminated and the board is powered off. The mechanism of how to
terminate the MMA operation and stop the application will be discussed later.

- No error.

[Mo Errar Vt

T[] "Parameter Setting.Made of Data Transfer”, "Parameter Setting. Cycle Trigger Mode™ Value Change ve—

———————
|B = ASKMHSkCEK q
— P DataTransferMode

Figure 5.5 While loop and Event Structure for controlling MMA operation are inside the ‘No
Error’ case.

In contrast, the execution can be further performed when no errors
are discovered. Under this condition, the ‘While loop’ containing the ‘Event
structure’ for controlling the MMA operation is engaged. It means that the user
can arbitrarily manipulate the parameters to be input in the MMA operation
unless the ‘While loop’ 1s terminated. Moreover, the special feature of the
combination between the ‘While loop’ and the ‘Event structure’ is the limitless
parameter manipulation until the event which is meant to stop the while loop is
triggered. The followings are the detailed description of each event.

2.4 Data manipulating events.

1. Mode of data Transfer and cycle trigger mode.

s00 HE] P[] "Parameter Setting. Mode of Data Transfer”, "Parameter Setting.Cycle Trigger Mode™; value Changs ~——

—_
x| & = ASKM4BKCEK §

o ; P DataTransferMods
v ﬁ, Made d Qata Transfer b CycleTriggerSource
L J Cyile Trigger Made

Pa-rmeter 1 2
Setting

Figure 5.6 An event for the change in values of Mode of Data Transfer and Cycle Trigger
Mode.

1.1 Cluster ‘Parameter setting’ and ‘Unbundle by name’. The °
Unbundle by name’ unbundles the cluster ‘Parameter setting’
and receives two input parameters ‘Mode of Data transfer’ and
‘Cycle Trigger Mode’ from the ‘Parameter setting panel’.
These parameters are then transferred to the double Property
node ‘DataTransferMode’ and ‘CycleTriggerSource’.

32

1.2 Double property node ‘DataTransferMode’ and
‘CycleTriggerSource’. The node ‘DataTransferMode’ and
‘CycleTriggerSource’ obtains the input parameters ‘Mode of
data transfer’ and ‘Cycle Trigger Mode’ respectively. Then, it
implements these values to the board for the MMA operation.

2. On — Time, Off — Time, Pattern Ready Delayl and Pattern
Ready Delay?2.

T[] "Parameter Sething”: ¥Walus Change ~B—
B =0 ASKM4BKCEK &
d OF Ti
3 6 ime (ms) 3
g -
g MFalse vpf
...... n Time Delay 2 {migtosecondl
Time Delay 1 {microsecond} 7 J L
el _—
b] =
[
x>
IDDD|> |> - Ta[False =
]
g S0

Figure 5.7 An event for the changes in values of On — Time, Off — Time, Pattern Ready
Delay 1 and 2.

2.1 Local variable ‘Parameter setting’ and ‘Unbundle by name’.
The local variable’ Parameter setting’ is meant to represent the
corresponding cluster because the cluster has been used in
another event. Yet, its function is the same as the original one.
The ‘Unbundle by name’ unbundles the cluster as shown and
receives the related input parameters from the ‘Parameter
setting’ front panel. The parameters are then transferred to the
next relationship— checking functions.

2.2 Relationship — checking functions. There are two sets of
functions examining the validity of the input parameters. The
first upper group confirms if ‘On — Time’ is equal to or less than

33

‘Off — Time’ divided by a number 17. Another lower group tests
whether the sum of ‘Time Delay 1’ and ‘Time Delay 2’ is less
than or equal to ‘On — Time’ multiplied by 1000. Thereby, both
comparison functions returns the BOOLEAN value ‘TRUE’ if
the relationship is conserved.

2.3 Condition — executing ‘Case structure’. Two case structures are
involved in the execution. The upper structure generates a new
‘Off — Time’ by replacing the old value with ‘On — Time’
multiplied by 17 whereas nothing happens to the ‘On — Time’,
in case that the relationship between On — Time and Off — Time
1s not true. For the lower structure, it uses the value ‘50
microseconds’ in place of both original ‘Time Delay 1’ and
‘Time Delay 2’ if these values do not conform to the
relationship. Anyway, both structures do nothing and transfer

these parameters to the corresponding property node.

2.4 Multiple property node ‘OnTime’, ‘OffTime’,
‘PatternReadyDelayl’, ‘PatternReadyDelay?2’. This node
receives the unproblematic values which correspond to the
node’s function. After that, the parameters are implemented to
the MMA operation cycle.

2.5 = 2.7 Implicit property nodes ‘Time Delay 1°, ‘Off Time’ and
‘Time Delay 2°. These nodes also receive the corrected
input parameters ‘Time Delay 1°, ‘Off — Time’ and
‘Time Delay 2’ respectively in order to display the
adjusted suitable values to the user.

34

3. Operation state (Timeout event).

So0HEF J[[=] Timeout a2}
|
1
W ASKMHORER O]
COperationState)
-
E..
Start
=]

Figure 5.8 The ‘Timeout’ event that indicate the state of the MMA operation.

3.1 Property node ‘OperationState’. The node returns the
BOOLEAN value ‘TRUE’ to the LED indicator ‘Start’ if the

MMA operation is still running but ‘FALSE’ if the operation
stops.

3.2 Square LED indicator ‘Start’. The purpose of this indicator is to
inform the state of the MMA operation cycle to the user. If the

operation is running, the LED lights up where it does not glow
up if the operation stops.

4. Create the pattern.

Ta[[=] "Operating commands. Create the pattern.”: Mouse Up haa

Figure 5.9 An event generating a random pattern.
35

Figure 5.10 An event generating a tiled pattern.

4.1 Cluster ‘Pattern creating panel’ and ‘Unbundle by name’. The
‘Unbundle by name’ receives the information for creating the
pattern from the cluster ‘Pattern creating panel’ in the front
panel, including the number of rows and columns, two values of
different degrees of deflection and the BOOLEAN value from
the tick box . ‘TRUE’ is for creating a tiled pattern and
‘FALSE’ for a random one. After that, these parameters are
transferred to the next case structure.

4.2 Case structure for creating the pattern. The structure executes
the creation of a random pattern when receiving the ‘TRUE’
value but a tiled pattern when getting the ‘FALSE’ value.

4.3 Mechanisms of creating the patterns.

36

- Random pattern.

The first 1 — dimensional array is initiated with the ‘For loop’
#3, starting from the iteration index of ‘0’. Then, the numeric function ‘Random
number’ in the ‘For loop’ #2 starts producing a random number subsequently
multiplied by 255 and converted to 8 — bit unsigned value. After the loop#2
completes the first 1 X 200 — dimensional array, the loop #2 ends and the loop
#3 begins the second iteration. Another 1 X 200 - dimensional array is created
and later concatenated to the previous array, resulting in the 2 X 200 —
dimensional array. Repeatedly, the iteration keeps on until the 240 X 200 —
dimensional array finally results. The graphical illustration is shown in figure
5.11.

Nt row 15t gnd 3rd Ath 200t

(=

m

(Il
O
1'-;.
I-ZE
Z=ZI'.E
. s
-

197
198
195
200t

Loop #2 200 rows

A
v

240 columns

Figure 5.11 Conceptual idea of creating a random pattern.
- Tiled pattern.

The idea of constructing the pattern is based on creating the
tiles with alternatively — arranged fashion. Firstly, the loop #2 controls the
generation of two different patterns, one beginning with a patch of higher degree
of deflection and another starting with a lower degree of deflection. The
condition (#3) of which a particular manner is chosen is also based on the
iteration number of the loop #2. If the iteration number is even number, the
former pattern is executed while the latter is created provided that the number is

37

odd. Anyway, the loop keeps on running until it completes the number of
columns.

Secondly, after one pattern — creating style is reached, the
loop #4 (or #5) starts running. Inside the loop #4 (or #5) are two ‘For loops’,
upper and lower loops #6, producing different one — dimensional array with
alternate degrees of deflection. The criterion for choosing the loops #6 is also
based on whether the iteration number is even or odd. If the iteration number is
even, the upper loop #6 (or #7) creates the array. Otherwise, the lower loop #6
(or #7) creates the array instead. No matter which loop creates the array, each
array i1s continually concatenated so that the 1 X 200 — dimensional array is
produced when the loop #4 (or #5) ends. However, the loop controlling the loop
#4 (or #5) keeps on iterating, creating many more 1 X 200 — dimensional arrays
concatenated to one another. Eventually, the array with (240/#column) X 200
dimension results.

Thirdly, the arrays produced from either loop #4 or #5 are
also concatenated to one another until it completes the whole pattern.

Loop #2
Loop #4

Upper loop #6

eeeeeeeee
/ 1% row

=, 2™ row
order of cycle > > oo

even number NS o b E
Lowerloop #6
order of cycl

Loop #5
Upper loop #7

odd number

/EVE num

order of cycle

\ odd number l)
LowerToop #7

1% row 2 row
—> —_> [TY)

Figure 5.12 The concept of creating the tiled pattern. The 20 X 24 — dimensional array with
four rows and six columns is demonstrated. Each square represents each element of the array.

38

5. Stop running the program.

Ja[[41"Operating commands. .Stop running the program.”; Mouse Up ~F—
MTrue 't 2

R[5+ askmaskcer)

Stop '}—1:§>

WARMNING! You are about to stop the
program, Do vou really want to stop it?

¢ Mo, conkinue the prograrm [+

o[[4] "Operating commands. . Stop running the progran.”: Mouse Up

Ta[False ~}
WARMNING! You are about ko stop the
program, Do you really wank to skop it? |7 1
s

;lND, continue the |:|r|3gr'am|"J

Figure 5.13 An event to exit the application. The top shows the ‘true’ case where as the
bottom shows the ‘false’ case.

5.1 Two button dialog. The dialog box appears ensuring the user
that he really wants to exit the application. If the user selects
‘Yes, I do.’, the dialogue box returns ‘TRUE’ value whereas it
returns ‘FALSE’ to the adjacent case structure if the user
selects ‘No, continue the program.

5.2 Case structure. The case structure does nothing if it receives the
‘FALSE’ value and the program is still running. On the other
hand, the case structure performs the execution to stop the
MMA operation cycle when the ‘TRUE’ value is obtained.
Moreover, the Invoke node stop inside returns ‘0’ to the
comparison function ‘Not equal to zero’, causing the LED
indicator ‘Start’ to light down and the dialogue also returns the
‘TRUE’ value to the conditional terminal. So the program stops.

39

6. Stop the operation cycle.

Ja[[=] "operating commands. . Terminate the operation cyde.”: Value Change ~F—

Figure 5.14 An event to terminate the MMA operation cycle.

6.1 Invoke node ‘Stop’. The node terminates the MMA operation
cycle and returns ‘0’ to the comparison function ‘Not equal to
zero’ if it succeeds.

6.2 Comparison function ‘Not equal to zero’. It returns the
‘FALSE’ value if it receives ‘0’, resulting in the lighting down
of the LED indicator ‘Start’. Otherwise, the BOOLEAN
value ‘TURE’ is produced.

7. Open a new pattern.

[[£] "Pathern - management commands. . Open a new patkern’: Mouse Up

Selector Label
M True Yt

T[] "Pattern - management commands, pen a new patkern™ Mouse Lp b

Ta[False =

2 3
=

=

Figure 5.15 An event to open a new pattern from a folder. (top) Nothing occurs if the user
denies opening the file and (bottom) the mechanism of opening the file is shown.

L 1

7.1 Open/Create/ReplacefFile. The function pops up the dialogue
box for selecting a data pattern file to be opened. It returns the
‘TRUE’ if the user decides not to open the file but the ‘FALSE’
provided the users selects the file and chooses ‘Open’. Both
BOOLEAN values go to the case structure.

40

7.2 Read from binary file. It reads the binary data from the file path
converts it into data. The data type is determined by the data
wired to this function.

7.3 Close file. The function closes the file specified by the refnum.

8. Upload the pattern to the board.

[[7] "operating commands. . Upload the pattern bo bodtd,": Mouse Up ~F—
Tk ASKMAEKCEK B Db BSKM4BKCEK 5
‘Writefrray UploadDataToBoard ¥
P varianthrray E—' dwDelayTime

Figure 5.16 An event for uploading the pattern to the board.

8.1 Invoke node ‘WriteArray’. It writes an array by receiving the
array already available and converts it into a variant array
compatible with ActiveX Control.

8.2 Invoke node ‘UploadDataToBoard’. This node transfers the
latched array to the MMA board with ‘dwDelayTime’ after the
previous upload. It means that if the time does not expires, the
control waits for the remaining time and then uploads the
pattern. In case, ‘0’ is wired to it, indicating that the pattern will
be uploaded immediately.

9. Save the pattern.

S00 H=} J[[=] "Pattern - management commands. . Save the result™ Maouse Up -

E Sawve the pattern.

| replace or create with confirmation

[+ varite-only |- |

41

Ja[[=] "Pattern - management commands. .Save the result™ Mouse Up b —

1 True 't

E Save the patkern.

|+ replace or create with confirmation)

[write-only ~}- §

Tirne

| Type “

Figure 5.17 An event for saving the existing pattern. (top) The mechanism of how to save the
pattern and (bottom) nothing happens if the user denies saving the pattern.

9.1 Open/Create/ReplacefFile. The function pops up the dialogue
box for selecting a file directory to save the pattern. It
returns the “TRUE”’ if the user decides not to write the data file
but the ‘FALSE’ provided the users really wants to save the file
and then chooses ‘Save’. Both BOOLEAN values go to the case
structure.

9.2 Write to binary file. It writes the binary data to the new file,

appends the data to an already — existing file or replaces a
content of a file.

9.3 Close file. The function closes the file specified by the refnum.

10. Start the operation cycle.

T[] "oper ating commands. . Commence the operation cycle.”: Mouse Lp ~—

i
nI
I

B B % askm4akaEk B

-

Figure 5.18 An event to start the MMA operation cycle.

10.1 Invoke node ‘Start’. The node starts the MMA operation

cycle and returns ‘0’ to the comparison function ‘Equal to
zero’ if it succeeds.

10.2 Comparison function ‘Equal to zero’. It returns the
‘TRUE’ value if it receives ‘o’, causing the LED indicator
‘Start’ to light up. Otherwise, the BOOLEAN value
‘FALSE’ is produced.

42

2.4 Data display and system shut — down.

3 Automation Close |=rr|:|r in (no errar)

A H; sk ASKI4EKCEK “;"%? = 7

] Power I LE] !-___

ry Power O x

A

Program - Wi 2l
created D
pattern. I,II'IEh';Illlzatlun
}E 2 4 ' alue 6
LIB

Figure 5.19 Last part of the block diagram.

1. Intensity graph ‘Pattern’. The graph shows the deflection pattern
of the recently — created pattern. Each degree of deflection is
represented by spectral colors, ranging from the lowest values
with black to the highest value with white.

2. Array indicator ‘Pattern created program. The indicator displays
the real numeric value of degree of deflection for each element.

3. Invoke node ‘PowerOff’. The node powers off the MMA board
before the program really stops.

4. Comparison function ‘Not equal to zero’. The function returns
‘FALSE’ to the nexyt properties if it obtains ‘0’. Otherwise, it
returns “TRUE’.

5. ‘Automation close’. All ActiveX objects are closed and no longer
used in LabVIEW.

6. Properties ‘Power On’ and ‘Initialization’. The properties
represent the real LED indicators ‘Power On’ and ‘Initialization’.
These LEDs light down when they receive the BOOLEAN value
‘FALSE’.

7. Error in. The function receives the error information and displays
the error and its code on the message board in the front panel.

43

2.5 Event — triggering conditions.

Event Buttons or panel Action
required for triggering
Mode of data transfer and
cycle trigger mode. Parameter setting panel Change in the

On — Time, Off — Time,
Pattern Ready Delay 1 & 2.

corresponding values.

Operation state.
(Timeout event)

Create the pattern. PATTERN button.
Stop running the program. EXIT button.
Stop the operation cycle. STOP button.
Open a new pattern. OPEN button.
Upload the pattern to the UPLOAD button. Pressing the button.
board.
Save the pattern. SAVE button.
Start the operation cycle. START button.

Table 5.1 Summary of conditions required for triggering the data — manipulating events.

3. Simulation.

| =

ASKM4BKCEK

ROW.

Program - created pattern.

200-1 : !
0 720 40 6D 8D 100 10 140 160 180 200 7e0 240
coLuMN

Pattern - management commands.

ttttt
save the result Open a new pattern

SAVE OPEN |

shareed o asaure that al
‘boards can albcate enough
bancWith,

0=auto

£ = new pattern

2= axtern

Operating commands.

Create the pattern.

PATTERN

jpload the pattern to board,

UPLOAD

Commence the operation ¢

START

STOP

top running the program.

EXIT

IC

3

mII

Pattern Creating Panel.

o

) MEMS Phase Former Kt

13 Another choice for 1s...

oy
Ll
Histare

B« 1802

Figure 5.20 The simulation in LabVIEW for a tiled pattern.

44

Pattern.

A

Indication Display

Parameter Setting

uonaayaa o sai6aa

Program - created pattern.

Pattern - management commands.

Number of Board
1

This property s used to tel
the chiver how MV boards
the banowidth of the.
IEEE1304 bus has to be.
shareed to assure that ol
‘boards can albcate enough
banwi

A -
@ start| [Another choice for 15...) MEMS Phase Former Kit

« 1803

Figure 5.21 The simulation in LabVIEW for a random pattern.

45

CHAPTER 6

Conclusion

The LabVIEW program for controlling the MMA operation cycle in the
pump — probe experiment has been created. The program can be mainly divided
into two parts, the front panel and the block diagram. The front panel simulates
the interactive interface to manipulate the physical instruments. All important
panels required to control the instruments are also created. For example, saving
the pattern, loading the pattern, manipulating the parameters, starting and
terminating the MMA operation cycle. Moreover, the indication display contains
the LED indicators, with the purpose of informing the status of the MMA
operation cycle to the user.

Speaking of the block diagram, necessary error — handling application
loop 1s also created to deal with some common problems. Besides, the
relationships for suitable input parameters are programmed to check whether the
parameters are valid or not.

However, the LabVIEW program can still perform just fundamental
controls. Further optimization process of the MMA deflection pattern is
required.

46

REFERENCES.

1. Fabrication of binary phase plates for the management of orbital-angular-
momentum superposition states.

2. A. Preumont, R. Bastaits, M. Horodinca, G. Rodrigues, I. Romanescu and I.
Surdej. Segmented Deformable Mirror for Adaptive Optics.

3. Hamelinck, Roger. Adaptive Deformable Mirror Based on Electromagnetic
Actuators. Eindhoven: Technische Universiteit Eindhoven, 2010.

4. Weber S. M., Waldis S., Noell W. Linear micromirror array for broadband
femtosecond pulse shaping in phase and amplitude. Proc. of SPIE, 7208:
720805 — 1 -720805 — 6.

5. Madec P.Y. Overview of Deformable Mirror Technologies for Adaptive
Optics and Astronomy.

6. Bronson, R. J. (2007). Modeling and Control of MEMS Micromirror Arrays

with Nonlinearities and Parametric Uncertainties (Doctoral Dissertation).
University of Florida.

47

