
1

MICROMIRROR ARRAY (MMA):

A PROMISING CANDIDATE FOR MICRO –

ELECTROMECHANICAL SYSTEMS (MEMS)

Kittiwat Kamlungsua

DESY Summer Student 2013, Chulalongkorn University, Thailand

Supervisors

Andreas Przystawik and Sergey Usenko (Ph.D.)

September 5
th

, 2013

Abstract

 This summer student report contains all important data for controlling the

MMA operation cycle, including basic instrumental information about the

MEMS Phase Former Kit by Fraunhofer IPMS and programming in LabVIEW.

Besides, the front panel and the block diagram are successfully created and their

functions still work well for the basic MMA operation. However, further

advanced optimization process is required to enhance the program’s

performance.

2

ACKNOWLEDGEMENT

 First of all, I am extremely grateful to Andreas Przystawik, my supervisor,

for helping me in every way even though I am a chemist, having no experience

in programming before. Besides, the thankfulness would come to Sergey

Usenko, Ph.D., and Elisabeth, a summer student fellow. They are also very kind

and friendly and always persuade me to have a conversation more or less

although I’m not quite talkative. On top of that, the very encouraging

wholehearted comments are from Tim Laarmann, the group leader of the

Femtochemistry.

 Next I would like to thank Olaf Behnke, Andrea Schrader, and Doris

Eckstein for organizing this very impressive DESY summer school. This city is

very nice and suitable for studying any disciplines. I will be missing this place

where all of summer student spent their time together. Thank you again for

everything. It will be in my memory forever.

 Of course, many summer student fellows deserve the praise. Sometimes,

we have just a little chat. Sometimes, we just meet at the kitchen and also just

say ‘Hi’. Anyway, they are friendly and amicable, I bet. I hope that we will meet

again and can create a huge connection of young scientists from all over the

world. Thank for your friendship, fellows.

 Finally I would like to thank NSTDA under the patronage of HRH

Princess MahaChaki Sirinhorn for this invaluable chance to participate this

prefect summer camp and I hope that I will bring the knowledge I have

experience to develop the country more or less.

3

Contents.

The importance of micro – electromechanical system (MEMS) 4

MEMS Phase Former Kit by Fraunhofer IMPS 9

Graphical User Interface (GUI) for Autonomous MMA operation 19

Simulation in LabVIEW 25

Programming and Simulation in LabVIEW 27

Conclusion 46

References 47

4

CHAPTER 1

The importance of micro – electromechanical system

(MEMS)

1. Root of the problem.

 Optics and Photonics are branches of Physics dealing with the study of

behaviors and properties of light and optically – involving electronic devices.

However, the development of so – called optical wavefront controls has

increasingly grown in popularity and importance nowadays. This piece of

research plays a crucial role in various disciplines, covering scales from

enormous as in astronomical telescope to extremely small as in retinal

microscopic imaging. An example of the astronomical problem is demonstrated.

Figure 1.1 The distortion of the wavefront, one major problem in Astronomy.

 One major challenge in astronomical observations is called ‘wavefront

aberration’ caused by the atmospheric turbulence. This phenomenon renders the

wavefront of the incoming light from distant stars distorted when passing

through the Earth’s atmosphere. To illustrate, the atmosphere must be perceived

as a set of air bubbles having slightly different properties such as temperature

and pressure. According to the Snell’s Law, the speed of light varies in different

medium of different properties. Therefore, the light travels with different speed

after coming into the Earth. In other words, its wavefront is changed by the

atmosphere, resulting in the data containing errors.

5

Figure 1.2 The graphical representation of the Earth’s atmosphere. The circles with different

shades represent the air bubbles with different properties.

2. Adaptive – optics system.

 To solve the aforementioned problems, an adaptive – optics system

becomes a promising solution. The adaptive - optics system is a state – of – the

– art technology used to reduce the effect of wavefront distortions, thus

enhancing the performance of the optic system. Most typical adaptive – optics

systems consist of five main parts as follows.

1. Wavefront corrector. The wavefront corrector performs the

physical correction of the distorted wavefront. It comes in many

types, sizes and shapes. As named, its purpose is to optically

compensate the incoming distorted wavefront to be as correct as

possible compared to the original one before perturbed by the

wavefront – distorting medium. After the correction, the light is

reflected to the beam splitter.

2. Dichroic beam splitter. The beam splitter is used to divide the

corrected light beam from the wavefront corrector into two parts.

One is sampled by the wavefront sensor for the analysis and

optimization. The other goes to the detector for demonstration.

3. Wavefront sensor. The wavefront sensor is employed to measure

the phase aberration and subsequently sends the data to the

wavefront control system for iterating computation. Due to its

simplicity and manufacturability, Shack Hartmann sensor (SHS)

is responsible for the measurement, which is called ‘slope

method’. The sensor consists of the array of miniature lenslets

focusing the wavefront onto a Charge Couple Device (CCD)

6

camera. The local displacement of each lenslet from the normal

wavefront is then measured and integrated for reconstructing the

wavefront shape. Other types of the sensors also exist like

Curvature Sensor (CS) and Pyramid Sensor (PS).

 (a) (b)

Figure 1.3 (a) Shack Hartmann Wavefront Sensor and (b) slope measurement method.

4. Wavefront control system. The wavefront control system is

actually computer software automatically performing iterating

calculations. It receives the measurements from the sensor and

calculates the corrective movement of the wavefront corrector.

Strehl ratio, one necessary value for the calculation, indicates the

degree of compensation, which is inversely proportional to the

variance of the wavefront aberration. Therefore, new

measurements and more corrective movement are received and

done repetitively to mathematically minimize this variance,

which is the ultimate goal of the system.

5. Detector and High – resolution camera.

7

Figure 1.4 Closed – loop feedback control system for typical adaptive optics systems.

3. Dynamic and static adaptive – phase devices.

 The most important part of the adaptive – optics system is definitely the

wavefront corrector because the quality and degree of phase compensation

depends on how well – organized and well – fabricated it is. The wavefront

corrector comes in variety but it is, generally speaking, coarsely divided into two

main types.

 1. Static adaptive – phase device. Static devices imprint a fixed

 phase pattern by either reflective or transmissive means. Their

 well - known advantages are their high quality of production and

 ease of use. Such devices always come to users’ mind if one is

 interested in only a specific phase pattern. However, the

 specificity inherently becomes the major severe problem if more

 than one pattern is required.

 2. Dynamic adaptive – phase device. Dynamic devices, or spatial

 light modulators, provide more pattern flexibility for users. They

 are mainly classified into two types, liquid crystals (LCs) and

 deformable mirrors (DMs). Speaking of the liquid crystals, the

 operational speed is relatively comparable to that of the

 deformable mirrors and they still have better resolution and

 lifetime expectation. Yet, a common severe drawback which

 makes most users reject them is the suffering from the

 unwanted polarization effect. In case of the deformable mirrors,

 they are not affected by polarization effect and, even better, able

 to attain reflectivity close to 100% due to the specular reflection.

 Those latter reasons make the deformable mirrors prevailing

 and become the better choice than the liquid crystals.

4. Deformable mirrors and micro – electromechanical

system (MEMS).

 Deformable mirrors (DMs) are mirrors whose surface can be deformed,

mostly electrostatically – driven mechanism. They are designed to achieve

wavefront control and the correction of optical aberrations and used in

conjunction with the wavefront sensor and the real – time processing wavefront

control system. Several types of these deformable mirrors are available which

8

are different in fabrications and mechanisms of deformation but have the same

ultimate goal to compensate for the wavefront distortion. For example,

segmented DMs which are light – weight, scalable and have high – quality

surface, membrane DMs which are made of conductive reflective metallic

membrane, bimorph DMs and ferrofluid DMs. However, all of them cannot still

break through the high price threshold of the conventional spatial light

modulators.

 Recently, micro – electromechanical systems (MEMS) have been

introduced as an interesting implementation. They are the state – of – the – art

photonic technology which has been of increasingly growing importance among

scientists. They comprise a large array of micron – sized mirrors (10
4
 – 10

5

mirrors) independently acting as piston/tip – tilt actuators. Also, the

micromirrors are usually fabricated on top of the CMOS circuitry with cutting –

edge bulk and surface micromachining techniques. How each micromirror

works is based on electrostatically – driven piston mechanism by which the

micromirror is originally be at the highest position. When the voltage is applied

to each address electrode below the mirror, the electrostatic attraction causes the

mirror to bend towards the electrode. As a result, the mirror is said to be

deflected from the normal position. Typically, MEMS has several advantages

over other deformable mirrors. For example, high response rate, high precision,

no hysteresis effect, large temporal bandwidth, compactness and cheapness.

Because of these good points, MEMS becomes widely used in various

disciplines from scientific to industrial application as in medical imaging, laser

pulse technology, open – air communication, astronomy, ophthalmology and

weapon tracking. In this report, the MEMS provided by Fraunhofer IPMS will

be studied in greater details.

Figure 1.5 Micro – electromechanical system (MEMS).

9

CHAPTER 2

MEMS Phase Former Kit by Fraunhofer IMPS

 The MEMS Phase Former Kit is a piston – type micromirror array

provided by Fraunhofer IPMS. It is also a complete spatial light modulator, used

for high – resolution, high – precision and high – speed wavefront control and

designed for the convenient integration into the user’s own application. Apart

from the micromirror itself, it still consists of the complete electronic devices

with easy – to – use software interface for any operating systems. All detailed

description related to its components and how it works has been introduced in

this chapter.

1. Kit components.

 1.1 Micromirror Array Board (MMA Board)

Figure 2.1 (left) MMA board with ZIF socket shown and (right) MMA board correct wiring.

 MMA board is a central printed MMA driving board containing all

necessary electronic components. It also acts as a headquarter to control other

parts of the whole MEMS and to transfer data from internal computational

system to external sources and vice versa. Provided by Fraunhofer, it has many

interesting special features and provisions different from other integrated circuit

boards as follow.

 - Easily – replaceable ZIF socket.

 - On – board power supply for logic electronics, Data Acquisitions

 (DACs), amplifiers and the MMA device.

 - Digital – to – analog data conversion and the amplification of

 MMA data.

 - High – speed data communication provided by the IEEE 1394

10

 Firewire interface.

 - Surveillance of the MMA operational conditions.

 - Software and hardware synchronization with external devices.

 In order to achieve the smooth normal operation, the PC and the power

supply are essentially required to connect to the board via IEEE 1394 Firewire

interface. The two available on – board IEEE connectors are equivalent and inter

- exchangeable. Furthermore, a rigid Al back plate is closely attached to the rear

for the purposes of better heat dissipation, mechanical stability mounting of the

optical instrumentation.

Figure 2.2 MMA board connectors and buttons. (1) IEEE 1394 Firewire connectors, (2) – (7)

Ports for external hardware control, (8) Power supply connector 20 … 26 V/2.5A, (9) Fuse

2.5 A, time – lag, (10) ZIF socket for the MMA device, (11) Connector for temperature

control, (12) Reset button and (13) Board temperature connector.

11

 1.2 Micromirror Array Chip (MMA Chip)

Figure 2.3 (left) MMA chip and (right) detailed description of housed MMA chip.

 Micromirror array chip is an electronic device containing an array of

functional micromirrors. The chip provided by Fraunhofer IPMS has several

outstanding characteristics as shown below.

 - Integrated 200 X 240 micromirror arrays.

 - Chip programming > 5 kHz.

 - Overall data transfer up to 100 fps.

 1.3 Micromirror Array

Figure 2.4 (left) Magnified image of micromirror array and (right) the diagram of each

mirror element.

12

 Micromirror array is a functional building block of the MEMS Phase

Former Kit. Unlike other types of deformable mirrors, many properties have

been provided by Fraunhofer IPMS as followings.

 - Single – element size of 40 X 40 µm
2
.

 - Mirrors suspended from their supporting posts by flexible hinges.

 - Substrate fabricated from a monolithic aluminum – metal – alloy

 integrated on top of a CMOS circuitry.

 - Independently – addressing electrodes and 8 bit – resolution

 deflection.

 - Possible range of deflection up to 400 nm.

 - 2¶ - phase modulation suitability for the visible spectral region.

 - Long recovery time after deflection, preventing from the

 permanent deformation of the microscopic hinges.

 - Operation cycle with 1:17 on/off rate.

 The mechanism of deflection is based on electrostatically – driven piston

mechanism. Originally, the hinge is positioned at the highest level or, in other

words, at the same level as the post. When the voltage is applied to a particular

address electrode, the positive charge is generated on the electrode whereas the

negative charge on the mirror. Consequently, the electrostatic attraction causes

the mirror to bend towards the electrode or deflect from the original position.

The degree of deflection varies with the amount of applied voltage.

Figure 2.5 Mechanism of how each element can be deflected. The mirror moves from the

position 1 to 2 after the voltage is applied, resulting in the ‘deflection’.

13

2. Dataflow in the closed – loop MMA operation.

Figure 2.6 Software integration block diagram.

 The ActiveX control provides the user with the incorporation of the MMA

data transfer and the control of functionalities into his own software

environment, thus enabling the automation of the data transfer from data sources

to the MMA for closed – loop operation. The interaction between the user’s

controlling software and the ActiveX control is illustrated in figure 2.6 Three

items called properties, methods and events describe the interface of an ActiveX

control. Properties typically define the behavior of the control. In this case, they

are primarily used to set various configuration values of the MMA board and the

chip. Moreover, some certain assigned functions make them readable and

editable during the run – time simulation. Speaking of methods, they are meant

to initiate actions of the ActiveX control and able to call parameters and return

values. Most of the methods here are used for the data transfer and the execution

of the commands on the MMA board. Finally, events can be understood as a

kind of software trigger.

14

3. General data transfer.

 3.1 Mode of data transfer from PC to MMA board.

 - Single Pattern Mode

Figure 2.7 Only a single pattern is transferred in Single Pattern Mode.

 In Graphical User Interface, only a single pattern currently selected

from the file list in the GUI mainframe is transferred to the MMA board only if

the ‘load’ button (in LabVIEW, UPLOAD) is activated.

 - Sequence Mode

Figure 2.8 Several data patterns are sequentially transferred in Sequence Mode.

 In Graphical User Interface, the user is allowed to select several

data patterns at a time. When the ‘load’ button (in LabVIEW, UPLOAD) is

pressed, all selected data are first buffered in the PC RAM waiting for another

transfer. Then the buffered data patterns are sequentially transferred to the board

after the activation of the ‘start’ button (in LabVIEW, START) on the GUI

mainframe, with regard to the order they have been chosen. Anyway, the

procedure automatically keeps going repetitively unless the ‘stop’ button is

pressed.

15

 3.2 MMA operation cycles.

Figure 2.9 Typical MMA operation cycle.

 Typical MMA operation cycles are performed based on a timely discrete

basis. Firstly, the user is required to select data patterns and then press the button

‘load’ on the GUI mainframe. After that, ‘Pattern Upload To Board’s status

changes from ready to active, waiting for the time tTRANS to expire. Following the

expiration of the time tTRANS is the change in the status of ‘Pattern Upload OUT’

from low to high, indicating that the data patterns are being transferred. At the

same time, the MMA deflection status gradually increases from zero to a

nominal value until it levels off and the data transfer is also completely finished

,which is illustrated by the falling edge of the ‘Pattern Upload OUT’s status.

This period of time is called tPROG. However, the ‘MMA deflection status’

remains at the nominal value for a period of time tON. Within this duration, the

user is allowed to adjust the time margins tD1 and tD2 for fine – tuning the

‘Pattern Ready Signal’ tPR. The purpose of fine – tuning is for special trigger

modes. When the time tON is no longer valid, the deflection status returns to zero

for a long period of time tOFF. Notice that the time tOFF has been made user –

accessible to facilitate the synchronization with the external hardware. Anyway,

one operation cycle includes three periods of time, tPROG, tON and tOFF, which

leads to the definition of the term tCYCLE.

 In term of programming, a new MMA operation cycle is always done

after the complete upload of the previous data patterns onto the on – board

RAM. Yet, the new data patterns available in the RAM buffer cannot be written

16

into the MMA unless the previous operation cycle is truly finished. Therefore,

the maximum possible re –programming rate depends on the MMA cycle rate as

shown in the expression below.

where fCYCLE represents the rate of operation cycle and D is the duty factor.

More importantly, the frame rate or the overall data transfer must be properly

adjusted and should not be equal to or greater than the rate of operation cycle. If

not, the new MMA pattern may not be fed into the MMA in time.

 3.3 Modes of Cycle Trigger

 - Auto

Figure 2.10 Auto trigger mode.

 In case of ‘Auto’, each MMA operation cycle automatically starts

after the previous cycle has finished, taking either already – existing pattern or

the new one into the operation. Repeated programming with the same pattern is

basically suitable for this triggering mode.

17

 - New Pattern

Figure 2.11 New Pattern trigger mode.

 For ‘New Pattern’, a new MMA operation cycle is started only

upon a switchover of the memory buffers after a complete upload of a new

pattern to the on - board RAM. As a result, this triggering mode provides the

synchronization of the pattern transfer to the board and the MMA programming.

Anyway, proper and careful time adaptation is required in order to avoid any

data overwriting.

 - External

 It is possible that a new MMA operation cycle can be started by an

external Cycle Trigger IN signal applied via an external port on MMA board.

4. Timing conditions

 The following equations and the table are the summaries of the timing

conditions mentioned in the previous chapters.

18

SYMBOL MIN TYP MAX UNIT COMMENT

tPROG tPROG = 1100 / fCLK

tON 0.2 1000 ms

tOFF 17* tON

fCLK 1000 kHz

tD1 50 µs tON > tD1 + tD2

tD2 50 µs tON > tD1 + tD2

tTRANS 15 ms Depends on PC

hardware

tFRAME tCYCLE

Table 2.1 Summary of important timing conditions and relationships.

19

CHAPTER 3

Graphical User Interface (GUI) for Autonomous

MMA operation

 The Graphical User Interface (GUI) provides the user with a convenient

and uncomplicated access to MMA programming with individual deflection

patterns and to the hardware control features for the MMA autonomous

operation. The data source of the GUI is based on pre – defined data patterns

previously stored by the user in the Windows file systems using a common file

format (Bitmap or ASCII). Also, the selection of a single pattern or complete

pattern sequences for transferring to the MMA board is allowed in the GUI. In

this chapter, some fundamental requirements for the operation and basic

instructional commands in GUI are introduced here.

Figure 3.1 GUI mainframe.

20

1. Loading patterns.

 In order to load data patterns into the MMA, a directory containing the

Bitmap or ASCII data files must be selected by pressing which is embedded

onto the toolbar. The selected patterns will be displayed in the lower left

preview frame, getting ready for the transfer to the MMA board. Multiple

selections can be done by pressing the Shift or Ctrl key while selecting them.

 Speaking of the input files for GUI, each file must contain 240 X 200

elements of the mirror deflection arranged in the same orientation as appearing

on the MMA chip. The (0,0) – mirror element is located at the lower left of the

chip. Thereby, the degree of deflection has to be linearly encoded by an 8 – bit

value and the maximum deflection (tilt or stroke) is represented by the number

255. Anyway, two acceptable file types are valid by GUI.

 1. Window Bitmap Format (extension BMP). It must be 240 X 200

pixel monochrome ranging from 4 to 32 bit color resolution. Additionally, both

grayscale and colored images are allowed but only 8 – bit values are solely for

colored images.

 2. ASCII Format (extension ASC or CSV). It must also be 240 X

200 pixel with 8 – bit values as well, ranging from 0 to 255. Each column is

separated by a comma, semicolon or tabulator and each line with CR/LF.

If a particular pattern is larger than 240 X 200 pixels, other portions in the upper

right exceeding this boundary will be truncated. In contrast, if the pattern is

smaller than 240 X 200 pixels, all missing pixels in the upper right part are

supplemented with an entry zero.

2. Basic board operations.

 There are four main controlling buttons in the GUI mainframe that you

should carefully consider and think twice before using them, tabulated as follow.

21

Operation Description

Four main actions will be proceeded if this button is activated,

the loading of the driver for IEEE 1394, the initialization of the

interface, the resetting of the MMA driving board and the

transfer of all initial parameters required for the initialization.

Moreover, a selection dialogue box appears if more than one

MMA board is connected. Anyway, the button becomes

enabled when the initialization succeeds.

When the ‘Power’ button is activated, it causes the board

supply voltage to be applied to the MMA board and to energize

the amplifiers for the analog MMA data channels as well. In

case of power – off state, all pins of the ZIF socket are idle and

the MMA device can be exchanged without any risk.

The pre – selected files in the list of the GUI mainframe will be

transferred to the board when this button is pressed. Two modes

of data transfer are involved, single pattern mode and sequence

mode as mentioned in the previous chapter.

Using the Start button can really start and terminate the MMA

operation cycle
Table 3.1 Description of all necessary buttons in the GUI mainframe.

3. Configurations.

 3.1 General parameters.

Figure 3.2 Options Dialog – Page General.

22

 - Chip Configuration. The chip configuration file contains all

important chip – related characteristic data needed for the proper and smooth

MMA operation. It is obligatory that the user select this file. Otherwise, the

initialization of the MMA driving board fails with an error message shown. Be

careful, wrong configuration files with potentially – problematic data patterns

may result in incorrect deflection values. Even worse, the MMA board and other

electronic components can be severely damaged.

 - Cycle Timing. ‘On Time” denotes the time of the nominal

deflection, i.e. the time during which each deflection pattern is statically applied

to the MMA. In term of the ‘Off Time”, the values which are greater than 17

times of the ‘On Time’ are acceptable.

 - Cycle Trigger. The description of how each mode works is already

described in Chapter 2. Keep in mind that this triggering mode is set to be read –

only during the MMA operation cycle.

 3.2 Temperature control.

 A peltier element mounted on a cooper block is the MMA temperature

controller, which is in close contact with the back of the MMA housing. Its

nominal value can be set as well. Moreover, two sensors are used to monitor the

temperature. One is the peltier sensor inside the cooper block (Peltier sensor)

and the other is on the backside of the cooling plate (Board sensor).

Figure 3.3 Options Dialog – Pate Temperature.

23

 3.3 Sequence mode parameters.

Figure 3.4 Options Dialog – Page Sequence Mode.

 The ‘Sequence Frame Rate’ represents the number of transferred MMA

data patterns per second from the PC to the board. Furthermore, it is limited by

the PC hardware’s performance. If it is set to be greater than the value offered

by the hardware, the data transfer will proceed only at the maximum rate

without any data loss.

 3.4 IEEE 1394 bus parameter.

24

Figure 3.5 Options Dialog – Page IEEE 1394 Bus.

 - Data Transfer Mode. Three methods of the data transfer are

available, i.e. asynchronous, isochronous and isochronous with external IEEE

1394 sources. For isochronous mode, the data transfer is allocated within certain

timing constraints via a broadcast data delivery at regular time intervals.

Normally, the control commands for the interaction of the PC with the MMA

board abide by this method. However, the method can be changed and it is

highly recommended to use the isochronous mode.

 - Number of Boards Sharing Isochronous Bandwidth. If more than

one board is connected to the IEEE 1394 bus, each allocated bandwidth must be

reduced in order to equally share the bandwidth to other boards. Therefore, the

maximum frame rate for each further additional board linked to the bus is

decreased.

25

CHAPTER 4

Simulation in LabVIEW

1. LabVIEW’s advantages

 LabVIEW stands for Laboratory Virtual Instrument Engineering

Workbench. It is a programming environment in which the program is created

by graphical notations. However, it is not only a programming language but also

an interactive program development and execution system widely used by

scientists and engineers of several disciplines. Compared to other types of

programming, LabVIEW provides users with stunning interesting advantages to

be given as examples below.

 1. LabVIEW can greatly reduce the amount of time the user needs

to create one particular program. Because of the special design for taking

measurements, analyzing the data, presenting the results and versatile graphical

user interface, it increases the productivity of the user’s work several orders of

magnitude.

 2. LabVIEW offers more flexibility than standard laboratory

instruments. Due to being software – based, the program exactly created can be

modified in moments. Moreover, a fraction of the cost of traditional instruments

is able to achieve with virtual instrument.

 3. LabVIEW has the extensive libraries of functions and

subroutines helping the user solve most programming tasks. Furthermore, the

userdo not have to face difficulties of the fuss of the pointers, memory

allocation, and arcane programming problems.

 4. LabVIEW eliminates a lot of syntactical details associated with

text – based languages. Thus, even an amateur programmer or a person who has

no experience in programming can create such a powerful virtual instrument.

 5. LabVIEW performs parallel and multiple executions at the same

time. Based on the flow of the data, the program is executed only if the dataflow

reaches that object. Moreover, the wiring of multiple nodes is allowed so that

data flows into many applications simultaneously.

26

Figure 5.1 LabVIEW starting window.

2. LabVIEW’s components.

 All programs created by LabVIEW consist mainly of three main parts.

 2.1 Front panel.

 The front panel is the interactive user interface of a program. As

named, it simulates the front panel of a physical instrument. It can contain

knobs, push buttons, graphs and many other controls and indicators.

 2.2 Block diagram.

 The block diagram is the program’s source code, constructed in

LabVIEW’s programming language. It is also the actual executable program,

comprising lower – level programs, built – in functions, constants and program

execution control structure. Noticeably, the front panel objects have

corresponding terminals on the block diagram so that data can pass from the

user to the program and back to the user.

 2.3 Icon.

 The icon is a program’s pictorial representation and is used as an

object in the block diagram of another program.

27

CHAPTER 5

Programming and Simulation in LabVIEW

1. Front panel.

 Front panel is simply the interactive window for a user to communicate

with a program. While running the program, the front panel must be open to

allow the user to input data to the executing program. It could be very simple,

consisting of a few controls and indicators, or sophisticated so that several

comments should be implanted on it. In this project, the front panel controlling

the MMA operation has been created and its description will be discussed here.

Figure 5.1 Front panel for controlling the MMA operation cycle.

 1. Error display. This message board displays any errors occurring during

the flow of data. Additionally, software error codes are usually shown in order

to help the user solve the problem or debug the program.

28

 2. ASKM48kCEK ActiveX container. This container is a displaying

window showing the deflection pattern of a particular micromirror array during

the MMA operation cycle.

 3. Intensity graph ‘Pattern’. This graph illustrates the deflection pattern of

the only currently – existing pattern after the user creates it.

 4. Indication display. The indication display contains two BOOLEAN

indicators, square LEDs, indicating the status of the initialization and the power.

If these processes are successfully triggered, the LEDs automatically light up.

 5. Parameter setting panel. The panel provides the user with the real –

time manipulation of the modifiable parameters for controlling the MMA

operation cycle.

 6. Operating command panel. All basic commands to control the MMA

operation cycle are included here.

 7. Pattern – management command panel. This panel deals with file

management, either saving or opening the patterns.

 8. Number of board control. This control receives the number of MMA

boards for sharing the bandwidth. However, after the initialization process, it is

set to be read – only.

 9. Pattern creating panel. The panel is responsible for designing the

pattern either a random pattern or a tiled pattern, by alternatively checking the

‘tick box’.

 10. Program – created pattern array indicator. The array indicator

demonstrates the value of degree of deflection for each element in the pattern.

2. Block diagram.

 These following block diagrams are created to help control the

instrumental system for the pump – probe experiment. Many important

functional parts are included in the diagram and most of them correspond to the

objects on the front panel. Keep in mind that the diagram works by the left – to

right dataflow, by which the order of action is indicated by the number in the

block diagram, and multiple wiring is allowed. Therefore, the subsequent

explanations are mainly described part by part for short.

29

 2.1 Pre – setting step.

Figure 5.1 Pre - setting part of the block diagram in LabVIEW.

 1. ActiveX container ASKM48kCEK. The container provides the

 program with information and ActiveX objects needed for the

 MMA operation cycle and the simulation.

 2. Automation open. The purpose of this function is to return the

 ‘automation refnum’, pointing to the specific ActiveX object.

 Furthermore, the BOOLEAN value ‘F’ wired to function

 indicates that LabVIEW tries to reach the ‘instance’ of the

 refnum which is already open. If it fails, LabVIEW will create a

 new instance. Noticeably, the error information is first produced.

 3. Invoke node ‘Stop’. This node is placed at the very first part of

 the block diagram to stop the running MMA operation cycle if

 the user forgets to stop it before exiting the program.

 4. Property node ‘ChipCfgFile’. The node reads all necessary

 characteristic data of an individual MMA chip contained in the

 chip configuration file for the preparation of the new operation.

 The file path is wired to the node as shown.

 5. Property node ‘NumberOfBoards’. It is required to tell the driver

 how many MMA boards of which the bandwidth has to be shared

 is currently used by receiving the number from the ‘Number of

 board control’. However, the property is set to be read – only

 after the initialization process.

 6. Property node ‘SimulationMode’. The ActiveX control, this

 node, is set to allow testing of the container software without

 board connection. Anyway, it is performed only if the

 BOOLEAN value ‘T’ is wired to the node and, similarly, set to

 be read – only after the initialization process.

30

 2.2 Initialization step and MMA board preparation.

Figure 5.2 (top) Initialization checkpoint in case of (top) no error and (bottom) any errors.

 1. Invoke node ‘Init’. The node initializes the MMA board, the

 IEEE1394 bus driver and opens the interface. However, this step

 is highly crucial for the MMA operation and requires the

 checkpoint. Therefore, the subsequent ‘Case structure’ is created

 to examine whether the initialization process succeeds.

 2. Case structure ‘Initialization checkpoint’. This is meant to fix the

 problem when the initialization fails. The structure is also

 connected to the previous ‘Property node Init’ via the error –

 containing wire. If the initialization process is successful, no

 errors are found and the structure does nothing here whereas if it

 fails, the node transfers the error information to the structure,

 causing the power applied to the board to be shut and the board

 will be re – initialized.

 3. Property node ‘InitState’. This node returns the BOOLEAN

 value ‘TRUE’ to the LED indicator ‘Initialization’ when the

 initialization succeeds, causing the LED to light up. In contrast,

31

 it returns “FALSE’ to the indicator, provided that the

 initialization fails, and the LED does not light up.

 4. Property node ‘OperationState’. The node returns the

 BOOLEAN value ‘TRUE’ to the LED indicator ‘Start’ if

 the MMA operation is still running, causing it to light up.

 However, it returns ‘FALSE’ to the indicator provided the MMA

 operation is stopped. As a result, the LED does not glow up.

 5. Invoke node ‘PowerOn’. The node is responsible for the

 application of the voltage to the board.

 6. Property node ‘PowerState’. The node returns the BOOLEAN

 value ‘TRUE’ to the LED indicator ‘Power On’ when the

 initialization succeeds, causing the LED to light up. In contrast,

 it returns “FALSE’ to the indicator, in case of the failure, and the

 LED does not light up.

Figure 5.3 The glowing of ‘Initialization’ and ‘Power On’ indicators when they obtain

‘TRUE’ BOOLEAN value.

 2.3 MMA operation cycle.

 - Error.

Figure 5.4 Error condition of the Case Structure. No executions are performed.

 The next step after the Initialization Checkpoint is the MMA

operation cycle. However, in case of the emergence of the errors no matter

where they come from, the operation cannot be executed to avoid any possible

errors and eventual damage to the board. Consequently, the ‘Case structure’

linked to the error – containing wire does nothing here. Eventually, the MMA

32

operation is terminated and the board is powered off. The mechanism of how to

terminate the MMA operation and stop the application will be discussed later.

 - No error.

Figure 5.5 While loop and Event Structure for controlling MMA operation are inside the ‘No

Error’ case.

 In contrast, the execution can be further performed when no errors

are discovered. Under this condition, the ‘While loop’ containing the ‘Event

structure’ for controlling the MMA operation is engaged. It means that the user

can arbitrarily manipulate the parameters to be input in the MMA operation

unless the ‘While loop’ is terminated. Moreover, the special feature of the

combination between the ‘While loop’ and the ‘Event structure’ is the limitless

parameter manipulation until the event which is meant to stop the while loop is

triggered. The followings are the detailed description of each event.

 2.4 Data manipulating events.

 1. Mode of data Transfer and cycle trigger mode.

Figure 5.6 An event for the change in values of Mode of Data Transfer and Cycle Trigger

Mode.

 1.1 Cluster ‘Parameter setting’ and ‘Unbundle by name’. The ‘

 Unbundle by name’ unbundles the cluster ‘Parameter setting’

 and receives two input parameters ‘Mode of Data transfer’ and

 ‘Cycle Trigger Mode’ from the ‘Parameter setting panel’.

 These parameters are then transferred to the double Property

 node ‘DataTransferMode’ and ‘CycleTriggerSource’.

33

 1.2 Double property node ‘DataTransferMode’ and

 ‘CycleTriggerSource’. The node ‘DataTransferMode’ and

 ‘CycleTriggerSource’ obtains the input parameters ‘Mode of

 data transfer’ and ‘Cycle Trigger Mode’ respectively. Then, it

 implements these values to the board for the MMA operation.

 2. On – Time, Off – Time, Pattern Ready Delay1 and Pattern

 Ready Delay2.

Figure 5.7 An event for the changes in values of On – Time, Off – Time, Pattern Ready

Delay 1 and 2.

 2.1 Local variable ‘Parameter setting’ and ‘Unbundle by name’.

 The local variable’ Parameter setting’ is meant to represent the

 corresponding cluster because the cluster has been used in

 another event. Yet, its function is the same as the original one.

 The ‘Unbundle by name’ unbundles the cluster as shown and

 receives the related input parameters from the ‘Parameter

 setting’ front panel. The parameters are then transferred to the

 next relationship– checking functions.

 2.2 Relationship – checking functions. There are two sets of

 functions examining the validity of the input parameters. The

 first upper group confirms if ‘On – Time’ is equal to or less than

34

 ‘Off – Time’ divided by a number 17. Another lower group tests

 whether the sum of ‘Time Delay 1’ and ‘Time Delay 2’ is less

 than or equal to ‘On – Time’ multiplied by 1000. Thereby, both

 comparison functions returns the BOOLEAN value ‘TRUE’ if

 the relationship is conserved.

 2.3 Condition – executing ‘Case structure’. Two case structures are

 involved in the execution. The upper structure generates a new

 ‘Off – Time’ by replacing the old value with ‘On – Time’

 multiplied by 17 whereas nothing happens to the ‘On – Time’,

 in case that the relationship between On – Time and Off – Time

 is not true. For the lower structure, it uses the value ‘50

 microseconds’ in place of both original ‘Time Delay 1’ and

 ‘Time Delay 2’ if these values do not conform to the

 relationship. Anyway, both structures do nothing and transfer

 these parameters to the corresponding property node.

 2.4 Multiple property node ‘OnTime’, ‘OffTime’,

 ‘PatternReadyDelay1’, ‘PatternReadyDelay2’. This node

 receives the unproblematic values which correspond to the

 node’s function. After that, the parameters are implemented to

 the MMA operation cycle.

 2.5 – 2.7 Implicit property nodes ‘Time Delay 1’, ‘Off Time’ and

 ‘Time Delay 2’. These nodes also receive the corrected

 input parameters ‘Time Delay 1’, ‘Off – Time’ and

 ‘Time Delay 2’ respectively in order to display the

 adjusted suitable values to the user.

35

 3. Operation state (Timeout event).

Figure 5.8 The ‘Timeout’ event that indicate the state of the MMA operation.

 3.1 Property node ‘OperationState’. The node returns the

 BOOLEAN value ‘TRUE’ to the LED indicator ‘Start’ if the

 MMA operation is still running but ‘FALSE’ if the operation

 stops.

 3.2 Square LED indicator ‘Start’. The purpose of this indicator is to

 inform the state of the MMA operation cycle to the user. If the

 operation is running, the LED lights up where it does not glow

 up if the operation stops.

 4. Create the pattern.

Figure 5.9 An event generating a random pattern.

36

Figure 5.10 An event generating a tiled pattern.

 4.1 Cluster ‘Pattern creating panel’ and ‘Unbundle by name’. The

 ‘Unbundle by name’ receives the information for creating the

 pattern from the cluster ‘Pattern creating panel’ in the front

 panel, including the number of rows and columns, two values of

 different degrees of deflection and the BOOLEAN value from

 the tick box . ‘TRUE’ is for creating a tiled pattern and

 ‘FALSE’ for a random one. After that, these parameters are

 transferred to the next case structure.

 4.2 Case structure for creating the pattern. The structure executes

 the creation of a random pattern when receiving the ‘TRUE’

 value but a tiled pattern when getting the ‘FALSE’ value.

 4.3 Mechanisms of creating the patterns.

37

 - Random pattern.

 The first 1 – dimensional array is initiated with the ‘For loop’

#3, starting from the iteration index of ‘0’. Then, the numeric function ‘Random

number’ in the ‘For loop’ #2 starts producing a random number subsequently

multiplied by 255 and converted to 8 – bit unsigned value. After the loop#2

completes the first 1 X 200 – dimensional array, the loop #2 ends and the loop

#3 begins the second iteration. Another 1 X 200 - dimensional array is created

and later concatenated to the previous array, resulting in the 2 X 200 –

dimensional array. Repeatedly, the iteration keeps on until the 240 X 200 –

dimensional array finally results. The graphical illustration is shown in figure

5.11.

Figure 5.11 Conceptual idea of creating a random pattern.

 - Tiled pattern.

 The idea of constructing the pattern is based on creating the

tiles with alternatively – arranged fashion. Firstly, the loop #2 controls the

generation of two different patterns, one beginning with a patch of higher degree

of deflection and another starting with a lower degree of deflection. The

condition (#3) of which a particular manner is chosen is also based on the

iteration number of the loop #2. If the iteration number is even number, the

former pattern is executed while the latter is created provided that the number is

38

odd. Anyway, the loop keeps on running until it completes the number of

columns.

 Secondly, after one pattern – creating style is reached, the

loop #4 (or #5) starts running. Inside the loop #4 (or #5) are two ‘For loops’,

upper and lower loops #6, producing different one – dimensional array with

alternate degrees of deflection. The criterion for choosing the loops #6 is also

based on whether the iteration number is even or odd. If the iteration number is

even, the upper loop #6 (or #7) creates the array. Otherwise, the lower loop #6

(or #7) creates the array instead. No matter which loop creates the array, each

array is continually concatenated so that the 1 X 200 – dimensional array is

produced when the loop #4 (or #5) ends. However, the loop controlling the loop

#4 (or #5) keeps on iterating, creating many more 1 X 200 – dimensional arrays

concatenated to one another. Eventually, the array with (240/#column) X 200

dimension results.

 Thirdly, the arrays produced from either loop #4 or #5 are

also concatenated to one another until it completes the whole pattern.

Figure 5.12 The concept of creating the tiled pattern. The 20 X 24 – dimensional array with

four rows and six columns is demonstrated. Each square represents each element of the array.

39

 5. Stop running the program.

Figure 5.13 An event to exit the application. The top shows the ‘true’ case where as the

bottom shows the ‘false’ case.

 5.1 Two button dialog. The dialog box appears ensuring the user

 that he really wants to exit the application. If the user selects

 ‘Yes, I do.’, the dialogue box returns ‘TRUE’ value whereas it

 returns ‘FALSE’ to the adjacent case structure if the user

 selects ‘No, continue the program.

 5.2 Case structure. The case structure does nothing if it receives the

 ‘FALSE’ value and the program is still running. On the other

 hand, the case structure performs the execution to stop the

 MMA operation cycle when the ‘TRUE’ value is obtained.

 Moreover, the Invoke node stop inside returns ‘0’ to the

 comparison function ‘Not equal to zero’, causing the LED

 indicator ‘Start’ to light down and the dialogue also returns the

 ‘TRUE’ value to the conditional terminal. So the program stops.

40

 6. Stop the operation cycle.

Figure 5.14 An event to terminate the MMA operation cycle.

 6.1 Invoke node ‘Stop’. The node terminates the MMA operation

 cycle and returns ‘0’ to the comparison function ‘Not equal to

 zero’ if it succeeds.

 6.2 Comparison function ‘Not equal to zero’. It returns the

 ‘FALSE’ value if it receives ‘o’, resulting in the lighting down

 of the LED indicator ‘Start’. Otherwise, the BOOLEAN

 value ‘TURE’ is produced.

 7. Open a new pattern.

Figure 5.15 An event to open a new pattern from a folder. (top) Nothing occurs if the user

denies opening the file and (bottom) the mechanism of opening the file is shown.

 7.1 Open/Create/ReplacefFile. The function pops up the dialogue

 box for selecting a data pattern file to be opened. It returns the

 ‘TRUE’ if the user decides not to open the file but the ‘FALSE’

 provided the users selects the file and chooses ‘Open’. Both

 BOOLEAN values go to the case structure.

41

 7.2 Read from binary file. It reads the binary data from the file path

 converts it into data. The data type is determined by the data

 wired to this function.

 7.3 Close file. The function closes the file specified by the refnum.

 8. Upload the pattern to the board.

Figure 5.16 An event for uploading the pattern to the board.

 8.1 Invoke node ‘WriteArray’. It writes an array by receiving the

 array already available and converts it into a variant array

 compatible with ActiveX Control.

 8.2 Invoke node ‘UploadDataToBoard’. This node transfers the

 latched array to the MMA board with ‘dwDelayTime’ after the

 previous upload. It means that if the time does not expires, the

 control waits for the remaining time and then uploads the

 pattern. In case, ‘0’ is wired to it, indicating that the pattern will

 be uploaded immediately.

 9. Save the pattern.

42

Figure 5.17 An event for saving the existing pattern. (top) The mechanism of how to save the

pattern and (bottom) nothing happens if the user denies saving the pattern.

 9.1 Open/Create/ReplacefFile. The function pops up the dialogue

 box for selecting a file directory to save the pattern. It

 returns the ‘TRUE’ if the user decides not to write the data file

 but the ‘FALSE’ provided the users really wants to save the file

 and then chooses ‘Save’. Both BOOLEAN values go to the case

 structure.

 9.2 Write to binary file. It writes the binary data to the new file,

 appends the data to an already – existing file or replaces a

 content of a file.

 9.3 Close file. The function closes the file specified by the refnum.

 10. Start the operation cycle.

Figure 5.18 An event to start the MMA operation cycle.

 10.1 Invoke node ‘Start’. The node starts the MMA operation

 cycle and returns ‘0’ to the comparison function ‘Equal to

 zero’ if it succeeds.

 10.2 Comparison function ‘Equal to zero’. It returns the

 ‘TRUE’ value if it receives ‘o’, causing the LED indicator

 ‘Start’ to light up. Otherwise, the BOOLEAN value

 ‘FALSE’ is produced.

43

 2.4 Data display and system shut – down.

Figure 5.19 Last part of the block diagram.

 1. Intensity graph ‘Pattern’. The graph shows the deflection pattern

 of the recently – created pattern. Each degree of deflection is

 represented by spectral colors, ranging from the lowest values

 with black to the highest value with white.

 2. Array indicator ‘Pattern created program. The indicator displays

 the real numeric value of degree of deflection for each element.

 3. Invoke node ‘PowerOff’. The node powers off the MMA board

 before the program really stops.

 4. Comparison function ‘Not equal to zero’. The function returns

 ‘FALSE’ to the nexyt properties if it obtains ‘0’. Otherwise, it

 returns ‘TRUE’.

 5. ‘Automation close’. All ActiveX objects are closed and no longer

 used in LabVIEW.

 6. Properties ‘Power On’ and ‘Initialization’. The properties

 represent the real LED indicators ‘Power On’ and ‘Initialization’.

 These LEDs light down when they receive the BOOLEAN value

 ‘FALSE’.

 7. Error in. The function receives the error information and displays

 the error and its code on the message board in the front panel.

44

 2.5 Event – triggering conditions.

Event Buttons or panel

required for triggering

Action

Mode of data transfer and

cycle trigger mode.

Parameter setting panel

Change in the

corresponding values. On – Time, Off – Time,

Pattern Ready Delay 1 & 2.

Operation state.

(Timeout event)

- -

Create the pattern. PATTERN button.

Pressing the button.

Stop running the program. EXIT button.

Stop the operation cycle. STOP button.

Open a new pattern. OPEN button.

Upload the pattern to the

board.

UPLOAD button.

Save the pattern. SAVE button.

Start the operation cycle. START button.
Table 5.1 Summary of conditions required for triggering the data – manipulating events.

3. Simulation.

Figure 5.20 The simulation in LabVIEW for a tiled pattern.

45

Figure 5.21 The simulation in LabVIEW for a random pattern.

46

CHAPTER 6

Conclusion

 The LabVIEW program for controlling the MMA operation cycle in the

pump – probe experiment has been created. The program can be mainly divided

into two parts, the front panel and the block diagram. The front panel simulates

the interactive interface to manipulate the physical instruments. All important

panels required to control the instruments are also created. For example, saving

the pattern, loading the pattern, manipulating the parameters, starting and

terminating the MMA operation cycle. Moreover, the indication display contains

the LED indicators, with the purpose of informing the status of the MMA

operation cycle to the user.

 Speaking of the block diagram, necessary error – handling application

loop is also created to deal with some common problems. Besides, the

relationships for suitable input parameters are programmed to check whether the

parameters are valid or not.

 However, the LabVIEW program can still perform just fundamental

controls. Further optimization process of the MMA deflection pattern is

required.

47

REFERENCES.

1. Fabrication of binary phase plates for the management of orbital-angular-

 momentum superposition states.

2. A. Preumont, R. Bastaits, M. Horodinca, G. Rodrigues, I. Romanescu and I.

 Surdej. Segmented Deformable Mirror for Adaptive Optics.

3. Hamelinck, Roger. Adaptive Deformable Mirror Based on Electromagnetic

 Actuators. Eindhoven: Technische Universiteit Eindhoven, 2010.

4. Weber S. M., Waldis S., Noell W. Linear micromirror array for broadband

 femtosecond pulse shaping in phase and amplitude. Proc. of SPIE, 7208:

 720805 – 1 -720805 – 6.

5. Madec P.Y. Overview of Deformable Mirror Technologies for Adaptive

 Optics and Astronomy.

6. Bronson, R. J. (2007). Modeling and Control of MEMS Micromirror Arrays

with Nonlinearities and Parametric Uncertainties (Doctoral Dissertation).

 University of Florida.

