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Abstract 

We have investigated the influence of the lattice defects on the diffraction image of crystals. 

The numerical tool was developed to calculate the intensity of the damaged crystals. Our 

analysis was performed for two types of uncorrelated defects – vacancies and 

displacements, and for two types of 2D lattices – square and hexagonal. Also, the analytical 

formulas for intensity were obtained for both types of defects. Finally, we obtained a general 

formula for intensity scattered from monoatomic crystals with uncorrelated defects, which 

allows us to recover the intensity from the undamaged crystal, if we know the underlying 

defect statistics. 
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Introduction 

When an incoming beam of x-rays interacts with a solid material, its scattering can be observed. 

There are two different types of scattering – elastic and inelastic. The former one is called Thomson 

scattering and it is the one used for structural investigations by x-ray diffraction. [1] 

The incoming wave with the wave vector ik
r

 scatters on an electron so the outcoming wave 

propagates with a wave vector fk
r

, which has the same amplitude. The scattering vector q
r

 is then 

defined as 

if kkq
rrr −= .      (1) 

If we calculate the amplitude of the outcoming wave and sum it over all atoms in the crystal, 

we get 
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where N  is the number of atoms in the lattice, jr

r
 is the position of the j-th atom and  fj  is the 

atomic form factor defined as 
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where )'(rat

rρ  is the atomic electron density. Then we have an access to the intensity through 
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that is, unlike the complex amplitude, a measurable quantity.  

It often occurs during diffraction imaging, that the measured crystal or biomolecule is slightly 

damaged, therefore the measured diffraction pattern does not correspond to the structure we 

wanted to determine – the undamaged crystal. The goal of this paper is to investigate, if it is ever 

possible to recover the intensity of the undamaged crystal from the intensity distribution of the 

damaged crystal. 

I. Defects in crystal 

Here we introduce the definitions of the crucial terms used in this paper.  

 

Crystal – a solid with a spatial periodicity. [2] 

Lattice – summarizes the geometry of the underlying periodic structure in crystal. [2] In 2D case, it is 

fully defined by the base vectors 21,aa
rr

. The linear combination of these vectors with the integer 

coefficients 21,nn  covers all the lattice points r
r

: 
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Defect – any region in the crystal, where the microscopic arrangement differs from that of a perfect 

crystal. [2] 

idealI  – the intensity obtained from an undamaged crystal, without defects. 

R
I – the average intensity obtained from a crystal with some random defects. 



 

The calculations were performed for two types of lattices – square and hexagonal (fig. 1)  with the 

base vectors plotted in the figures.  

 
Fig. 1. The types of lattices used in calculations 

 

All calculations were made using the interatomic distances as units. Atomic form factor was that of 

neutral carbon. 

 

II. Imaging of monoatomic crystals with vacancies 

The first type of the investigated defects were vacancies. Vacancies occur, when an atom is 

missing from a lattice site. To implement this type of defect, one can make the atomic form factor to 

be a random variable with a discrete probability distribution, 
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where pv stays for the probability of the vacancy. Once the form factor of a given atom equals zero, 

its contribution to the sum in the formula (2) becomes zero, i.e., the atom is missing. For this special 

case the analytical calculation of the intensity was performed with the result 
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Fig. 2 shows the intensity as a function of the scattering vector q
r

 for two values of parameter pv . 

First one is the intensity of the undamaged crystal (pv = 0) and the second one is rather extreme case 

(pv = 0.8) calculated numerically. In agreement with the analytical formula, it can be seen, that the 

intensity peaks are much brighter in the first case because in the second case the scaling factor 
2)1( vp− and also the addition of a background term blur the diffraction pattern. For a detailed look, 

fig. 3 shows the intensity along the red line depicted in the right part of fig. 2. The periodically 

distributed Bragg peaks are still dominating over the background, but their magnitude decreases due 

to the vacancies. We also compared the results obtained by analytical and numerical approach to 

assure, that they are the same. For the numerical calculation we averaged over 100 realizations of 

random defects, and found them in agreement  with the analytical formula. 
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Fig. 2. Logarithm of intensity in 2D q-space for different probabilities of vacancy:  

pv = 0 (left), pv = 0.8 (right). 

 

 

Fig. 3. Logarithm of the intensity along the line plotted in fig. 2 right as a function of 
22
yx qqq += . 

Figure gives the comparison of the analytical and numerical results. 

 

III. Imaging of monoatomic crystals with displacements 

The second type of defects we investigated were displacements. In our simplified model, the 

atom position can be displaced by a constant vector r
r∆ with a given probability, thus it is a random 

variable with the probability distribution 
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where 0ir
r

 is the position of the i-th atom in the equilibrium position and pd  is the probability of the 

displacement. After the analytical calculation of the intensity one can obtain  
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Fig. 3 shows the scattered intensity as a function of the scattering vector q
r

 for two values of 

parameter pd .The first one corresponds to a crystal without defects (using the hexagonal lattice) and 

the second one is an extreme case with all the atoms displaced from their equilibrium position. 

According to formula (9), in the case of q
r

vector perpendicular to the constant vector r
r∆ (which has 

been chosen as (0.1; 0.1) in the figure), the multiplier of the Iideal equals one and therefore for such q
r

 

values there is no difference of damaged pattern when compared to undamaged crystal. On the 

other hand, for q
r

values parallel to r
r∆ , the periodic behavior is present due to the cosine term and 

also the background term becomes stronger. Fig. 5 shows, similarly as in the case of vacancies, the 

intensity dependence along the red line depicted in the right part of fig. 4. Again, the numerical and 

analytical results converge for sufficient number of realizations. 

 

   
Fig. 4. Logarithm of intensity in 2D q-space for different probabilities of displacement:  

pd = 0 (left), pd = 1 (right) 

 

 
Fig. 5. Logarithm of the intensity along the line in fig. 4 right. The figure compares the analytical and 

numerical results. 

 



IV. Monoatomic crystals with uncorrelated defects 

After coping with two special cases of uncorrelated defects, one can ask whether there is any 

general formula concerning the relationship between the intensity of the damaged and undamaged 

crystal. Indeed, it can be proven, that for any kind of the uncorrelated defects occurring in a 

monoatomic crystal: 
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where ),( XqS
r

is a scaling factor and ),( XqB
r

is a background term, both dependent on q
r

vector 

and X , which depend on the defect statistics. 

Now we can proceed to answering the question proposed in the title of this paper. Once we 

know the defect statistics of the uncorrelated defects in a monoatomic crystal, with the formula (10) 

it is always possible to recover the intensity of the undamaged crystal from the intensity of the 

damaged crystal. This becomes non-trivial, if the crystal is not monoatomic and even worse, if the 

defects are correlated.  

The numerical tool we have written can perform analysis of defects for any 2D crystal geometry 

and can be easily extended to other kinds of defects as well as to 3D lattices. 

 

V. Conclusions 

The aim of this paper was to study the possibilities of recovering the diffraction image of an 

undamaged crystal from the diffraction image of the damaged crystal. We have performed the 

calculations of the scattered intensity for two special cases of defects on two types of 2D lattices – 

square and hexagonal. The first type of defect were vacancies and the second type were 

displacements of atoms from their equilibrium positions. Both cases were calculated analytically and 

numerically. Moreover, the general formula for intensity for any kind of the uncorrelated defects was 

derived as a scaling factor multiplying the intensity of the undamaged crystal with the addition of a 

background term. Using this formula one can recover the intensity of the undamaged crystal, if we 

know the underlying defect statistics. This formula can be a useful tool to handle the damage, which 

happens to a crystal during a diffraction process. On the other hand, its applicability is limited, since 

it is valid just for the case of monoatomic crystals with the uncorrelated defects. Therefore, the 

challenge for the future is how to deal also with the correlated defects. 
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