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1. Introduction.

Recent determinations of the proton electric to magnetic form factor ratio
from polarization transfer measurements [1] indicate an unexpected and dramatic
discrepancy with the form factor ratio obtained using the Rosenbluth separation
technique in unpolarized cross section measurements[2]. This discrepancy has been
explained as the effects of multiple photon exchange beyond the usual one-photon
exchange approximation in the calculation of the elastic electron-proton scattering
cross section. Since most of our understanding on the structure of the proton and
atomic nuclei is based upon lepton scattering analyzed in terms of the single photon
approximation; it is essential to definitively verify the contribution of multiple
photon exchange.

In June 2007, OLYMPUS collaboration submitted to DESY a letter of
intent to carry out an experiment to definitively determine the contribution of
multiple photon exchange in elastic lepton-nucleon scattering. The most direct
evidence for multiple photon exchange would be a deviation from unity in the ratio
of positron-proton to electron-proton elastic scattering cross sections. The
experiment would utilize intense beams of electrons and positrons in the DORIS
ring incident on an internal hydrogen gas target at an incident energy of 2.01 GeV
and precisely measure elastic scattering at polar angles between 20 and 80 with high
statistical and systematic precision. For this experiment we proposed to use the
existing Bates Large Acceptance Spectrometer Toroid (BLAST) from MIT and an
unpolarized internal gas target similar to one used by the HERMES experiment at
HERA.

The OLYMPUS (pOsitron-proton and eLectron-proton elastic scattering to
test the hYpothesis ofMulti-Photon exchange Using doriS) collaboration comprises
over fifty physicists from fifteen institutions in Germany, Italy, Russia, the United
Kingdom, and the United States.

The experiment takes advantage of unique features of the BLAST detector
combined with an internal hydrogen gas target and the DORIS storage ring operated
with both electrons and positrons. The systematic uncertainties are controllable at
the percent level, and with the superior luminosity that can be provided at DORIS,
this experiment will not be limited in statistical precision [3].

The theme of this work 1s «Radiative corrections for electron-proton and
positron-proton scattering». It is need to calculate radiative correction to the
positron-proton and electron-proton elastic scattering cross sections neglecting
excitation in proton intermediate state to get good accuracy of the experiment. It is
important because this correction is different for electrons and positrons and could
be a source of the systematic uncertainties.



2. Elastic scattering

2.1. Rosenbluth cross section

When an electron scatters elastically from a proton it exchanges a virtual
photon with the proton as shown in Fig. 1. In electron scattering experiments the

coupling constant (« zL) is small so one can work only at the leading order of
137

perturbation theory.
e(k)+P(p)— e(k"+P(p")(2.1)

where k =(E,k)and k' =(E',k") are the four momenta of the initial and final
electrons.
K . e
N

l\ i
¥ =
\ Y (©.9)
\"..' ——3
.rf

4
;

p
P
/ /
.-"f
:r"\._/'\,,/“\f\f\_/"\...f’"{x
x
\ |
N
P b
p

/7
k

FIG. 1: Feynman diagram of elastic scattering of an electron off a proton in
one photon exchange approximation (Born Approximation).

The four momentum transfer q carried by the virtual photon is constrained
by momentum conservation ¢ = (k —k'). The square of the four momentum transfer is

a Lorentz invariant that can be expressed in terms of the incident energy E, final
energy £’ and the electron scattering angle 0 as

O’ =—q¢’=—(0" —G*)=—(k—k')’ =4EE'sin’ g (2.2)

Q2
2Mp
the proton and g is the spatial component of the four momentum transfer. The mass
of the electron is neglected because E >>m,. Since a large Q° is associated with a

where o=

is the energy transferred by the virtual photon from the electron to

very short wavelength, the virtual photon, y (@,§), can probe the internal structure

of the proton.
The leptonic vertex, e(k) —e(k')+y (w,§), where an electron emits a virtual

photon, is fully described by QED (Quantum ElectroDynamics) and is well



understood. However the hadronic vertex y'(w,§)+P(p)— P(p'), where the virtual
photon is absorbed by the proton, is not easy to calculate due to the structure of the
proton.

To calculate the cross section of the reaction we need to calculate the
amplitude of elastic scattering that depends on the leptonic and hadronic vertices. If
the proton were point like, the cross section could be calculated within the
framework of QED which gives

where « 1is the fine structure constant. But the proton is not a point like
particle. The spatial extent of the electromagnetic charge and current densities of the
proton introduces the form factors in the cross section measurement. In this case we
can express the cross section as

dO'
a’Q

k>0 0?
oMo,,{F<Q)+ IV - F(0%)+ v | F(Q)+k,F,(Q >}tan[ ]}(24)

where kp=1.79 is the proton’s anomalous magnetic moment. F(Q*) and
F,(Q*) are the Dirac and Pauli form factors respectively. These form factors depend
only on Q* and contain the information about the internal structure of the proton.

We can simplify the above expression using the Sachs form factors G,(Q%)
and G, (Q%). Sachs form factors can be expressed as a linear combination of the
Dirac and Pauli form factors as

2y 2 Q
G,(Q7)=F(Q') -k, Y an’ (2.5)
GM(Q2)=E(Q2)+/€,,F2(Q ) (2.6)

At 0*=0, G,(0)=1and G,(0)=pu,=1+k,where p, is the proton magnetic
moment. So we can rewrite the expression for the cross section as

d_a_%[GZ(Q )+7G Q) )

dQ 1+71 (0 tan” }(2 7

QZ

where 7=

—. This expression for the cross section is known as the
P

Rosenbluth formula in the one photon exchange approximation (Born
Approximation). Both G,(Q*) and G,,(Q*) depend only on Q*[4].



2.2 Elastic cross section.

The Feynman diagrams contributing to the elastic scattering cross section to
order o’ are shown in Fig. 2.[5]
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FIG. 2. Feynman diagrams for elastic scattering.
The expression for the elastic scattering cross section can be written as

where E,; is the energy of input beam, m — mass of the electron, M — mass of
the proton.

The first term in the square bracket of Eq.(2.8) represents the Rosenbluth
cross section. The Rosenbluth cross section is given by Eq (2.7).
Neglecting the noninfrared terms in matrix elements we have

M, = _%Ml [K(pza_p1)+K(p4a_p3)] (29)

A
M, =02{—7[M1 [K(p,,—p)+K(p,,—p,)](2.10)

aZ’
Mg=- by M, [K(pz,p4)—K(p2,p2)](2-11)

For vacuum polarization (M,) and electron vertex (Ms) diagrams, we have

M, =Z{_§+11H(Q—EHMI(2.12)
9 3 m

T

M; :_i|:K(p1’p3)_K(p1’pl)_iln(g_zj+2:|M1 (213)
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where K(pi,p,)=(Pi»P,)j—yzln 12
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y

p,=py+p,(1-y).

Substituting expressions for matrix elements in Eq. (2.8), we obtain the
elastic scattering cross section

dG dO- o
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3. Bremsstrahlung

The Feynman diagrams for the matrix elements contributing to the inelastic
cross section to order «’ are shown in Fig. 3.[5]
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Fig. 3. Feynman diagrams for inelastic scattering.
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Since we are interested only in the soft foton emission, the vertex function
connecting the real photon k and the proton current may be approximated by y, .

Thus the matrix elements M,, and M,, may be written as
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with the approximation AE(1+ 25) << E,(where AE is the maximum energy
M

loss of the electron or the maximum energy of a photon which can be emitted, E; is
the energy of scattering electron) we may write
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The inelastic cross section can be calculated by using the formula

do, =(2rx)’ EE,

1
5 2.2 1/2Zjd3p3d3p4d3k5(p3+p4+k—p1—pz)
I:(p1p2) -mM } (33)
XZ(M;"'MhTz)(Mm"'Mhz)

spin

This expression can be transformed to

2MnAE
(d_ﬁ] = _(d_o-j az J. xdx - Idéklz (34)
dQ b dQ Rosenluth 87[ 2(’x +m )

2AM

2
Py, P _Zp4+Zp2:|

where y° :{
psk pk  pk pk

Finally inelastic cross section can be written as

d_Gz(d_Gj +(d_"j E(d_"j (1+5)(3.5)
dQ dQ elastic dQ b dQ Rosenluth

where
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We have kept Z in our formula for convenience of discussion. Z is equal to
+1 for ¢ + p scattering and is equal -1 for ¢ + p scattering.

4. Calculations.

The goal of this work was to calculate radiative correction for the case of
one photon bremsstrahlung. First of all I calculate elastic cross section in Born
approximation (Rosenbluth cross section) from kinematic variables. Here are plots
of Rosenbluth cross section from the angle of scattering electrons (positrons) and
from four momentum Q°.
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Fig 4. Rosenbluth cross section (in nb”-1) from kinematic variables.

To find cross section was used equation (2.7).

Then the calculations were made for radiative correction 6 (Eq. (3.6)) which
includes matrix elements (2.9)-(2.13), (3.1),(3.2). The Spence function in equation

was calculated by using numerical integration (trapezoidal method with using an
adaptive algorithm) with ROOT data analysis Framework [6]. The results of
calculations are presented on Figs. 5,6
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Fig 5. Radiative correction for electron-proton scattering.
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Fig. 6. Radiative corrections for electron-proton and positron-proton
scattering.

5. Conclusion.

In this work, there were calculated the radiatiative correctionsd, ,6  for

electron-proton and positron-proton scattering at the beam energy of 2.01 GeV,
respectively. Following to [4], the calculations have been done under the
assumption that the proton excitations in the intermediate state are neglected
(amplitudes M2, M3 in Fig.2). The obtained results are to be used in the analysis
of OLYMPUS experiment for a simple estimation of the two photon exchange
effect on the measured e+p and e-p differential cross sections. It has been shown
that for OLYMPUS kinematics the size of possible beam charge asymmetry due to
the radiative correction is on the level of 1.5%. Further, it is assumed that the
obtained result will be used in the OLYMPUS Monte Carlo where the detector
acceptance will be taken into account.
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