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Abstract

This report is the summary of our work during the DESY Summer Student Pro-
gramme 2013. It describes measurement of long range correlations of charged par-
ticles in data from pp collisions collected by the ATLAS experiment at a center of
mass energy

√
s = 2.76 TeV. The correlations are compared to those predicted by

hydrodynamical models of the collision which contain one or two particle-emitting
sources. First preparations for a similar analysis with high multiplicity data are
also presented.
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1 Introduction and theory

Studies of correlations between particles produced in high energy collisions may help to
understand partonic interactions leading to hadronization in a more complete way. Long
range correlations are very useful, since they provide understanding of the early stages
of a collision. Such correlations cannot appear in the later stages of a collision, because
the system has to be small enough to let them extend through itself.
Recently a general method has been proposed [1] to study correlations using several bins
in rapidity. This method is intended to provide a statistical test for hydrodynamical
models which describe the longitudinal expansion of the system in the early stages of
a collision. In particular, it should give information about the number of independent
particle-emitting sources created in the collision. Assuming that the particles from each
source are distributed randomly (i.e. it does not influence long range correlations), the
generating function for the particle distribution in B bins takes the form [2]:

Φ (z1, ..., zB) ≡
∑

n1+...+nB=n

P (n1, ..., nB) zn1
1 ... z

nB
B =

N∏
i=1

φi (p1iz1 + ...+ pBizB) (1)

where φi is the generating function describing the multiplicity distribution of particles
emitted by the i-th source. The parameters pki are probabilities of the multinomial
distribution P (n1, ..., nB;n) according to which the i-th source sends particles to the k-
th bin. It is obvious that p1i + ... + pBi = 1 for each i. It is worth mentioning that the
generating functions φi do not have to be all different.
In this analysis factorial moments are used, where a factorial moment of rank r (r =
i1 + ...+ iB) is defined as:

Fi1,...,iB ≡

〈
B∏
j=1

nj!

(nj − ij)!

〉
=
∂rΦ(z1, ..., zB)

∂zi11 ... ∂z
iB
B

(2)

with derivatives taken at z1 = ... = zB = 1.
One can also define moments of the total multiplicity distribution which are given by:

Fi ≡
〈

n!

(n− i)!

〉
=
∂iΦ(z)

∂zi

∣∣∣∣
z=1

(3)

In the case of three bins, L - left, R - right and C - central, one gets pL + pR + pC = 1.
It is easy to show that the expressions for 19 measurable factorial moments up to rank 3
can be expressed in terms of 5 independent parameters (two of the probabilities and the
first three moments of the total multiplicity distribution) [3]:

F100 = pLF1, F010 = pCF1 F001 = pRF1

F200 = p2LF2, F020 = p2CF2 F002 = p2RF2

F110 = pLpCF2, F101 = pLpRF2 F011 = pCpRF2

F210 = p2LpCF3, F012 = pCp
2
RF3

F201 = p2LpRF3 F102 = pLp
2
RF3

F120 = pLp
2
CF3, F111 = pLpCpRF3 F021 = p2CpRF3

F300 = p3LF3, F030 = p3CF3 F003 = p3RF3

(4)
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where

FiL,iC ,iR =

〈
nL!

(nL − iL)!

nC !

(nC − iC)!

nR!

(nR − iR)!

〉
(5)

and nb is the number of particles in bin b.
In the case of two independent sources the number of measurable factorial moments up
to rank 3 amounts to 19 for three bins. The numbers of parameters in the model is 10.
The formulas for the factorial moments read:

F100 = pL1F
(1)
1 + pL2F

(2)
1

F010 = pC1F
(1)
1 + pC2F

(2)
1

F001 = pR1F
(1)
1 + pR2F

(2)
1

F110 = pL1pC1F
(1)
2 + pL2pC2F

(2)
2 + (pL1pC2 + pL2pC1)F

(1)
1 F

(2)
1

F101 = pL1pR1F
(1)
2 + pL2pR2F

(2)
2 + (pL1pR2 + pL2pR1)F

(1)
1 F

(2)
1

F011 = pC1pR1F
(1)
2 + pC2pR2F

(2)
2 + (pC1pR2 + pC2pR1)F

(1)
1 F

(2)
1

F200 = p2L1F
(1)
2 + p2L2F

(2)
2 + 2pL1pL2F

(1)
1 F

(2)
1

F020 = p2C1F
(1)
2 + p2C2F

(2)
2 + 2pC1pC2F

(1)
1 F

(2)
1

F002 = p2R1F
(1)
2 + p2R2F

(2)
2 + 2pR1pR2F

(1)
1 F

(2)
1

F111 = pL1pC1pR1F
(1)
3 + pL2pC2pR2F

(2)
3

+(pL2pC1pR1 + pL1pC2pR1 + pL1pC1pR2)F
(1)
2 F

(2)
1

+(pL1pC2pR2 + pL2pC1pR2 + pL2pC2pR1)F
(1)
1 F

(2)
2

F210 = p2L1pC1F
(1)
3 + p2L2pC2F

(2)
3

+(p2L1pC2 + 2pL1pL2pC1)F
(1)
2 F

(2)
1

+(p2L2pC1 + 2pL1pL2pC2)F
(1)
1 F

(2)
2

F012 = pC1p
2
R1F

(1)
3 + pC2p

2
R2F

(2)
3

+(pC2p
2
R1 + 2pC1pR1pR2)F

(1)
2 F

(2)
1

+(pC1p
2
R2 + 2pR1pR2pC2)F

(1)
1 F

(2)
2

F201 = p2L1pR1F
(1)
3 + p2L2pR2F

(2)
3

+(p2L1pR2 + 2pL1pL2pR1)F
(1)
2 F

(2)
1

+(p2L2pR1 + 2pL1pL2pR2)F
(1)
1 F

(2)
2

F102 = pL1p
2
R1F

(1)
3 + pL2p

2
R2F

(2)
3

+(pL2p
2
R1 + 2pL1pR1pR2)F

(1)
2 F

(2)
1

+(pL1p
2
R2 + 2pR1pR2pL2)F

(1)
1 F

(2)
2

F021 = p2C1pR1F
(1)
3 + p2C2pR2F

(2)
3

+(p2C1pR2 + 2pC1pC2pR1)F
(1)
2 F

(2)
1

+(p2C2pR1 + 2pC1pC2pR2)F
(1)
1 F

(2)
2
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F120 = pL1p
2
C1F

(1)
3 + pL2p

2
C2F

(2)
3

+(pL2p
2
C1 + 2pL1pC1pC2)F

(1)
2 F

(2)
1

+(pL1p
2
C2 + 2pC1pC2pL2)F

(1)
1 F

(2)
2

F300 = p3L1F
(1)
3 + p3L2F

(2)
3 + 3p2L1pL2F

(1)
2 F

(2)
1 + 3pL1p

2
L2F

(1)
1 F

(2)
2

F030 = p3C1F
(1)
3 + p3C2F

(2)
3 + 3pC1p

2
C2F

(1)
1 F

(2)
2 + 3p2C1pC2F

(1)
2 F

(2)
1

F003 = p3R1F
(1)
3 + p3R2F

(2)
3 + 3pR1p

2
R2F

(1)
1 F

(2)
2 + 3p2R1pR2F

(1)
2 F

(2)
1 (6)

In this analysis a measurement of multiplicity correlations in three bins in pseudorapidity
is presented for pp collisions at a center of mass energy

√
s = 2.76 TeV. For the measure-

ment a central bin and two other symmetrically placed bins around 0 are chosen. The
width of each bin is 0.5 pseudorapidity units and the distance between the centres of the
left and right bin varies from 1.5 to 3.5 units. The obtained factorial moments are then
used to test the validity of models with either one or two sources. In the first case some
of the measured factorial moments are used to calculate the parameters of the model.
Then one can express the other factorial moments through these parameters and compare
them to the measured values. However, for the two source model a simultaneous fit of 10
parameters to 19 equations has to be done.

2 Event selection

The dataset used in this analysis was collected in 2011 during run 178229 at the ATLAS
detector. It contains data from pp collisions with reduced pileup. Minimum bias events
are selected according to the following requirements:

• Minimum Bias trigger - EF mbMBTS 2 NoAlg which requires at least two hits in
the MBTS detectors irrespectively of their side,

• Primary Vertex and at least two tracks pointing to this vertex,

• At least one good reconstructed track1,

• Requirement on z coordinate of the primary vertex: |vz| < 100 mm.

Table 1 shows the number of events passing the subsequent selection cuts.

Cuts Events [millions]

Total after trigger 4.5
After good vertex 3.8
After good tracks 3.7
|vz| < 100 mm 3.2

Table 1: Cut flow of minimum bias event selection.

1Definition of good tracks is given in the next section
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3 Track selection

In this analysis ATLAS Standard Minimum Bias (MB2.0) cuts [4] are used for selecting
good reconstructed tracks. The additional requirements on d0 and z0 sin(θ) significances
help to remove tracks which are incorrectly reconstructed or come from secondary par-
ticles. Table 2 defines the requirements for tracks which are considered to be correctly
reconstructed.

pT > 0.1 GeV
|η| < 2.5
Number of Pixel hits ≥ 1
Number of SCT hits ≥ 2 for 0.1 GeV < pT < 0.2 GeV
Number of SCT hits ≥ 4 for 0.2 GeV < pT < 0.3 GeV
Number of SCT hits ≥ 6 for pT > 0.3 GeV
dPV
0 significance ≤ 3
zPV
0 sin(θ) significance ≤ 3
|dPV

0 | ≤ 1.5 mm
|zPV

0 sin(θ)| ≤ 1.5 mm
Number of B-Layer hits
(if expected)

≥ 1

TMath::Prob(χ2,DoF) ≥ 0.01 for pT > 10 GeV

Table 2: Cuts defining good tracks.
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Figure 1: Distributions of φ (left) and η (right). Black histograms show all tracks while
the red histograms show only tracks passing the selection cuts. The track selection does
not change the φ distribution and removes peaks from the η distribution.

4 Tracking efficiency, fakes and secondaries ratios

4.1 Track reconstruction efficiency

The tracking efficiency for this analysis is obtained using a Monte Carlo sample from
Pythia 6 which contains 8.8 millions of events. It is calculated in bins of η and pT
using the information about generated particles and reconstructed tracks matching to
these particles. Reconstructed tracks are required to pass the selection cuts defined in
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Section 3, while the following conditions are used to select primary particles from the
generator level:

• Particle has to be stable and coming from primary vertex which is given by a
barcode value between 0 and 200000,

• Particle has to be charged,

• Requirement on particle pseudorapidity |η| < 2.5,

• Transverse momentum requirement pT > 100 MeV.

With these requirements the tracking efficiency can be defined as:

eff =
N reco

matched

Ntruth

(7)

where N reco
matched is the number of good reconstructed tracks matched with a particle from

the truth (generator) level and Ntruth is the number of all generated particles.
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Figure 2: Track reconstruction efficiency as a function of η and pT (left) and as a projec-
tion on the η axis (right).

4.2 Fakes fraction

The tracking efficiency calculated according to (7) does not include the effect of incorrectly
reconstructed tracks called fakes. In order to be able to correct for this contribution the
fakes ratio is defined as:

f =
N reco

unmatched

N reco
(8)

where N reco
unmatched is the number of reconstructed tracks which do not have a matching

particle at the truth level and N reco is the number of all reconstructed tracks.
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Figure 3: Fakes ratio as a function of η and pT (left) and as a projection on the η axis
(right).

4.3 Secondaries fraction

Secondary particles created in decays of primary particles or in their interaction with the
detector material also contribute to the overall tracking efficiency. The secondaries ratio
is defined as:

s =
N reco,sec

matched

N reco
(9)

where N reco,sec
matched is the number of reconstructed tracks which match a secondary particle

from the truth level and N reco is the number of all reconstructed tracks. The identification
of secondary particles is based on their barcode which is higher than 200000.

η
-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

[G
eV

]
Tp

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
2.2

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

η
-2 -1 0 1 2

se
co

nd
ar

ie
s 

ra
tio

0

0.005

0.01

0.015

0.02

Figure 4: Secondaries ratio as a function of η and pT (left) and as a projection on the η
axis (right).

5 Corrections

5.1 The HBOM procedure

For correcting inefficiencies of track reconstruction the Hit Backspace Once More (HBOM)
procedure [5] is chosen. This method relies only on the correct definition of the tracking
efficiency. It implies that random removal of tracks from the sample can imitate detector
inefficiencies.
The observable, that has to be corrected, is first measured using all reconstructed tracks
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which pass the selection cuts. This step is called the 0th iteration of the procedure. Then
some of the tracks are removed by comparing for each track the tracking efficiency to
a random number r generated uniformly between 0 and 1. Important is that one needs
to use the tracking efficiency eff corrected by the fakes and secondaries ratios (f and s
respectively):

eff

(1− f)(1− s)
> r (10)

Tracks which do not satisfy condition (10) are rejected from the sample. After that, the
observable is calculated again which defines one iteration of the HBOM method. Further
iterations follow the same principle. With several iterations carried out, an exponential
or polynomial can be fitted to the distribution of the observable as a function of the
iteration number. An extrapolation of the fitted function to the iteration -1 can then
estimate the true value of the observable. Figure 5 is showing an example of the HBOM
method applied to a factorial moment.
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Figure 5: Black points mark the values of a factorial moment after subsequent iterations
of the HBOM procedure. The green point is the true value obtained by extrapolating a
fitted function.

5.2 Validation of the HBOM method

For testing the HBOM procedure, the Monte Carlo sample is divided into two parts. The
first one is used to calculate tracking efficiency, secondaries and fakes ratios, while the
second one to measure factorial moments. The test is carried out by comparing factorial
moments obtained from the generator level and from unfolding the reconstructed level
using various fitting functions and numbers of iterations. On the truth level only particles
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which satisfy the requirements listed in Section 4.1. are counted, while tracks from the
reconstructed level have to pass the selection cuts described in Section 3.
Factorial moments are measured in three bins with varying distance between the centres
of the left and right bin as shown in Table 3. The central bin is the same in each case.

Left Central Right

−1 < η < −0.5 −0.25 < η < 0.25 0.5 < η < 1
−1.5 < η < −1 −0.25 < η < 0.25 1 < η < 1.5
−2 < η < −1.5 −0.25 < η < 0.25 1.5 < η < 2

Table 3: Pseudorapidity intervals used to validate the HBOM method and for measure-
ment.

To validate the HBOM method different polynomials and exponentials are tested with a
varying number of iterations. In this report we present the comparison of a 6th degree
polynomial and the exponential function eax

2+bx+c. These functions give the best results
when the number of iterations is set to 7. For further iterations the distribution of
factorial moments flattens which affects strongly the fitting function and therefore the
unfolded true values.
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Figure 6: Comparison of values calculated from the truth level (red points) and unfolded
from the reconstructed level (black points) for factorial moments F100 and F300. Unfolding
is done using a polynomial of degree 6 (left) and an exponential function eax

2+bx+c (right).

Figures 6 and 7 show tests of the HBOM procedure for two factorial moments (F100 and
F300). The factorial moments are presented as a function of the distance between the
centres of the left and right bin. Values in the first figure are calculated with standard
track selection cuts. Both functions are shown to unfold true values of the factorial
moments incorrectly. The difference between the true and unfolded values for the poly-
nomial is growing with larger distance between left and right bin, while values obtained

10



η∆0 0.5 1 1.5 2 2.5 3 3.5 4

10
0

F

0

0.5

1

1.5

2

2.5

η∆0 0.5 1 1.5 2 2.5 3 3.5 4

10
0

F

0

0.5

1

1.5

2

2.5

η∆0 0.5 1 1.5 2 2.5 3 3.5 4

30
0

F

0

5

10

15

20

25

30

35

η∆0 0.5 1 1.5 2 2.5 3 3.5 4

30
0

F

0

5

10

15

20

25

30

35

40

Figure 7: Comparison of values calculated from the truth level (red points) and unfolded
from the reconstructed level (black points) for factorial moments F100 and F300 with the
pT cut changed from 100 MeV to 200 MeV. Unfolding is done using a polynomial of degree
6 (left) and an exponential function eax

2+bx+c (right). Points representing the truth level
are shifted for better visibility.

from extrapolating the exponential function are systematically shifted with respect to
the truth level. In the second figure the pT cut is increased to 200 MeV because of a
higher tracking efficiency in this pT range. With this change the polynomial still fails to
correct the measurements, but the exponential is working correctly. In further analysis
the exponential eax

2+bx+c is used with an increased pT cut to unfold data.
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6 Statistical and systematic uncertainties

Three main sources of uncertainties are studied: statistical uncertainties of factorial mo-
ments and the tracking efficiency as well as the pT resolution. An overall uncertainty is
obtained as the square root of the sum of squared uncertainties from all sources. Figure 9
shows measured values of all factorial moments together with their total uncertainties.

6.1 Statistical uncertainty

Statistical uncertainties of the factorial moments are obtained by propagating errors
coming from the fitting procedure of the HBOM method. The fitted function f has the
following form:

f = eax
2+bx+c + d (11)

The statistical error of a factorial moment F is then calculated as:

∆F =

√(
∂f

∂a
∆a

)2

+

(
∂f

∂b
∆b

)2

+

(
∂f

∂c
∆c

)2

+

(
∂f

∂d
∆d

)2

(12)

with derivatives taken at x = −1, to where f is extrapolated.

6.2 Efficiency uncertainty

Statistical errors of tracking efficiency, secondaries and fakes ratios are connected with
llimited statistics of the Monte Carlo sample. To evaluate the influence of these uncer-
tainties, the measurement of factorial moments is repeated with efficiency increased and
decreased by these errors. Results of this procedure are upper and lower limits on each
factorial moment connected with efficiency uncertainties.

6.3 Transversal momentum resolution

Systematic uncertainty is connected with a finite pT resolution of the detector. The
resolution is calculated using the Monte Carlo sample as the ratio:

res =
|ptruthT − precoT |

precoT

(13)

where precoT is the transversal momentum of a reconstructed track and ptruthT is the transver-
sal momentum of the truth level particle matched with this track.
In Figure 8 one can see that the resolution is about 3.5% near the 200 MeV cut. The pT
cut is changed by this value up and down and factorial moments are calculated again.
Similarly to the efficiency uncertainty, one gets upper and lower limits connected with
finite pT resolution on the measured quantities.
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Figure 9: Measured values of 19 factorial moments up to rank three with their total
uncertainties.
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7 Results

To compare factorial moments obtained from data with models the following pseudora-
pidity bins are chosen:

left: −2 < η < −1.5
central: −0.25 < η < 0.25

right: 1.5 < η < 2

To measure long range correlations, bins with the biggest possible distance between them
are needed. The distance between the chosen bins is the largest, for which the HBOM
method should be working correctly (tracking efficiency in the left and right bin is higher
than 60% and is decreasing rapidly for |η| > 2).

7.1 One source model

For comparison of data with a one source model, the factorial moments F100, F010, F001,
F002, F003 are chosen to express parameters of the model described by (4). Then the
rest of the factorial moments is calculated according to these equations. Figure 10 shows
factorial moments obtained from data and model. Data values are systematically shifted
with respect to the model, which indicates that a one source model seems to be disfavoured
in pp collisions.

Figure 10: Comparison between factorial moments calculated from data (red points) and
a model with one source (blue points). Points are shifted for better visibility.

14



7.2 Model with two sources

The equations in a two source model (6) are not as easy to solve as the ones in a model
with one source. In this case the basic idea is to carry out a simultaneous fit of 10
parameters to all 19 equations using the MINUIT package. Uncertainties are obtained
by propagating errors from the fitting procedure. Figure 11 shows factorial moments
obtained from data and model. Data are in good agreement with a two source model.

Figure 11: Comparison between factorial moments calculated from data (red points) and
a model with two sources (blue points). Points are shifted for better visibility.

Values of all factorial moments measured from data and calculated from the one and two
source models can be found in Appendix A.

8 High multiplicity pp collisions

A plan for the future is to extend the measurements presented in this report to high multi-
plicity pp collisions at the same center of mass energy (

√
s = 2.76 TeV). First preparations

for such an analysis have been made. The dataset for high multiplicity measurements
was collected in 2013 during runs 219257, 219263, 219296, 219305, 219322 and 219364 at
the ATLAS detector. High multiplicity events are selected by a high multiplicity trigger
(HMT) - EF mbSpTrkVtxMh pp trk50 L1TE0 pileupSup which requires at least 50 re-
constructed tracks with pT over 400 MeV.
A Monte Carlo sample is not available for these data, so a request for production of a
sample has to be made. For this request, cuts for a ChargedTracksFilter, which will pass
generated events to simulation at the detector level, are estimated using the minimum
bias Monte Carlo sample. As signal, which should be passed, we define all events which
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contain at least 50 reconstructed tracks satisfying the condition pT > 400 MeV. Table 4
summarizes the results of this analysis.

In addition, studies of the HMT efficiency are conducted. The efficiency of this trigger is
calculated in two steps. The HMT efficiency is first evaluated with respect to the Level
1 trigger L1 TE0, by which the HMT is seeded:

εHMT =
# events passing(L1 TE0 ∧ HMT ∧ offline selection)

# events passing(L1 TE0 ∧ offline selection)
(14)

Then the efficiency of this Level 1 trigger is calculated with respect to the minimum bias
trigger mbSpTrk (which is known to have a 100% efficiency):

εL1 TE0 =
# events passing(mbSpTrk ∧ L1 TE0 ∧ offline selection)

# events passing(mbSpTrk ∧ offline selection)
(15)

In both (12) and (13) offline selection denotes events with at least two tracks satisfying
the following requirements:

• track pT > 100 MeV,

• track pseudorapidity |η| < 2.5,

• at least one Pixel hit,

• at least two SCT hits for tracks with 100 MeV < pT < 200 MeV,

• at least four SCT hits for tracks with 200 MeV < pT < 300 MeV,

• at least six SCT hits for tracks with pT > 300 MeV,

• at least one B-Layer hit when expected,

• TMath::Prob(χ2,DoF) > 0.01 for tracks with pT > 10 GeV,

• |dPV
0 | < 1.5 mm,

• |zPV
0 sin(θ)| < 1.5 mm.

Figures 12 and 13 show both steps of efficiency calculation as a function of track mul-
tiplicity for tracks with pT > 400 MeV. The HMT efficiency reaches 100% for about 10
tracks above the designed threshold (50 tracks), but the efficiency of the L1 TE0 trigger
is not reaching 100% for multiplicities lower than 110 tracks. Therefore data triggered by
the chosen HMT cannot be used in the analysis, because propagating errors connected
with the trigger efficiency would give very large uncertainties of the measured values.
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Figure 12: Efficiency of HMT as a function of the number of tracks with pT > 400 MeV.
A definition of the efficiency can be found in the text.
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Figure 13: Efficiency of L1 TE0 as a function of the number of tracks with pT > 400
MeV. A definition of the efficiency can be found in the text.
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PPPPPPPPPnpart

pT 370 [MeV] 380 [MeV] 390 [MeV] 400 [MeV] 410 [MeV]

45 100 100 100 100 100
5.47 6.05 6.70 7.42 8.25

46 100 100 100 100 100
6.12 6.78 7.53 8.38 9.35

47 100 100 100 100 100
6.85 7.61 8.47 9.47 10.6

48 100 100 100 100 100
7.68 8.57 9.56 10.71 12.03

49 100 100 100 100 100
8.62 9.65 10.82 12.14 13.68

50 100 100 100 100 100
9.70 10.88 12.24 13.81 15.6

51 100 100 100 100 100
10.93 12.29 13.88 15.68 17.79

52 100 100 100 99.99 99.96
12.34 13.93 15.76 17.88 20.38

53 100 100 100 99.97 99.84
13.93 15.78 17.93 20.45 23.28

54 99.99 99.97 99.97 99.88 99.63
15.75 17.89 20.4 23.25 25.56

55 99.97 99.91 99.84 99.68 99.22
17.89 20.36 23.25 26.61 30.43

56 99.87 99.78 99.64 99.3 98.47
20.29 23.12 26.5 30.37 34.62

57 99.73 99.61 99.31 98.65 97.18
23.02 26.35 30.23 34.56 39.34

58 99.52 99.15 98.62 97.47 95.4
26.13 29.95 34.44 39.31 44.61

59 99.07 98.45 97.49 95.67 92.67
29.76 34.11 39.01 44.24 50.09

Table 4: Analysis of cuts for a ChargedTracksFilter. Results are shown for different cuts
on the number of particles at the truth level (npart) with a certain pT . The upper value in
each cell shows which percentage of the signal is passed, while the lower value describes
the percentage of the signal in the sample of all passed events.
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9 Conclusions

Measurements of charged particle correlations in three bins of pseudorapidity in pp col-
lisions at a center of mass energy

√
s = 2.76 TeV from the ATLAS experiment are

presented in this report. Factorial moments are measured for particles with a transversal
momentum above 200 MeV.
The results are compared with predictions of hydrodynamical models with one or two
particle-emitting sources. The one source model seems to be disfavoured by the data,
while the two source model is in good agreement with the data.
Preparations for a similar analysis with high multiplicity collisions are presented. The
measurement cannot be continued because of a low efficiency for the chosen high multi-
plicity trigger.
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A Appendix

factorial moment measured value ∆stat ∆up
eff ∆down

eff ∆up
pT

∆down
pT

F100 1.977 0.005 0.011 0.011 0.033 0.035
F010 1.909 0.044 0.008 0.006 0.032 0.028
F001 1.977 0.005 0.012 0.008 0.034 0.033
F110 5.868 0.011 0.068 0.056 0.186 0.181
F101 5.749 0.012 0.06 0.058 0.177 0.199
F011 5.871 0.011 0.059 0.042 0.189 0.173
F200 6.632 0.016 0.071 0.088 0.201 0.233
F020 6.395 0.022 0.059 0.04 0.198 0.173
F002 6.628 0.016 0.069 0.078 0.184 0.245
F111 23.471 0.073 0.396 0.353 1.039 1.108
F012 26.218 0.099 0.324 0.449 1.047 1.334
F021 26.126 0.095 0.39 0.275 1.182 1.082
F102 25.034 0.096 0.307 0.455 0.968 1.413
F120 26.066 0.094 0.502 0.3 1.130 1.171
F210 26.193 0.098 0.461 0.43 1.072 1.336
F201 25.019 0.097 0.344 0.507 1.018 1.356
F300 31.256 0.163 0.492 0.744 1.316 1.658
F030 30.755 0.144 0.488 0.267 1.318 1.240
F003 31.144 0.163 0.187 0.722 0.979 1.976

Table 5: Measured values of all factorial moments up to rank three in pseudorapidity
bins |η| < 0.25 and 1.5 < |η| < 2 together with statistical and systematical uncertainties.
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factorial moment predicted value ∆up ∆down

F110 6.40 0.47 0.49
F101 6.63 0.35 0.41
F011 6.4 0.41 0.44
F200 6.63 0.54 0.57
F020 6.18 0.67 0.66
F111 30.08 2.25 3.27
F012 30.07 1.99 3.10
F021 29.03 3.19 3.82
F102 31.15 1.72 3.06
F120 29.04 3.35 3.95
F210 30.09 2.91 3.74
F201 31.16 2.57 3.58
F300 31.17 3.55 4.32
F030 28.03 4.43 4.72

Table 6: Values of factorial moments in pseudorapidity bins |η| < 0.25 and 1.5 < |η| < 2
predicted by the one source model together with propagated uncertainties.

factorial moment fitted value ∆

F100 1.95 0.07
F010 1.98 0.09
F001 1.96 0.08
F110 6.16 0.34
F101 5.67 0.29
F011 6.13 0.35
F200 6.42 0.4
F020 6.24 0.55
F002 6.41 0.46
F111 24.44 1.7
F012 27.55 2.4
F021 26.36 2.61
F102 24.1 1.94
F120 26.58 2.45
F210 27.77 2.07
F201 24.01 1.77
F300 30.44 2.52
F030 26.9 3.46
F003 30.33 3.16

Table 7: Values of factorial moments in pseudorapidity bins |η| < 0.25 and 1.5 < |η| < 2
fitted from the two source model together with propagated uncertainties.

22


