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Abstract

We investigate the effective W approximation (EWA) and its implementation inWHIZARD
[1]. We follow the derivation of the EWA as presented in [2] and consider some of the limita-
tions on its validity as discussed in [3, 4]. We attempt to verify the code in WHIZARD and
analyse data from the software to validate the implementation. We find that although the
implementation appears to be valid, that there are some concerning results both inherently
with the EWA and also with the magnitude of the deviations of the extracted structure
function from the analytical structure function.

1 Introduction

The main practical application of the effective W approximation is to reduce the process
of evaluating cross sections of the form of figure 1, from a highly complicated process, to
evaluating the cross section for smaller diagrams and integrating out the heavy bosons as a
number density distribution which is a function of the momentum transfer xi of the fermion
carried away by the boson i.e. we wish to write our cross section in the form
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Figure 1: Example processes where the EWA is applicable
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σ(Ff → F ′f ′X) =
∑

pols λ,λ′

∫ 1

0

∫ 1

0

dx1 dx2σ(WW → X|pW1
= p1x1, pW2

= p2x2)Fλ(x1)Fλ′(x2)

(1)
This is very similar to the idea of factorisation for parton distribution functions. This

is much easier for software to handle, and is especially versatile when we have an analytical
form for the distribution functions. The EWA also allows physical insight into a process;
when it agrees well with a full calculation, it helps us to understand the physics of the
process in question. The Fλ(xi) represent number density functions for a λ-polarised W±

being radiated by a fermion with momentum fraction xi — entirely akin to the Weizsäcker-
Williams effective photon approximation (EPA) [5, 6, 7].

2 The effective W approximation

2.1 Matrix elements

We follow very closely an approach taken to exhibit the Weizsäcker-Williams method for
the EPA in [8], in an equivalent treatment to [2, 9] to obtain the structure functions for the
EWA. The major difference when compared to the EPA is that, as the vector bosons being
radiated are massive, we must also consider the physical longitudinal polarisation states.

We consider only the case where a (massless) fermion radiates the boson, but in principle
it would also be possible to consider a massive fermion or even a different boson being
radiated. The expression can be broken up and we need only consider the evaluation of the
diagram in figure 2.

p

k

W±, Z0

f f ′

µ
Figure 2: W/Z “splitting” process

We consider an on-shell fermion radiating a boson approximately collinearly at a high
centre-of-mass-energy (such that we can neglect the fermion mass term). If the boson is
not emitted exactly collinearly, then it must be off-shell. The crux of the approximation is
that we make the assumption that the boson is close enough to being on-shell that, in the
amplitude of the sub-process in which it is later involved, we can take it to be on-shell. This
means that the treatment will only necessarily be valid when

√
s ≫ MV , the mass of the

vector boson. The 4-vectors are, if the boson carries away a momentum fraction x, to order
p2⊥ (the square of the perpendicular three-momentum of the off-shell boson):

p =







p
0
0
p







, k =







(1− x)p
−p⊥
0

(1− x)p+
p2

⊥

2xp







, q =







xp
p⊥
0

xp− p2

⊥

2xp







(2)

The amplitude for the process, from the electroweak Feynman rules [10], is simply given
by

iM = −iū(k)/ǫ
∗(q)(gV − gAγ

5)u(p). (3)

This can be cranked through relatively quickly by use of the trace theorems, but it is
more instructive to obtain the individual structure functions for both the transverse and
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Polarisation M (Left handed fermion) M (Right handed fermion) Helicity average |M|2

Right handed p⊥

√
2(1−x)

x
(gV + gA) p⊥

√
2(1−x)

x
(gV − gA) p2⊥

2(1−x)
x2 (g2V + g2A)

Left handed
√
2 p⊥
x
√
1−x

(gV + gA)
√
2 p⊥
x
√
1−x

(gV − gA) p2⊥
2p⊥

x2(1−x)
(g2V + g2A)

Left handed 2p
√
1− xmV

xp
(gV + gA) 2p

√
1− xmV

xp
(gV − gA)

4m2
V (1−x)

x2 (g2V + g2A)

Table 1: Summary of the matrix elements for the EWA

the longitudinal polarisations. If we initially consider a left-handed electron, the spinors are
approximately given by

u(k) =







p⊥

2(1−x)p

1
0
0







, u(p) =







0
1
0
0







. (4)

Working in the helicity basis, we have that in 2× 2 block form:

γµ =

(
0 σµ

σ̄µ 0

)

, γ5 =

(
−1 0
0 1

)

. (5)

We also choose our polarisation basis similarly to [9]; making the approximation that
k0 ≫ MV and choosing positive and negative helicity transverse polarisation vectors.

ǫ0 =
i

MV
(q0, 0, 0, |q|)

ǫ1 =
1√
2

(

0, 1, i,−p⊥
px

)

ǫ2 =
1√
2

(

0, 1,−i,−p⊥
px

)

ǫ3 ≈ MV

2k0
(−1, 0, 0, 1)

(6)

We can now evaluate the amplitudes for the various processes for a left-handed electron.
For the right-handed electron, the only change is that gA → −gA due to the pseudoscalar
nature of γ5. The results for the various amplitudes are presented in table 1.

2.2 From matrix elements to distribution functions

If we make the (bold) assumption that the process involving the exchanged bosons doesn’t
depend on the polarisation, then we are justified in considering the unpolarised cross section.
Thus, using the same notation as in figure 2, we have that, as in the EPA derivation in [8],
the cross section is given by

σ =
1

(1 + vX)2p2EX

∫
d3k

(2π)3
1

2k0

∫

dΠY 〈|M|2〉
(

1

q2

)2

|MV X |2, (7)

where
∫
ΠY denotes integrating over the phase space of Y , and vX is the velocity of the

(potentially composite) particle X. Substituting for k0 and q2 from our earlier definitions
in equation 2, we obtain that

σ =

∫
dx dp2⊥
16π2

x(1− x)

p4⊥
〈|M|2〉σ(V X → Y ). (8)
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We finally have the total cross section for the process to be of the form of equation 9,
we can therefore identify the number density distribution we are looking for as shown in
equation 10.

σtotal(fX → f ′Y |k, p, k′, p′) =
∑

λ

∫ 1

0

Fλσ(W
±, Z0|xp, k, k′) dx (9)

Fλ =

∫
dp2⊥
p4⊥

〈|Mλ|2〉
x(1− x)

16π2
(10)

We integrate between the limits from x̄M2
V (where x̄ = 1−x) up to p2⊥max+ x̄M2

V , where
we drop writing the “max” from now on. A summary for the different distribution functions
can be found in table 2, where we have used the values of gV and gA appropriate to the
vector bosons. As can be seen by inspection, if we take the average of the two transverse
modes, we obtain exactly the same answer as in [2]1.

Particle F0(x) F+(x) F−(x)

W± x̄
4π2x

p2
⊥

x̄m2
W+p2

⊥

(g2V + g2A)
x̄2

8π2x
ln
(
p2
⊥
+x̄m2

W

x̄m2
W

)

(g2V + g2A)
1

8π2x
ln
(
p2
⊥
+x̄m2

W

x̄m2
W

)

(g2V + g2A)

Z0 x̄
4π2x

p2
⊥

x̄m2
Z+p2

⊥

(g2V + g2A)
x̄2

8π2x
ln
(
p2
⊥
+x̄m2

Z

x̄m2
Z

)

(g2V + g2A)
1

8π2x
ln

(
p2
⊥
+x̄m2

Z

x̄m2
Z

)

(g2V + g2A)

Table 2: Summary of the effective W/Z approximation distribution functions

2.3 Calculating a cross section by hand

Using the results from [2], we check that the EWA can indeed produce an accurate cross
section for a simple process. A process that it should be able to replicate very well is vector
boson fusion to produce a Higgs boson, as figure 4 should be the only diagram contributing to
the process. This calculation also exploits the fact that the longitudinally polarised boson
mode dominates over the transverse modes at high energies, simplifying the calculation
even more. The result is given in equation 11. Inserting the Higgs value implemented in
WHIZARD and examining various values of

√
s, we obtain the results shown in table 3. It

is quite clear from this table that the results of the EWA become steadily more accurate
at higher energies, which is what we expect, as at higher energies we can more legitimately
treat the intermediate boson as being on-shell and decouple it from the rest of the process.
If we go to steadily higher energies, the process becomes numerically unstable and takes a
long time to converge — this is shown in figure 3. If the process is run with considerably
more iterations, then this bad behaviour goes away, but it is a practical issue to be aware
of when performing a calculation that may seem to be giving nonsense.

√
s (GeV) σEWA (fb) σWHIZARD (fb) Ratio

500 65.57 34.07 1.9
1000 210.0 147.2 1.4
2000 329.9 313.8 1.3
5000 654.7 566.9 1.2
10000 976.2 886.5 1.1
15000 1330 1219 1.09
50000 1534 1447 1.06

Table 3: Various cross sections for Higgs production via vector boson fusion

1We say “exactly the same answer”, but actually we believe there is a small mistakes in [2], where in one of
the explicit structure functions, they have written sin2

θ
2
W instead of sin2

θW . Apart from this, we completely
agree with their results.
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Figure 3: A graph of the values predicted from the analytic expression compared against
WHIZARD. It can be seen that at extremely high energies (

√
s ∼ 100TeV) that the numerical

method becomes unstable at this number of iterations and events simulations (12:100000,5000).
The top section shows the cross sections predicted by both, whilst the bottom shows the ratio
σEWA/σWHIZARD.

σ(e−µ+ → νeν̄µH) =
g2

64πm2
W

[(

1 +
m2

H

s

)

ln

(
s

m2
H

)

+ 2

(
m2

H

s
− 1

)]

(11)

2.4 Regimes of validity of the EWA

The point originally raised in [11] is that we can’t simply neglect diagrams on physical
grounds — assigning individual diagrams a physical meaning is a classic case of the mind-
project fallacy: diagrams are merely a calculational convenience rather than a physical
process: it is only when summed together that they begin to mean something. This is
because the choice of gauge is arbitrary, so different diagrams can give different answers:
by throwing away diagrams, we break gauge invariance, which is something that should
never be taken lightly. A particular choice of gauge (the axial gauge) is made in [3, 4] and
calculations justifying the EWA are performed.

The main conditions for validity are that the energy scale of the hard scattering process
is much larger compared to the virtuality of the boson. When this is true, all small virtu-
alities may be ignored and thus the boson may be treated as approximately on-shell (as is
required to make sense of combining it with the cross section which has an on-shell inbound
boson). The key to establishing a large enough hard interaction energy scale is by having
the transverse momentum of the radiated boson being relatively large compared to mV .
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Figure 4: Simple diagram for comparing the EWA cross section and a fully simulated cross
section

3 Verifying the implementation

3.1 How it’s implemented in WHIZARD

The basic idea, as covered before, is that we evaluate the cross section for a specific sub-
process and then fold this with the EWA distribution functions to find the cross section for
the total process. We can immediately begin to spot some problems, here. A lot of the
problems are in our assumptions and simply restrict us to certain kinematic regimes, such
as being at a sufficiently high energy to ensure that the vector boson can be considered
as on-shell. We also require that the sub-process does no depend on the polarisation of
the vector boson in our implementation, otherwise we should evaluate something more like
equation 12, where σλ is the cross section for the appropriate polarised process to occur. We
have assumed throughout that the different polarisations do no interfere in any significant
manner and continue to do so in the implementation of WHIZARD.

σtotal(fX → f ′Y |k, p, k′, p′) =
∑

λ

∫ 1

0

Fλ(x)σλ(W
±, Z|xp, k, k′) dx (12)

The biggest problem, which also seems the most difficult to surmount, is that of back-
ground processes which can’t be ignored. Consider the process νeν̄e → e−e+W−W+. When
we start to draw out the diagrams, we might consider the class of diagrams as shown in
figure 5(a), for which the EWA can be applied perfectly well. We might be tempted, in
the axial gauge, to apply the EWA to the entire process, but doing so would not yield a
useful result, as significant contributions to the amplitude come from diagrams of the form
as shown in 5(b), which cannot be treated with the EWA and thus cause our estimate of
the cross section to be incorrect by orders of magnitude.

WHIZARD implements the EWA relatively simply, defining the structure functions,
remapping the unit interval to attempt to avoid the 1/x singular behaviour for numerical
stability reasons and then integrating over the structure functions with the cross section of
the sub-process. The main issue we face is what our choice of the cut-off on x should be,
as by choosing xmin to be small, we can potentially make the cross section to be evaluated
arbitrarily large, which is clearly false. For reasons purely of convenience and that they
seem to give answers that are not too large, we conventionally choose xmin = 0.1. We now
seek to verify that the implementation has indeed been performed correctly in WHIZARD
— we ideally seek a process from which we can extract the structure function numerically
and then compare it against the analytic result. We would wish to choose a process which
we can simulate fully without the EWA and also extract a structure function from that, but
so far this has proved to be difficult.

3.2 The code in WHIZARD

We can verify that the code in WHIZARD indeed reflects the EWA as we have derived it. It
should be noted that the code in WHIZARD goes to a higher order than we have done, but
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Figure 5: An example of a process (νeν̄e → e−e+W−W+) for which some terms are compati-
ble with the EWA, yet significantly contributing background terms cause the treatment to be
potentially invalid

to leading order, the results agree (and at high energies, the NLO term becomes negligible
— the high-energy regime is also the regime of greatest validity for the EWA, anyway). As
mentioned before, because of the 1/x type behaviour, the unit interval is remapped to a new
variable r such that our integration measure is given by equation 13, where the notation
r̄ = (1− r) is used.

x = er̄ ln x0−r ln x1 ⇒
∫ x1

x0

dx

x
= (lnx1 − lnx0)

∫ 1

0

dr (13)

Thus, when implemented in the code, it may appear that a factor of 1/x is missing, but
the code in fact integrates over r (and applies the factor of the difference of logarithms),
so the integration measure should be correct. The relevant code sections for the Z from
sf ewa.f90 are included in code block 1. The code for the W is identical in concept, except
mZ → mW and cV = cA = g/(2

√
2).

data%cv = g / 2._default

data%ca = g / 2._default

data%coeff = 1._default / (8._default * PI**2)

f = data%coeff * (lx1 - lx0)

c1 = log (1 + pt2 / (xb * (data%mZ)**2))

c2 = 1 / (1 + (xb * (data%mZ)**2) / pt2)

cv = data%cv * (t3 - 2._default * q * data%sinthw**2) / data%costhw

ca = data%ca * t3 / data%costhw

fm = ((cv + ca)**2 + ((cv - ca) * xb)**2) / 2 * (c1 - c2)

fp = ((cv - ca)**2 + ((cv + ca) * xb)**2) / 2 * (c1 - c2)

fL = (cv**2 + ca**2) * 2 * xb * c2

fsum = fp + fm + fL

f = f * fsum

We start by setting the values of cV and cA to a common factor

Both functions have a pre-factor of 1/(8π2)
We start f off with the pre-factor and include the integration measure
factor
c1 and c2 are the two different functions found multiplying the whole
expressions

We account for the fact that Z-boson coupling depends on
particle properties
The structure functions: note that they have a different form to the
ones we derived,
we believe that this is because a different helicity basis has been used.
As we sum all of them
together, it doesn’t make a difference to the final results.
We finally sum them together and bring all of the factors together

Code block 1: The relevant section of the WHIZARD code for implementing the structure
function(s) of the EWA

3.3 Extracting the structure function

The aim here is to run a process using the EWA and then recover the structure function
from data from the process — this is useful as if we can recover the structure function via
the expected method, then it should be implemented correctly. That is, if we make a generic
procedure to find an “effective structure function” for a sub-process and for the EWA sub-
process it produces the EWA structure function, then WHIZARD almost definitely has a
correct implementation up to a scaling factor. The idea is to find the number of events for
a given momentum fraction transfer: this should be proportional to the term
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∑

λ

Fλ(x)σsub∆x.

However, we can further simplify this as WHIZARD allows us to override the matrix
element for the sub-process and manually set it to a constant which, in the abscence of a
structure function, would integrate to 1 fb. This means that the sub-process in question
doesn’t (in principle) matter. In this case, with constant-width bins, the number of events
in a bin is just proportional to the structure function. To within a linear scaling factor of
the whole graph, we should be able to recover the EWA structure function. So, considering
the process e−µ− → e−µ−Z, we can see that the only diagrams contributing to this process
at tree level within the EWA are shown in figure 6. Because we are at a high centre of
mass energy, we are justified in taking the leptons to be massless. This means that the

initial electron energy Ee =
√
s
2 and the final electron energy will be denoted by E′

e. The

momentum fraction is therefore given by 1 − x =
E′

e

Ee
=

2E′
e√
s
. When we use WHIZARD to

record these values and then scale the structure function, we obtain the graph shown in
figure 7. The structure function has been scaled by an arbitrary factor, as we can only check
the functional form by this method, as we necessarily produce what is effectively a properly
normalised probability distribution, as the number of events is fixed.

e−
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e−

Z e−

Z

µ−

e−

µ−

e−

Z

e−

Z

µ−

Figure 6: EWA diagrams contributing to the process e−µ− → e−µ−Z
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Figure 7: A plot of the extracted strucutre function compared with the analytic structure
function

The fit looks pretty good, but we can appreciate the goodness of the fit by examining
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the percentage difference between the extracted structure function and the analytic function
as shown in figure 8.
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Figure 8: A plot of the percentage different between the extracted structure function and the
analytic structure function for the EWA.

We can see that the structure function seems to be slightly too small for small x and
the fractional error gets very large for x near 1. These are two areas of the graph where
the gradient gets very large, so there may be numerical stability issues caused by this. To
see if there is some sort of systematic effect on the errors, we modify the source code of
WHIZARD to have a constant structure function. The fractional errors for this are shown
in figure 9. As can be seen, the errors appear to be uniformly random, but the magnitude
of the errors is still a little conerning; the reason for such large deviations is still unknown.

3.3.1 Checking the overall factor

The overall factor in front of the structure function can, however, be checked by evaluating
cross sections. In principle, we can also check that we have the correct functional form
this way, too but it is more a trial by exhaustion (and does not guarantee uniqueness
in finite time!) rather than the more elegant method of actually extracting the function.
The simplest way to test the cross sections if by forcing the hard process to have a cross
section of 1fb (again), independent of the other details of the process. We can then check
our result against processes which both 1 and 2 radiated bosons. We should also check that
WHIZARD is indeed implementing this restriction on the sub-process correctly — something
we should check is that the cross section is the same independent of the details of the hard
interaction. The corresponding calculation can then be performed outside of WHIZARD
using a numerical integration package [12]. We will, in general, look at a process of the
form e±µ± → W/ZW/Z + . . ., depending on what combination of structure functions we
are intending to test.

To ensure thought in our numerical calculations we didn’t miss out any small factors by
hand in front of the structure function, we change the source code of WHIZARD to make
the structure function very simple. If we can’t, for example, agree on the magnitude of a
constant structure function, then for the full structure function any problems will be more
difficult to diagnose. For this simple process we expect the cross section for a one-particle
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Figure 9: A plot of the percentage difference between the extracted structure function and the
analytic structure function for a constant function.

and two-particle process to be given by equations 17 and 18 respectively. We also note
that the structure function for the Z boson is simply larger (once changing the mW for and

mZ , which typically makes little difference) by a factor of ((T f
3 − 2Qf sin2 θW )2 + (T f

3 )
2),

which we denote by ηZ . We also denote
∫ 1

xmin

∑

λ F
W±

λ dx by I(xmin) and the corresponding

integral for Z bosons by ηZIZ(xmin), we also drop the explicit xmin dependence, but I is
indeed still a function of xmin. Hence, we can express all of the cross sections for the one-
particle processes and calculate them numerically in table 4. We can then take the values of
the cross sections from WHIZARD and take the ratio of the two to compare how well they
fit. A plot of this is shown in figure 10. As can clearly be seen from the plot, WHIZARD
introduces a factor of 1.5 for each of the single-EWA emissions and thus a factor of 2.25 is
introduced for a double-EWA process — there is evidently some sort of systematic effect
going on here. To be sure that it was not a mistake in the implementation of the structure
functions on either end, the code in WHIZARD was changed to have a structure function
equal to various functions: unity; x; x2; lnx, and these were equally incorrect by a factor of
1.5. This merited further investigation and reasoning to try to figure out the cause of this
and whether it manifests itself in cross section calculations for more realistic processes or
whether it is merely an artefact of using the test matrix element.

The solution to this problem comes in recognising that there are mistakes in the definition
of the “test matrix element” with regards to combinatorical factor of summing and averaging
over the spins of the particles. The test matrix element has indices for helicities, colours and
flavours. If we consider a process involving only different leptons as the incoming particles,
then the colour and flavour indices are not summer over, as there is no degeneracy in this
regard. The only thing remaining is helicity. If we consider the process e−µ− → e−µ−Z,
then to obtain a cross section for the process of 1 fb, the matrix element is defined as

M(hel) = const. (14)

for all of the helicity states. This means that if we sum over all of the helicities of the
outbound state, we obtain

∑ |M|2 = Na2, where N is the number of helicities in the
outbound state. We now need to account for averaging over the inbound states. Thus, we
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W+ W− Z W+W− W+Z W−Z ZZ

Analytic σ IW IW ηZIZ I2W ηZIW IZ ηZIW IZ η2ZI
2
Z

xmin = 0.1 2.749×10−2 2.749×10−2 8.584×10−3 7.558×10−4 2.360×10−4 2.360×10−4 7.369×10−5

xmin = 0.2 1.661×10−2 1.661×10−2 5.177×10−3 2.760×10−4 8.601×10−5 8.601×10−5 2.680×10−5

xmin = 0.3 1.099×10−2 1.099×10−2 3.416×10−3 1.207×10−4 3.753×10−5 3.753×10−5 1.167×10−5

xmin = 0.4 7.462×10−3 7.462×10−3 2.314×10−3 5.569×10−5 1.727×10−5 1.727×10−5 5.354×10−6

xmin = 0.5 5.053×10−3 5.053×10−3 1.562×10−3 2.553×10−5 7.891×10−6 7.891×10−6 2.439×10−6

xmin = 0.6 3.324×10−3 3.324×10−3 1.023×10−3 1.105×10−5 3.401×10−6 3.401×10−6 1.047×10−6

xmin = 0.7 2.048×10−3 2.048×10−3 6.210×10−4 4.193×10−6 1.284×10−6 1.284×10−6 3.931×10−7

xmin = 0.8 1.095×10−3 1.095×10−3 3.326×10−4 1.200×10−6 3.644×10−7 3.644×10−7 1.107×10−7

xmin = 0.9 3.997×10−4 3.997×10−4 1.194×10−4 1.598×10−7 4.774×10−8 4.774×10−8 1.426×10−8

Table 4: The values of the form factors for various EWA processes

define out matrix element as

M =

√

#hel in

#hel out

√

flux

phase space volume
1 fb (15)

This is then summed over all of the inbound states to complete the average. For the case of
e−µ− → e−µ−Z, we obtain the following overall factors for inbound states

1

4
︸︷︷︸

inbound fermion average

(2 · 3)
︸ ︷︷ ︸

e−Z in

(2 · 3)
︸ ︷︷ ︸

e−Z out

(
1√
6

)2

︸ ︷︷ ︸

averaging of e−Z

=
3

2
, (16)

which is exactly the factor we obtain! This calculation can be repeated for double boson
emission and 9

4 is indeed recovered.

σ =

∫ 1

xmin

∑

λ

F
W±/Z
λ (x) dx× 1 fb (17)

σ =

∫ 1

x1min

∫ 1

x2min

∑

λ,λ′

F
W±/Z
λ (x1)F

W±/Z
λ′ (x2) dx1 dx2 × 1 fb (18)

3.4 Comparing WHIZARD against itself

An ideal way to check both the consistency and the accuracy of the EWA would be to
compare a result from an EWA process with the result from a full process. A natural
candidate for this would be the process examined before: e−µ+ → νeν̄µH, but WHIZARD
can’t handle processes with a single-particle final state — which is what has to be resolved
in the EWA sub-process W+W− → H. We are thus forced to consider a 2 → 2 sub-process.
To our knowledge, all of these involve more than one diagram and some of the diagrams are
not accounted for by the EWA — this was one of our big concerns earlier.

The natural way to try to solve this problem is to apply cuts to the process. By applying
appropriate cuts on, for example, the transverse momenta of the radiating fermions, we
expect to reduce the overall process to a region in the parameter space where the EWA is
the major contributor. In this way, we expect to be able to compare the EWA with the full
process and comment on its validity, accuracy and usefulness.

So, what observables shall we investigate with respect to changing the cuts? The cross
section is not ideal, as any local spikes can cause a large disagreement i.e. if the EWA causes
a large disagreement at one point in dσ

dx1

, then if we examine this distribution, we can see
that it might agree well in other areas, meanwhile just looking at σ doesn’t tell us as much.
As our main intuition about the validity of the EWA is related to the kinematic variable
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Figure 10: This shows the ratio σWHIZARD−EWA/σBy−hand−EWA The three single-bosons emis-
sions all group together with a common factor of 1.5, whilst the four double-boson emissions
group around 2.25 i.e. (1.5)2 — this clearly indicates that a factor of 1.5 is associated with the
emission of each individual boson.

of the W bosons, we choose to investigate the energy distribution of one of the W bosons,
applying cuts on the transverse momentum. Figure 11 shows the various distributions for
associated applied cuts. We can see that the best agreement occurs when the energy of
the W is higher — this makes sense, as we make the assumption that the energy of the
interaction should be much larger than mW . Also, the p⊥ cuts are most effective when the
region is small i.e. in the regime where the assumption of p⊥ ≪ E is valid. Both of the
necessary conditions for the approximation to hold indeed seem to apply here.

4 Conclusions

We can see that clearly the basic structure of the implementation is valid. However, the
random fluctuations exhibited in figures 8 and 9 are cause for concern. We have identified
that the implementation of the test matrix element is responsible for the deviation of the
magnitude of the expected structure function from the analytical results. Within this con-
stant factor, the theory and data agree very well. It is also apparent that the EWA produces
results consistent with full calculations in cases such as Higgs production via vector boson
fusion and also reproduces features of other processes, such as W+W− scattering, when
appropriate cuts are applied. Reproducing the actual cross section is yet to be exhaustively
inverstigated in such a case, and would prove to be interesting research in the future.
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Figure 11: This shows the W energy distributions, with cuts of p⊥ above 100 GeV and below
various different upper values
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