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1. Introduction. 
Recent determinations of the proton electric to magnetic form factor ratio from 

polarization transfer measurements  indicate an unexpected and dramatic discrepancy with the 

form factor ratio obtained using the Rosenbluth separation 

technique in unpolarized cross section measurements. This discrepancy has been explained as the 

effects of multiple photon exchange beyond the usual one-photon exchange approximation in the 

calculation of the elastic electron-proton scattering cross section. Since most of our 

understanding on the structure of the proton and atomic nuclei is based upon lepton scattering 

analyzed in terms of the single photon approximation; it is essential to definitively verify the 

contribution of multiple photon exchange. 

In June 2007, OLYMPUS collaboration submitted to DESY a letter of intent to carry out 

an experiment to definitively determine the contribution of multiple photon exchange in elastic 

lepton-nucleon scattering. The most direct evidence for multiple photon exchange would be a 

deviation from unity in the ratio of positron-proton to electron-proton elastic scattering cross 

sections. The experiment would utilize intense beams of electrons and positrons in the DORIS 

ring incident on an internal hydrogen gas target at an incident energy of 2.01 GeV and precisely 

measure elastic scattering at polar angles between 20 and 80 with high statistical and systematic 

precision. For this experiment we proposed to use the existing Bates Large Acceptance 

Spectrometer Toroid (BLAST) from MIT and an unpolarized internal gas target similar to one 

used by the HERMES experiment at 

HERA. 

The OLYMPUS (pOsitron-proton and eLectron-proton elastic scattering to test the 

hYpothesis ofMulti-Photon exchange Using doriS) collaboration comprises over fifty physicists 

from fifteen institutions in Germany, Italy, Russia, the United Kingdom, and the United States. 

The experiment takes advantage of unique features of the BLAST detector 

combined with an internal hydrogen gas target and the DORIS storage ring operated with both 

electrons and positrons. The systematic uncertainties are controllable at the percent level, and 

with the superior luminosity that can be provided at DORIS, this experiment will not be limited 

in statistical precision. 

 

2. The OLYMPUS spectrometer. 

 The OLYMPUS experiment will take advantage of the existing BLAST detector which 

was successfully operated at the MIT-Bates Linear Accelerator Center. The BLAST detector as 

it was configured at MIT-Bates is shown in Figure 1. It was situated on the South Hall 

 
Figure 1: Schematic of the BLAST detector showing the main detector elements. 
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storage ring just downstream of the injection point. The detector was based upon an eight sector, 

toroidal, magnetic field. The two horizontal sectors were instrumented with detector components 

while the two vertical sectors were used by the internal targets and the vacuum system for the 

beamline. 

The detector configuration we propose for OLYMPUS will use the BLAST toroidal 

magnet and instrument the horizontal sectors with the BLAST wire chambers and time of flight 

scintillators. As such the detector will be left/right symmetric. The drift chambers will provide 

charge particle tracking to determine the charge, momentum, scattering angles, and vertex for the 

charged particles produced. The time of flight scintillators will determine the relative timing of 

the reaction products and provide the trigger timing for the detector system. 

 The toroidal magnet shown in Fig. 2.  was designed and assembled at MIT-Bates. A 

toroidal configuration was chosen to ensure a small field along the beamline to minimize effects 

on the beam transport and also to have small gradients in the region of the target cell. The 

magnetic field in the region of the drift chambers was used to momentum analyze the charged 

particles produced during the experiment. It also minimized the number of low energy 

charged particles reaching the detectors. 

The toroid consists of eight copper coils placed symmetrically about the beamline. Each 

coil consists of 26 turns of hollow, 1.5 inch square copper tube organized into two layers of 13 

turns. The copper tubes are wrapped with a fiberglass tape and then potted with epoxy resin. The 

coils are cooled by owing water through the hollow conductors. During the BLAST experiment 

the normal operating current was 6730 A resulting in a maximum field around 3.8 kG. 

 
Figure 2: The eight coil BLAST toroid without its detectors. 

 The drift chambers shown in Figure 3. measured the momenta, charge, scattering angles, 

and vertices for the particles produced in the reactions studied with BLAST. This was done by 

tracking the charged particles in three dimensions through the toroidal magnetic field and 

reconstructing the trajectories. Measuring the curvature of the tracks yielded the particles 

momenta, and the directions of curvature determined their charge. Tracing the particles 

trajectories back to the target region allowed the scattering angles, polar and azimuthal, to be 

determined and the position of closest approach to the beam axis was taken as the vertex position 

for the event. 



5 
 

 
Figure 3: Photo of the BLAST drift chambers. 

 

To maximize the active area, the drift chambers were designed to fit between the coils of 

the toroidal magnet such that the top and bottom plates of the drift chamber frame were in the 

shadow of the coils as viewed from the target. The drift chambers had a large acceptance and 

nominally subtended the polar angular range 20
0
-80

0
  and ±15

0
 in azimuth with respect to the 

horizontal and were positioned and orientated such that 73.54
0
 with respect to the beam from the 

target center was perpendicular to the face of the chambers. Because of these choices the 

chambers were trapezoidal in shape (see Figure 4.). 

 
Figure 4: Top, bottom, and side views of the assembled drift chamber for a sector giving 

overall dimensions. 

 

Each sector in BLAST contained three drift chambers (inner, middle, and outer) joined 

together by two interconnecting sections to form a single gas volume (see Figure 5.). This was 

done so that only a single entrance and exit window was required for the combined drift 

chambers thus minimizing energy loss and multiple scattering. 
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Figure 5: Isometric view of all three drift chambers assembled into a single gas volume. 

Even with 18 planes of sense wires the track reconstruction was not straight forward. This 

was because the 6 sense wire planes in each of the three chambers in a sector were relatively 

close together and thus tended to yield a single point in space. Thus the track reconstruction had 

three space points with which to fit the momenta, scattering angles, charge, and vertex. And 

while this was possible there was no redundancy with which to measure of the accuracy of the 

reconstruction or to use the data to improve the track fitting parameters. Furthermore, if there 

was any additional hits in a chamber due to other tracks or noise these extra points could yield 

tracks that were not easily distinguished from the true tracks. Because of this we would like to 

add a triple GEM detector approximately 40 cm from the target in both sectors. 

This detector would be 90 cm long and trapezoidal in shape varying from 18 to 36 cm in 

height. The frames of these triple GEM detectors would be in front of the toroid coils so would 

not reduce the active area. A conservative 2D readout design with 1 mm line pitch should give 

position resolutions on the order of 150 microns comparable to that of the wire chambers and 

require less than 1280 channels of readout. 

  

The choice of GEM technology is based on the fact that GEM's are: 

- thin - < 0.7% radiation length 

- fast - can handle rates up to 500 kHz/cm2  

- 2D - readout can provide both X and Y information 

- compact - approximately 10 mm thick 

- accurate - resolutions better than 50 microns are possible 

- radiation tolerant 

- insensitive to magnetic fields 

 

In each sector of BLAST 16 vertical scintillator bars formed the time of flight (TOF) 

detector. The TOF detector was designed and produced at the University of New Hampshire to 

provide a fast, stable timing signal correlated with the time of each event at the target 

independent of which scintillator bar was struck. This signal was used to trigger the readout and 

data acquisition system for all other components and particularly provided the COMMON STOP 

signal for the drift chambers. This permitted relative timings among all components to be 

measured. The TOF detector also provided a measure of energy deposition to aid particle 

identification. Approximate position information was also possible from the timing difference 

between the top and bottom photomultiplier tubes. 

In BLAST the TOF detector curved behind (see Figure 6) the wire chambers and  

Cerenkov detectors in each sector roughly matching the angular coverage of the tracking detector 

in both polar (~20
0
 <  θ < ~80

0
) and azimuthal (± ~ 15

0
) projections. The forward four bars at θ < 

40
0
 were 119.4 cm high, 15.2 cm wide, and 2.54 cm thick. The remaining 12 bars at θ > 40

0
 were 

180.0 cm high, 26.2 cm wide, and 2.54 cm thick. Bicron BC-408 plastic scintillator was chosen 

for its fast response time (0.9 ns rise time) and long attenuation length (210 cm). Each TOF 
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scintillator bar was read out at both ends via Lucite light guides coupled to 3 inch diameter, 

Electron Tubes1 model 9822B02 photomultiplier tubes, PMTs, equipped with Electron Tubes 

EBA-01 bases. The light guides were bent to point away from the interaction region so the 

PMT's would be roughly perpendicular to the toroidal magnetic field. Mu-metal shielding was 

used around all PMT's. The bases have actively stabilized voltage dividers so that the timing is 

independent of the gain. 

 
Figure 6: TOF detector mounted in sub-detector support during assembly. 

 

 

3. Physics motivation 
In the course of the more than 50 year long history of elastic electron-proton scattering 

since Hofstadter [3] the separation of the proton's electric and magnetic form factors, G
p

E (Q
2
) 

and G
p

M (Q
2
), has been of particular interest. These two functions of Q

2
 describe the distribution 

of charge and magnetism of the proton and it is expected that precise ab initio calculations in 

terms of quarks and gluons will become available in the foreseeable future using lattice QCD 

techniques [4]. Until the 1990's the experimental method to separate GE(Q
2
) and GM(Q

2
) was 

based on the procedure by Rosenbluth [5] measuring the unpolarized elastic cross section at 

fixed four-momentum transfer, Q
2
, but with different electron scattering angles and incident 

beam energies. It was found that the Q
2
 dependence of both GE and GM, to a good 

approximation, followed the form of the Fourier transform of an exponentially decaying 

distribution, namely the dipole form factor (1 + Q
2
/0.71)

-2
, implying a ratio of µGE/GM ≈ 1.  

Due to the nature of the Rosenbluth formula 

(3.1) 

where ґ = Q2/(4M
2

p ), the transverse virtual photon polarization ε = [1+2(1+ ґ) tan
2
(θ/2)]

-1
, and 

(dσ/dΩ)Mott =α
2
/(4E

2
) (cos

2
(θ/2)

 
/ sin

4
 (θ/2)(E

’
/E); the weight of GE in the cross section becomes 

less at higher Q
2
 making the Rosenbluth separation of GE(Q

2
) and GM(Q

2
) at high momentum 

transfer rather difficult. While some experiments reported a scaling of the form factors; others 

occasionally observed significant deviations of the ratio µGE/GM from unity. The world data for 

elastic e-p scattering has recently been compiled by [21]. The most recent Rosenbluth-type 

measurements have again confirmed the scaling behavior of the proton form factor ratio [7, 8], 

and additional unpolarized precision measurements are underway [22]. 

The generally accepted explanation for the discrepancy between the recoil polarization 

and Rosenbluth determinations of the elastic proton form factor ratio is the exchange of multiple 

(>1) photons during the electron-proton elastic scattering process [25, 35]. This implies that 



8 
 

certain lepton-nucleon scattering observables will differ significantly from their one-photon 

exchange (or first-order Born approximation) expectation value. 

Multiple-photon exchange processes will exhibit a characteristic dependence of the 

elastic lepton-proton scattering cross section on the value of the virtual photon polarization, ε. As 

ε decreases, the effects of multiple-photon exchange on the elastic cross section tend to increase 

in magnitude.  

The discrepancy between the recoil polarization and Rosenbluth determinations of the 

elastic proton form factor ratio grows with increasing Q
2
. At high Q

2
, the cross section is 

dominated by magnetic (i.e. transverse) scattering. This explains why the effect on the extraction 

of GE from Rosenbluth separations can be sizable, while the effect on the cross section at all 

values of Q
2
 is rather modest. At the same time, the form factor ratio from polarization 

experiments is less affected. 

The effect of multiple-photon exchange on the electromagnetic elastic form factors 

involves the real part of the multiple-photon exchange amplitude. The observable most sensitive 

to this amplitude is the ratio of the elastic cross section for electron-proton to positron-proton 

scattering. In the presence of multiple-photon exchange, the cross section for unpolarized lepton-

proton scattering contains an interference term between the one- and two-photon amplitudes. 

This interference is odd under time reversal, and hence has the opposite sign for elastic positron-

proton and electron-proton scattering. Therefore, a non-zero two-photon amplitude would result 

in different cross sections for unpolarized electron-proton and positron-proton scattering. 

The elastic form factors of the proton are defined in the context of the Born cross section, 

i.e. the single photon exchange term in the perturbative QED expansion. Corrections for 

radiative processes involving the incoming and outgoing charged particles must be applied to 

extract the Born cross section. These corrections are well understood and are calculable in QED. 

The use of the intense, multi-GeV stored electron and positron beams at the storage ring 

DORIS at DESY, Hamburg, Germany in combination with the BLAST detector can produce the 

most definitive data to determine the effect of multiple photon exchange in elastic lepton-proton 

scattering and verify the recent theoretical predictions. 

 
 

4. Control of Systematics 
The primary observable of this experiment is the ratio of the electron-proton and 

positron-proton elastic cross sections. The redundant control measurements of the luminosity 

will allow the e 
+
p/e

-
 p cross section ratio to be determined with high precision. 

As shown below, the individual proton and lepton detection efficiencies and the 

systematic errors associated with them will cancel to first order. However, acceptance effects 

need to be taken into account. In the OLYMPUS proposal [2], the effects on the cross section 

ratio due to slightly different acceptances for coincident detection of leptons and protons in the 

four beam species/magnet polarity combinations had been neglected. Below is laid out a 

scheme, how such acceptance effects can be accounted for explicitly. 

The differential number of counts dN between times t and t + dt and in the detector 

volume element d
n
 x, using generalized detector coordinates xk, is a function of efficiencies for 

proton and lepton detection, luminosity, differential cross section and acceptance and is given by 

(4.1) 

where k
 p

 and k
l
 denote the proton and lepton detection efficiencies, which could generally vary 

with time, and L(t) is the instantaneous luminosity. The elastic differential cross section is 

denoted by dσ/dΩ and is only a function of one variable, e.g. the lepton scattering angle. The 

acceptance function a(xk) depends on all detector-related coordinates xk, which can be lepton 
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and proton angles and momenta, or reconstructed vertices, etc., i.e. all degrees of freedom of a 

coincident lepton-proton event. For any given event, a(xk) describes whether or not it would be 

accepted by the detector, i.e. the acceptance function's value is either 0 or 1. It is the task of a 

Montecarlo simulation to determine the bin-averaged acceptance or phasespace integral. 

 To obtain the number of counts, Equation (1.2) needs to be integrated over the time ΔT = 

∫dt  during which the data acquisition is alive, and over the detector volume ΔV = ∫d
n

 x. The 

elastic cross section dσ/dΩ is differential only in terms of the solid angle of the lepton. For 

integration over the detector volume, the acceptance function a(xk) describes the phasespace 

covered by the detection volume. As such the acceptance function also accounts for any 

kinematic correlations that are typical for elastic scattering events. Not the acceptance function 

itself, but only its integral over the detection volume (phasespace integral) is of interest for the 

analysis. The integration is carried out numerically by means of a Montecarlo simulation. Note 

that in addition to acceptance, the detection efficiencies are in the following accounted for 

explicitly. 

 Subsequently, the bin-averaged differential cross section equates to 

           (4.2) 

In the denominator of Eq. (1.3) the bin-averaged differential cross section involves the 

integral of the acceptance function over the detector volume, which is commonly known as the 

phasespace integral 

(4.3) 

For elastic scattering, the acceptance is identical with the solid angle ΔΩ accepted in the 

considered bin. 

If the period ΔT is short compared to the time scale within which the efficiencies vary, 

they can be considered constant in the integral of Eq. (1.3), and the time integral in the 

denominator results in the product of the time-averaged detection efficiencies k
p
 * k

l
 and the 

integrated luminosity 

          (4.4) 

over the measured period ΔT. 

In order to reduce the systematic errors of the cross section ratio due to uncertainties in 

relative luminosity, acceptance and efficiency with individual electron and positron beams, we 

require that the beam in DORIS be alternated between electrons and positrons, and that the  

LYMPUS magnet polarity be reversed with the same frequency. 

For a given bin, the number of events is hence given by 

  (4.5) 

where i = e
+
(e

-
) for positrons (electrons) and j = +(-) for positive (negative) OLYMPUS magnetic 

field polarity. The integrated luminosity L is defined in Eq. (1.5), the bin-averaged lepton-

nucleon elastic cross section is abbreviated as σ = dσ/dΩ, the average efficiencies during the 

measurement period ΔT are k
p
 for detecting the recoil protons and k

l
 for the scattered leptons. 

The acceptance or phasespace integral is given by A as defined in Eq. (1.4).  
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With a given polarity of the OLYMPUS magnetic field, the efficiency for detecting the 

recoil protons in the same kinematics will be identical for both electron and positron scattering, 

namely: k
p

e+- = k
p

e-+  and k
p

e+- = k
p

e-- . Hence, for a given field polarity, j, the proton efficiencies 

k
p

ij  cancel in the ratio 

            (4.6) 

However, the efficiencies for detecting the scattered electron or positron may differ for a 

given OLYMPUS magnet polarity but will be the same for opposite polarities, namely:           

k
p

e+- = k
p

e-+  and k
p

e+- = k
p

e--. By taking the product of the above ratio for opposite magnetic field 

polarities yields 

(4.7) 

which measures the cross section ratio directly, where all lepton and proton efficiencies cancel 

out if they do not change during the length of the cycle of four combined states and if the 

reversal of the magnet polarity exactly reproduces the field amplitude. Equation (1.8) also 

contains the super ratio of the four phasespace integrals Aij , which has to be determined with 

Montecarlo simulations. In the central parts of the acceptance it is expected that the phasespace 

super ratio is close to unity. As Eq. (1.8) indicates, the relative luminosities in the form of ratios 

need to be known precisely for an accurate determination of the cross section ratio σe+/σe- . Only 

the combination of count rate super ratios, luminosity super ratios, and super ratio of phasespace 

integrals yields the final result. In the analysis of OLYMPUS each of the three super ratios in Eq. 

(1.8) will be determined individually, thereby "blinding" the result for the final cross section 

ratio until finally put together. 

A similar consideration as in Eq. (1.6) also holds for the measurement and combination 

of the four luminosities, Lij , where the respective efficiencies cancel. In order to measure the 

relative luminosity, we propose to use elastic scattering at forward angle corresponding to small 

Q
2
 and large ε where the effects of two-photon exchange are negligible. Subsequently, the cross 

section ratio σe+/σe-  becomes unity, and hence the forward-angle coincident elastic rates N
fwd

ij  

are directly proportional to the luminosities in each of the four states {ij} 

       (4.8) 

which involves another super ratio of acceptances or phasespace integrals A
fwd

ij to be determined 

with Montecarlo simulations, now for the combination of the forward lepton detector in 

coincidence with proton in the OLYMPUS main detector. However, any dependence on the 

detection efficiencies for the forward lepton and recoil proton cancels out again. The final 

expression for the measured differential cross section ratio becomes 

(4.9) 

The ratio of relative luminosities in Eq. (1.9) can be measured at sub-percent statistical 

errors in less than one hour. Thus, frequent and random filling with both e
+
 and e

- 
beams and 
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reversal of the OLYMPUS field direction will minimize systematic uncertainties in the ratio 

from acceptance and efficiency differences as statistics are accumulated. The period for 

alternating beams and magnet polarities has to be short compared to the time over which effects 

due to detector performance, such as detection efficiencies, are likely to change. Within that time 

frame, target density and beam current fluctuations, however, are appropriately accounted for 

and will have no systematic effect. Some period on the order of one day would likely be 

sufficient. The systematic error of each super ratio measurement according to Eq. (1.10) can thus 

be reduced by the square root of the number of cycles through the four states {ij}. 

Note the above derivation applies to the lepton detected in one sector of the OLYMPUS 

detector and the proton detected in the opposite sector. During the experiment, data will be 

collected simultaneously for leptons and protons detected in both sectors yielding another level 

of redundancy and cancellation of systematic effects. 

The above scheme makes use of measurements of the proton and lepton tracks in 

coincidence. Further information and additional checks of systematics will be obtained from 

proton or lepton single-arm events for which the high and low ε limits of the OLYMPUS 

acceptance are extended. Provided that backgrounds in single-arm elastic events can be kept at a 

minimum, proton single-arm ratios for electron and positron beams with the same polarity of 

OLYMPUS, as well as lepton single-arm ratios with reversed field polarity also probe the e
+
/e

- 

cross section ratio independently. 

 

 

5. Monte Carlo 
 Monte Carlo methods (or Monte Carlo experiments) are a broad class 

of computational algorithms that rely on repeated random sampling to obtain numerical results; 

i.e., by running simulations many times over in order to calculate those same probabilities 

heuristically just like actually playing and recording your results in a real casino situation: hence 

the name. They are often used in physical and mathematical problems and are most suited to be 

applied when it is impossible to obtain a closed-form expression or infeasible to apply 

a deterministic algorithm. Monte Carlo methods are mainly used in three distinct 

problems: optimization, numerical integration and generation of samples from a probability 

distribution. 

Monte Carlo methods are especially useful for simulating systems with 

many coupled degrees of freedom, such as fluids, disordered materials, strongly coupled solids, 

and cellular structures (see cellular Potts model). They are used to model phenomena with 

significant uncertainty in inputs, such as the calculation of risk in business. They are widely used 

in mathematics, for example to evaluate multidimensional definite integrals with complicated 

boundary conditions. When Monte Carlo simulations have been applied in space exploration and 

oil exploration, their predictions of failures, cost overruns and schedule overruns are routinely 

better than human intuition or alternative "soft" methods.  

The modern version of the Monte Carlo method was invented in the late 1940s 

by Stanislaw Ulam, while he was working on nuclear weapon projects at the Los Alamos 

National Laboratory. It was named, by Nicholas Metropolis, after the Monte Carlo Casino, 

where Ulam's uncle often gambled. Immediately after Ulam's breakthrough, John von 

Neumann understood its importance and programmed the ENIAC computer to carry out Monte 

Carlo calculations. 

Monte Carlo methods are very important in computational physics, physical chemistry, 

and related applied fields, and have diverse applications from complicated quantum 

chromodynamics calculations to designing heat shields and aerodynamic forms. In statistical 

physics Monte Carlo molecular modeling is an alternative to computational molecular dynamics, 

and Monte Carlo methods are used to compute statistical field theories of simple particle and 

polymer systems. Quantum Monte Carlo methods solve the many-body problem for quantum 

systems. In experimental particle physics, Monte Carlo methods are used for designing detectors, 
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understanding their behavior and comparing experimental data to theory. In astrophysics, they 

are used in such diverse manners as to model both the evolution of galaxies and the transmission 

of microwave radiation through a rough planetary surface. Monte Carlo methods are also used in 

the ensemble models that form the basis of modern weather forecasting. 

 

In High Energy Physics the Monte Carlo simulations are usually used for acceptance 

function calculation and for systematic studies. For this purpose the OLYMPUS Monte Carlo 

program was developed in OLYMPUS collaboration. This program is based on elastic events 

generator, GEANT 4 toolkit to simulate particle propagation through the detector and calculate 

the response of detector’s component on particle (digitization). The geometry and materials are 

describes the high precision of this program. Measured magnetic field of the spectrometer is all 

so used in the simulation. All secondary interactions for scattered electrons (positron) protons are 

included also. There two photon exchange in event generator, so the deviation of Ne+/Ne- ratio 

from the unity cod be caused only by the secondary interactions (as the numbers of generated 

samples for positron and electron beams are the same).    

Because the elastic scattering of electrons and positrons interact differently with matter as 

it passes through the detector (the effect of annihilation of positrons which is missing for 

electrons) is necessary to assess the possible systematic uncertainties associated with this 

difference. 

Monte Carlo study of the Ne+/Ne- ratio vs scattering electron (positron) angle without 

included magnetic field was performed for two cases. In the first case both electron (positron) 

and proton were registered by the TOF detector only (in coincidence). The second case, which 

corresponds to the real experimental measurements with reconstructed particle tracks, in addition 

to previous conditions there is also included requirement of registration each particle by the left 

or right sets of the drift chambers (WC) (which ). For each case the 16 million events were 

generated in the region wider than the detector acceptance region. The magnetic field was not 

used just to demonstrate the pure effect of annihilation. The results of the simulations (ratios 

Ne+/Ne-) are presented on the Figs. 1 and 2. Both ratios were fitted with the constant and results 

of the fitting are presented on the plots. 

 

 

 
Figs. 1.  Ne+/Ne- ration for the case when electron (positron) and proton from the elastic scattering are both registered  

just by ToF detector.  The result of the fit with constant is: p0= 0.9860 ±  0.0004. 
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Figs. 2.   Ne+/Ne- ration for the case when electron (positron) and proton from the elastic scattering are both 

registered  by ToF detector and hit three drift chambers (WC). The result of the fit with constant is: p0=0.9991 ± 

0.0005 

 

 

 

 

6. Conclusion 
 As it is follows from the study, the ratio Ne+/Ne- is not uniform for the case when 

only TOF detector used for the registration. This effect is caused by the annihilation of e+ in e/g/ 

magnet coils, where there are a lot of materials on the particle path. In the case of using WC in 

addition to TOF, which corresponds to the real experimental condition (with really reconstructed 

particles) the ratio of Ne+/Ne- is compatible with 1, the effect of annihilation is not seen which 

means that the systematics due to this effect is not noticeable.  
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