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Abstract

Since the observation of the Higgs boson by ATLAS and CMS collaborations a big
effort has been undertaken to study its properties. Their precise measurements
are essential to verify the role of the Higgs boson in the electroweak symmetry
breaking mechanism and mass generation. In this project the VBF production
channel of the Higgs to di-photon decay is analyzed. We use PARADIGM decision-
making framework to assess the selected parameter space. We find that interference
between the baseline ηj1, ηj2 and ∆ηjj variables reduces the performance of the
classification process between signal and background and that proposed third jet
kinematic variables have negligible effect in the results.
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1 Introduction

The Standard Model explains how the basic building blocks of matter interact, governed
by four fundamental forces. In the 1970’s physicists realized that the weak and elec-
tromagnetic forces are unified in a single force: the electroweak force with four force
carrying particles, the photon and the W and Z bosons. A problem remains, all this
particles emerge without mass.

According to the Brout-Englert-Higgs mechanism the W and Z bosons acquire their
mass by interacting with the ”Higgs field” which permates the Universe. The more a
particle interacts with this field, the heavier it is. As a quantized scalar field, the Higgs
field has a massive, spinless and positive parity particle associated to it: the Higgs Boson.

The Higgs boson couples to all particles (including itself) proportional to their masses
and tends to decay to the heaviest states allowed by the phase space. At low masses there
is a loop-induced decay to two photons. To extract a Higgs signal from the backgrounds
we measure the four momenta of the Higgs decay products and reconstruct the invariant
mass of them. The signal peaks around mH , while backgrounds are expected to be flat.
The LHC detectors are designed to precisely measure the photon momentum and energy.
The resolution on mγγ is a factor of 10 better than any other decay channel (except for
muons). Moreover, the photons do not decay further, and we can use all photon events.

Figure 1: Standard Model Higgs boson decay branching ratios and total width
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2 Vector Boson Fusion production channel

In the Vector Boson Fusion (VBF) production two longitudinally polarized bosons merge
to produce a Higgs particle. It is one of the dominant production channels together with
gluon-gluon fusion (ggF). However, ggF has a branching ratio 10 times bigger in the low
mass region.

Figure 2: Vector Boson Fusion in the t-
channel
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Figure 3: Theoretical branching ratios
for the Higgs production
channel at a energy of the cen-
ter of mass of 8GeV

The VBF production channel is characterized by a particular topology that helps to
suppress the background. Because of collinear enhancement (cross section diverges like
log(pT )), both jets tend to be forward in the detector. Additional jet activity is limited
to collinear jets from the initial state and final-state quarks. The background tt̄+jets
can be suppressed with a veto to additional hard jets in the central region. The Higgs
and its decay products are expected in the central pseudorapidity gap of the detector.
The table in Fig. 4 shows the number of selected di-photon events in the data (ND) and
expected number of SM Higgs signal events (NS) mH = 126.5GeV from the H → γγ
analysis, for each category in the mass range 100− 160GeV at

√
s = 8TeV [1].
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Figure 4: Statistics in the H → γγ decay channel

As Fig. 4 shows, only the 7.3% of all the data events correspond to VBF, but in categories
involving two high-mass jets becomes the dominant process. Due to the lack of statistics,
it is essential to use multivariate techniques in this channel.
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3 Baseline Analysis

In 2012 a multivariate analysis of this channel was carried out with eight discriminating
variables ref[1]. The variables are required to have little or no correlation with the mass
of the di-photon system (mγγ). The modeling of the background is based on Monte Carlo
samples where the γ− γ, γ+ jet, jet+ jet and the Drell-Yan (produced with SHERPA)
are combined according to the fractions determined by data driven-measurements. It
also includes jets with inverted isolation.

Variables selected for the analysis are listed below and shown in Figures 5-12.

• Dijet mass mjj

• pT tγγ

• Pseudorapidity of the leading jet ηj1

• Pseudorapidity of the subleading jet ηj2

• Pseudodrapidity separation between the leading and subleading jet ∆ηjj

• Zeppenfelder variable Zepp = ηjj − ηj1+ηj2
2

• ∆φ between Higgs and dijet system ∆φγγ,jj

• ∆Rmin(γ, jet)

Figure 5: pT tγγ normalized to unity Figure 6: mjj normalized to unity
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Figure 7: ∆Rmin normalized to unity Figure 8: Zepp normalized to unity

Figure 9: ηj1 normalized to unity Figure 10: ηj2 normalized to unity

Figure 11: ∆η normalized to unity Figure 12: ∆φγγ,jj normalized to unity
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As can be seen in Figures 5-12 the ggF production mode is similar to the back-
ground, therefore separating the signal from the QCD background and inverted
isolation requirements also works to separate VBF from ggF background. Signal
and background are normalized to unity so that the shapes can be easily compared.

3.1 New Variables

With the purpose of improving the classification between signal and background
additional variables related with the kinematics of a third jet were proposed. They
are listed below:

– pTj3

– ηj3

– φj3

– ∆φj1j3

– ∆φj2j3

The following two variables were also included: pTjj,γγ and ∆φjj . The plots of all
the variables are shown in Figures 13-19

Figure 13: pTj3 normalized to unity Figure 14: ηj3 normalized to unity
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Figure 15: φj3 normalized to unity Figure 16: ∆φj1j3 normalized to unity

Figure 17: ∆φj2j3 normalized to unity Figure 18: ∆φjj normalized to unity

Figure 19: pTγγ,jj normalized to unity
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4 PARADIGM

We apply PARADIGM decision-making framework [2] oriented to High-Energy
Phisics to this analysis. One of the main features of PARADIGM is Gleyzer-
Prosper variable importance, described in Section 4.3.1, and Global Loss Function
described in Section 4.3.2. It is classifier independent and can help in classifier
selection. We use Gleyzer-Prosper variable importance to evaluate the parameter
space selection are investigate further the possibility to reduce the parameter space
using the Global Loss Function.

4.1 Classifiers

Classification aims to properly categorize an instance (event) to a predefined set
of classes based on its attributes. In our analysis we train two similar types of
classifiers: decision trees (DT) and boosted decision trees (BDT).

4.1.1 Decision Trees

A decision tree is one of the most popular classifiers. Each attribute measures
some important feature of the class. The inputs are a collection of attributes
whose class is known. The output is the classification decision to be made: signal
or background. In order to classify an event, we start at the root of the tree. Each
attribute is evaluated based on how well it separates signal from background in
the training sample. The best attribute is selected and used at the root node of
the tree to create two new decision branches. The process is repeated for each
daughter branch to make further branches. The process continues until a leaf is
encountered, at which time the object is asserted to belong to a particular class.

We use c4.5 [3] to construct decision trees used in the analysis and a sample decision
tree is shown in Figure 20

4.1.2 Boosted decision trees

Boosting is a well-known algorithm for enhancing the performance of decision trees
[5]. The construction of boosted decision trees consists of several iterations. In
each iteration, greater weight is assigned to misclassified events of the previous
round. The result of the process is an ensemble of weighted decision trees.
In our analysis boosted decision trees are generated using TMVA [4] with the
following characteristics

NTrees = 400 : nEventsMin = 100 : BoostType = Grad : Shrinkage = 0:05 :

UseBaggedGrad : GradBaggingFraction = 0:5 : nCuts = 30 : MaxDepth = 3
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Figure 20: Example decision tree. The decision nodes are colored in green and the class
names are blue for the signal and red for the background

These are the same options that were used in the original VBF analysis [1], for a
reduced number of trees to minimize computation time without sacrificing more
than 2/1000 in the performance measure of the classifier. Also, following [1], cuts
|∆ηjj | > 2 and |Zepp| < 5 were applied in order to focus on the region of the phase
space where most of the signal events are present.

4.2 The ROC curve

After a classifier is built, it is desirable to evaluate its accuracy. The data are split
into two parts: the training and the testing set. We use the testing set to evaluate
the classifier performance.

The Receiver Operating Characteristic (ROC) curve shows the background rejec-
tion rate versus signal efficiency. The area under the ROC curve is calculated
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as

AUC =
1

2

(
n∑
k=1

(εsk − εss−1)(εbk + εbk−1
)

)
(1)

and is a commonly-used measure of the performance of the classifier. The ROC
curve for the eight baseline variables is shown in Figure 4.2. When an instance
is classified without any previous knowledge in a binary classification, this area is
0.5. The maximum AUC value is 1 which corresponds to a perfect classifier.

Figure 21: ROC curve for BDT with 8 baseline variables in TMVA

4.3 A decision making-framework

4.3.1 The Gleyzer-Prosper Variable Importance

Gleyzer-Prosper variable importance (GPI) is useful to understand which is the
relevance of a particular variable to the classification task.

Given an initially-chosen variable set {V } = {X1, ..., XN}, the GPI of variable Xi

is defined in the following way:

GPI(Xi) ≡
∑

S⊆V ;Xi∈S
F (S) ·WXi(S) (2)

where {S} = {Xi, ..., Xj} are subsets that include variable Xi, F (S) is the perfor-
mance measure of the classifier built with {S}, and WXi is defined as

WXi ≡ 1− F (S −Xi)

F (S)
(3)

It accounts for individual variable’s share of the classifier performance F (S) if the
variable is removed from the classifier. GPI are normalized by

N ≡
∑
Xi

F (S) ·WXi(S) (4)
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Often in classification one encounters variable interactions.

4.3.2 Global Loss Function

Global Loss Function is an information measure that takes into account variable
interactions. It is specific to variable reduction and measures the predictive power
loss relative to an upper bound of performance of classifiers that remain:

GF (S′) ≡ 1−
1−

∑
S⊆V−S′ F (S)

2|V−S′|
(5)

where S′ ⊂ V is the subset considered for reduction. The absolute scale limit is
given by: ∑

S⊆{V−S′}
F (S)max = 2|V−S

′| (6)

5 Results

5.1 ROC Integrals

For a full set of variables

{pT tγγ ,mjj , Zepp,∆Rmin,∆φjj,γγ ,

yj1, yj2,∆yjj , pTj3, ηj3,

φj3,∆φj1,j3,∆φj2,j3,∆φjj , pTγγ,jj}

the ROC results for DT and BDT are shown for four different cardinalities in
Figure 22

The maximum ROC values are around 0.9 and there is still potential for improve-
ment by selecting better-discriminating variables. As Figure 22 shows, boosting
affects more the subsets with higher cardinality, creating a gap in the distribution.

5.2 Gleyzer-Prosper Variable Importance

Gleyzer-Prosper variable importance results for decision trees and boosted decision
trees are shown in Figures 23 and 24. Variables with a positive value of GPI are
shown in green while those with a negative value are shown in red. In the x-
axis, the colors differentiate between the baseline variables (black), the third jet
variables (red) and others (blue).
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Figure 22: ROC integral for BDT and DT for cardinalities 2,7,12,14

Figure 23: Gleyzer-Prosper importance for decision trees
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Figure 24: Gleyzer-Prosper importance for boosted decision trees

As can be seen in figures 23 and 24, variables associated with the third jet do not
significantly contribute to the analysis. Moreover, one of the variables in the base-
line analysis (ηj1) shows negative importance, implying a presence of significant
interactions between it and other variables of the set. This is not surprising since
ηj2 and ∆ηjj are both present as well.

5.3 Global Loss Function

Figure 25 the global loss function is shown for decision trees. The x-axis shows an
index associated with each of the subsets S′, while the y-axis shows the amount of
information loss of the classifier if the subset is removed.

Figure 25: Global Loss function for decision trees
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6 Evaluation and conclusions

We have analyzed the parameter space for the Vector Boson Fusion production
channel of the Higgs to di-photons decay channel.

We see that the proposed parameter space is not as optimal as it can be. The
maximum values of the area under the ROC curve are around 0.9. There is strong
potential for improvement from choosing additional variables that improve clas-
sification performance and by removal of existing variables with strong negative
interactions.

Three of the originally chosen variables ηj1, ηj2 and ∆ηjj are not independent and
show interference in classification causing classifier performance loss when all are
present, as shown by the negative GPI of ηj1. One of these three variables should
be removed, most likely ηj1.

We observe that boosting has a greater effect on sets with higher cardinality, as
shown by the ROC gap in Figure 22.

Finally the addition of third jet variables does not contribute to an improvement
in classification performance as shown by Figures 23 and 24. Their GPI values are
very close to zero, meaning they are not meaningful for the analysis.

7 Future work

We are currently studying additional variables such as φ∗ and other angular vari-
ables that can be used to further separate the VBF signal from the background
and improve classifier performance of this production channel.

After this variables are added, we will use the global loss function, available in
PARADIGM, to select the most optimal variable set to be used.
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