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Abstract

We conduct a study of an extension of the Standard Model (SM) with two Higgs
doublets, the so-called Two Higgs Doublet Model (2HDM). In general the 2HDM
gives rise to flavour changing neutral currents (FCNC), that can be solved requir-
ing the alignment of the Yukawa matrices that couple the leptons to the Higgs
doublets, these are the Aligned 2HDM (A2HDM), that are a generalization of the
previously analyzed 2HDM without FCNCs (type-I, type-II, type-X, type-Y). We
calculate all the Feynman rules of the theory and implement them in the Monte-
Carlo event-generator WHIZARD.
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1 Introduction

The last year the ATLAS and CMS collaborations announced the discovery of a new
neutral boson, and the measured data is compatible with the Standard Model (SM)
Higgs boson. This boson appear to have all the properties expected for a Higgs like par-
ticle, associated with the spontaneous breaking of the electroweak symmetry: fermionic
couplings proportional to the fermion mass and the expected coupling strength to the
electroweak gauge bosons (W+,W−,Z,γ).

An important question to answer is if it is an unique Higgs boson, which is assumed
in the SM, or if it is only a part of a richer scalar sector. The simplest extension to the
minimal Higgs model consists in adding an extra scalar doublet, this is the so called Two
Higgs Doublet Model (2HDM), where we have five physical scalar bosons: two charged
fields H± and three neutral ones h, H and A. In principle, this gives us three possibilities
for the recently discovered neutral boson.

In general, the multi Higgs doublet models give rise to flavour changing neutral
currents (FCNC) which are absent in the minimal Higgs model and are very constrained
by experiment. The tree-level FCNC can be eliminated requiring the alignment in flavour
space of the Yukawa matrices that couple the leptons to the different Higgs bosons, these
are the so called Aligned Two Higgs Doublet Model (A2HDM). The A2HDM constitutes
a very general framework which includes, for particular values of its parameters, all
the previously considered 2HDM without FCNCs and incorporates new sources of CP
violation.

2 The Higgs potential

The 2HDM extends the SM with another scalar doublet with weak hypercharge Y = 1
2
,

where Q = T3 + Y where Q is the electric charge in proton charge units and the Ti
are the weak isospin operators. In the spontaneous symmetry breaking procedure the
neutral component (the vacuum has to respect the electromagnetic gauge symmetry) of
the scalar doublets acquire a, in general complex, vacuum expectation value (vev) given
by
〈
0
∣∣φTj (x)

∣∣0〉 = 1√
2
(0, vje

iθj). Using the U(1)Y symmetry we can enforce θ1 = 0, being

only the relative phase θ = θ2 − θ1 observable. Instead of working in the (φ1, φ2) basis
we can perform a global SU(2) transformation and work in the so-called Higgs basis
(Φ1,Φ2), where only one of the doublets acquires a non-zero vev:(

Φ1

Φ2

)
=

(
cos β sin β
− sin β cos β

)(
φ1

e−iθφ2

)
with tan β = v2

v1
.
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In that way Φ1 plays the role of the SM Higgs doublet with a vev given by v ≡√
v21 + v22 ∼

(√
2GF

)−1/2
and are parametrized by:

Φ1 =

(
G+

1√
2

(v + S1 + iG0)

)
Φ2 =

(
H+

1√
2

(S2 + iS3)

)
whereG±, G0 are the Goldstone bosons andH±, S1, S2, S3 the charged and neutral Higgs
bosons, all of them with zero vev. The proportionality constants have been chosen in
order to have canonical kinetic terms in the Lagrangian and the mass eigenstates neutral
Higgs bosons h, H, A are related to the Si through an orthogonal transformation, that
diagonalizes the mass matrix.

Working in the Higgs basis, the most general potential which spontaneously breaks
the SU(2)L ⊗ U(1)Y gauge group is:

V = µ1Φ
†
1Φ1 + µ2Φ

†
2Φ2 +

(
µ3Φ

†
1Φ2 + µ∗3Φ

†
2Φ1

)
+

+λ1

(
Φ†1Φ1

)2
+ λ2

(
Φ†2Φ2

)2
+ λ3

(
Φ†1Φ1

)(
Φ†2Φ2

)
+ λ4

(
Φ†1Φ2

)(
Φ†2Φ1

)
+

+
[
λ5

(
Φ†1Φ2

)
+ λ6

(
Φ†1Φ1

)
+ λ7

(
Φ†2Φ2

)](
Φ†1Φ2

)
+

+
[
λ∗5

(
Φ†2Φ1

)
+ λ∗6

(
Φ†1Φ1

)
+ λ∗7

(
Φ†2Φ2

)](
Φ†2Φ1

)
The hermiticity of the potential requires all the parameters to be real except µ3, λ5,

λ6 and λ7 that can be in general complex, giving us a total of 14 real parameters. The
minimization conditions impose the relations µ1 = −λ1v2 and µ3 = −1

2
λ6v

2.

Expanding the potential in terms of the fields we obtain the quadratic (mass), cu-
bic and quartic interactions between the Higgs bosons and the Goldstone bosons. For
example, the mass terms are (the Goldstone are massless in principle):

V2 = M2
H±H+H− +

1

2
(S1, S2, S3)M

 S1
S2
S3


with

MH± = µ2 +
1

2
λ3v

2

and

M =

 2v2λ1 v2λR6 −v2λI6
v2λR6 M2

H± + 1
2
v2(λ4 + 2λR5 ) −v2λI5

−v2λI6 −v2λI5 M2
H± + 1

2
v2(λ4 − 2λR5 )


where λRi and λIi are the real and imaginary parts of λi. DiagonalizingM we obtain the
masses of h, H and A, and the orthogonal matrix R which relates them with the Si. It
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is worth noting that in the CP-conserving case (λ5, λ6, λ7) ∈ R the S3 field does not mix
with the two others and the scalar spectrum contains a neutral CP-odd field A = S3

and two neutral CP-even fields h and H, also the vertices involving an odd number of
S3 vanish.

To set the notation the Si and the physical neutral Higgs bosons h0i = (h,H,A) are
related by h0i = RijSj.

3 The gauge bosons

We obtain the Higgs-gauge bosons interactions gauging the SU(2)L ⊗ U(1)Y group
through the covariant derivatives of the Higgs doublets. The part of the Lagrangian
involving the electroweak gauge bosons is:

LK +
2∑
j=1

(DµΦj)
†DµΦj + LGF

where LK is the usual kinetic term of gauge theories, LGF is a gauge-fixing term and we
can express the covariant derivative as1 Dµ = ∂µ + ieQAµ + i g

sin θW
(T3 −Q sin2 θW )Zµ +

ig
(
T+W−

µ + T−W+
µ

)
. The covariant derivative terms are responsible of giving mass to

the gauge bosons satisfying MW = gv/2 and MZ = gv/2 cos θW .

Following [1] we adopt the Rξ gauge-fixing term with ξ = 1:

LGF = −1

2
(∂µA

µ)2 − 1

2

(
∂µZ

µ +MZG
0
)2 − (∂µW+

µ + iMWG
+
) (
∂νW−

ν − iMWG
−)

which has the advantage of canceling the quadratic terms involving gauge and Goldstone
bosons interactions and provides the Goldstone bosons with the masses M±

G = MW and
M0

G = MZ .

Expanding the three terms we obtain the kinetic terms of the Higgs bosons, the
kinetic and mass terms of the Goldstone bosons, the usual Lagrangian of the gauge
bosons (including their self-interactions and the masses of W± and Z) and interaction
terms of the form φV V , φφV and φφV V (where φ is a Higgs or Goldstone boson and V
a gauge boson).

1θW is the weak mixing angle which relates the Aµ and Zµ with the original gauge bosons of the
SU(2)L ⊗ U(1)Y group. It satisfies g sin θW = e.
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4 The fermions

Like in the SM, to give mass to the fermions we have to couple them to the Higgs
doublets via Yukawa couplings. In the 2HDM, the couplings to Φ1 are fixed, because
the interactions have to be diagonal in flavour space in the mass eigenstates basis; but
the coupling to Φ2 can be non-diagonal and unrelated to the fermion masses. Then,
we have to different Yukawa matrices coupled to the right-handed fermion fields that
cannot be, in general, diagonalized simultaneously; giving rise to FCNCs.

The most general Yukawa Lagrangian is [2]:

LY = −
√

2

v
{Q̄′L (M ′

dΦ1 + Y ′dΦ2) d
′
R + Q̄′L(M ′

uΦ̃1 + Y ′uΦ̃2)u
′
R+

+L̄′L (M ′
lΦ1 + Y ′l Φ2) e

′
R + h.c.}

where Q′L and L′L are the left-quark and left-leptonic SU(2)L doublets, Φ̃j = iτ2Φ
∗
j

are the charge-conjugate fields, fR,L = 1±γ5
2
f the chirality projections, all the fields

are written as vectors in the flavour space2 d′ = (d′, s′, b′) = V d, u′ = (u′, c′, t′) = u,
e′ = (e′, µ′, τ ′) = e and ν ′ = (ν ′e, ν

′
µ, ν

′
τ ) = ν and the M ′

f and Y ′f (f = d, u, l) are 3 × 3
matrices in the flavour space.

The Yukawa matrices in the mass eigenstates basis are related to the primed ones by
M ′

d = VMdV
†, Y ′d = V YdV

†, M ′
u,l = Mu,l and Y ′u,l = Yu,l. Expanding the Lagrangian,

the part corresponding to the vev of Φ1 is:

LFM = −d̄Mdd− ūMuu− ēMle

that corresponds to the mass term of the Dirac Lagrangian.

4.1 The A2HDM

Like we have seen the Yf matrices can be in general non-diagonal, generating FCNCs.
The standard way of solving this problem is, working in the (φ1, φ2) basis, imposing that
every right-handed fermion field couples to only one of the Higgs douplets. In that way
there is only one matrix that can be diagonalized. There are different choices that result
in the so-called type-I, II, X, Y models.

Model dR uR eR
Type-I φ2 φ2 φ2

Type-II φ1 φ2 φ1

Type-X φ2 φ2 φ1

Type-Y φ1 φ2 φ2

Model ζd ζu ζl
Type-I cot β cot β cot β
Type-II − tan β cot β − tan β
Type-X cot β cot β − tan β
Type-Y − tan β cot β cot β

Inert 0 0 0
2V is the CKM or quark mixing matrix.
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A more general way of getting rid of the tree-level FCNCs is imposing the alignment
in flavour space of the Yukawa couplings to the two Higgs doublets, this guarantees that
the Yf and Mf are proportional and can be diagonalized simultaneously. Setting

Yd,l = ζd,lMd,l, Yu = ζ∗uMu

we have three complex parameters that generates models with fermionic coupligs to
the scalar fields proportional to the fermion’s masses, V as the only source of flavour
changing phenomena and possibility of having new sources of CP-violation through the
complex nature of the ζf .

5 WHIZARD

WHIZARD[3] is a Monte-Carlo event generator, designed for the efficient calculation of mul-
tiparticle scattering cross sections and simulated event samples. It generates complete
tree-level matrix elements by calling the matrix-element generator O’Mega[4], integrates
them over phase space and evaluates distribution of observables. WHIZARD can describe
the physics of the Standard Model and other well-known extensions of it, like the mini-
mal supersymmetric Standard Model (MSSM). The purpose of this project has been to
implement the 2HDM and also a simplified version of it, the A2HDM with trivial CKM
matrix.

5.1 model.mdl

A model is collection of particles (with their properties), numerical parameters (coupling
constants, masses, widths, . . . ) and the interactions (Feynman rules). In order to
implement all that in WHIZARD the first step is to create a file model.mdl, located in
the share/models subdirectory of the WHIZARD installation, which contains all the basic
parameters of the model with their values, the particle content with their quantum
numbers (electric charge, spin, isospin, SU(3)C representation, . . . ) and a list of all
the interaction vertices. This is used only for the generation of the phase space, the
Feynman rules are stored in a different file within the O’Mega directory.

5.2 parameters.model.f90

We also need a fortran file parameters.model.f90 located in the src/models subdi-
rectory. This file contains all the functional relations among the coupling constants and
the basic parameters that we have define in the previous file. In the 2HDM, due to
the great number of vertices and the existence of several mixing matrices (neutral Higgs
bosons mixing matrix, CKM matrix) this process is error-prone and has been done with
the help of the symbolic computation software Wolfram Mathematicar.
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Figure 1: Example of the file model.mdl.

Figure 2: Example of the file parameters.model.f90.

5.3 omega model.ml

Finally, all the Feynman rules are encoded in the O’Mega file omega model.ml, located
in the src/omega/src subdirectory. The file is written in O’Caml, which is a object-
oriented programming language. Each vertex is described by the particles involved and
the type of interaction; all the kind of interactions allowed and the syntax structure are
described in the O’Mega manual.

Figure 3: Example of the file omega model.ml.
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