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1. Introduction. 

Recent determinations of the proton electric to magnetic form factor ratio 

from polarization transfer measurements [1] indicate an unexpected and dramatic 

discrepancy with the form factor ratio obtained using the Rosenbluth separation 

technique in unpolarized cross section measurements[2]. This discrepancy has been 

explained as the effects of multiple photon exchange beyond the usual one-photon 

exchange approximation in the calculation of the elastic electron-proton scattering 

cross section. Since most of our understanding on the structure of the proton and 

atomic nuclei is based upon lepton scattering analyzed in terms of the single photon 

approximation; it is essential to definitively verify the contribution of multiple 

photon exchange. 

In June 2007, OLYMPUS collaboration submitted to DESY a letter of 

intent to carry out an experiment to definitively determine the contribution of 

multiple photon exchange in elastic lepton-nucleon scattering. The most direct 

evidence for multiple photon exchange would be a deviation from unity in the ratio 

of positron-proton to electron-proton elastic scattering cross sections. The 

experiment would utilize intense beams of electrons and positrons in the DORIS 

ring incident on an internal hydrogen gas target at an incident energy of 2.01 GeV 

and precisely measure elastic scattering at polar angles between 20 and 80 with high 

statistical and systematic precision. For this experiment we proposed to use the 

existing Bates Large Acceptance Spectrometer Toroid (BLAST) from MIT and an 

unpolarized internal gas target similar to one used by the HERMES experiment at 

HERA. 

The OLYMPUS (pOsitron-proton and eLectron-proton elastic scattering to 

test the hYpothesis ofMulti-Photon exchange Using doriS) collaboration comprises 

over fifty physicists from fifteen institutions in Germany, Italy, Russia, the United 

Kingdom, and the United States. 

The experiment takes advantage of unique features of the BLAST detector 

combined with an internal hydrogen gas target and the DORIS storage ring operated 

with both electrons and positrons. The systematic uncertainties are controllable at 

the percent level, and with the superior luminosity that can be provided at DORIS, 

this experiment will not be limited in statistical precision [3]. 

The theme of this work is «Radiative corrections for electron-proton and 

positron-proton scattering». It is need to calculate radiative correction to the 

positron-proton and electron-proton elastic scattering cross sections neglecting 

excitation in proton intermediate state to get good accuracy of the experiment. It is 

important because this correction is different for electrons and positrons  and could 

be a source of the systematic uncertainties. 
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2. Elastic scattering 

 

2.1. Rosenbluth cross section 
 

When an electron scatters elastically from a proton it exchanges a virtual 

photon with the proton as shown in Fig. 1. In electron scattering experiments the 

coupling constant (
1

137
α ≈ ) is small so one can work only at the leading order of 

perturbation theory. 

( ) ( ) ( ) ( )e k P p e k P p′ ′+ → + (2.1) 

 

where ( , )k E k=
r

and ( , )k E k′ ′ ′=
r

 are the four momenta of the initial and final 

electrons. 

 
FIG. 1: Feynman diagram of elastic scattering of an electron off a proton in 

one photon exchange approximation (Born Approximation). 

 

The four momentum transfer q carried by the virtual photon is constrained 

by momentum conservation ( )q k k′= − . The square of the four momentum transfer is 

a Lorentz invariant that can be expressed in terms of the incident energy E, final 

energy E′  and the electron scattering angle θ as 

2 2 2 2 2 2( ) ( ) 4 sin
2

Q q q k k EE
θ

ω ′ ′= − = − − = − − =
r

                    (2.2) 

where 
2

2

Q

Mp
ω = is the energy transferred by the virtual photon from the electron to 

the proton and q
r
 is the spatial component of the four momentum transfer. The mass 

of the electron is neglected because eE m>> . Since a large 2Q  is associated with a 

very short wavelength, the virtual photon, *( , )qγ ω
r

, can probe the internal structure 

of the proton. 

The leptonic vertex, *( ) ( ) ( , )e k e k qγ ω′→ +
r

, where an electron emits a virtual 

photon, is fully described by QED (Quantum ElectroDynamics) and is well 
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understood. However the hadronic vertex *( , ) ( ) ( )q P p P pγ ω ′+ →
r

, where the virtual 

photon is absorbed by the proton, is not easy to calculate due to the structure of the 

proton. 

To calculate the cross section of the reaction we need to calculate the 

amplitude of elastic scattering that depends on the leptonic and hadronic vertices. If 

the proton were point like, the cross section could be calculated within the 

framework of QED which gives 

2 2

2 4

cos
2

4 sin
2

Mott
Mott

d E

d E
E

θ
ασ

σ
θ

′
= =

Ω
(2.3) 

 

where α  is the fine structure constant. But the proton is not a point like 

particle. The spatial extent of the electromagnetic charge and current densities of the 

proton introduces the form factors in the cross section measurement. In this case we 

can express the cross section as 

 
2 2 2

2 2 2 2 2

1 2 1 22 2
( ) ( ) ( ) ( ) tan

4 4 2

p

Mott p

p p

k Qd Q
F Q F Q F Q k F Q

d M M

σ θ
σ

    = + + +   Ω    
(2.4) 

 

where kp=1.79 is the proton’s anomalous magnetic moment. 2

1( )F Q  and 
2

2 ( )F Q  are the Dirac and Pauli form factors respectively. These form factors depend 

only on 2Q  and contain the information about the internal structure of the proton. 

We can simplify the above expression using the Sachs form factors 2( )EG Q  

and 2( )MG Q . Sachs form factors can be expressed as a linear combination of the 

Dirac and Pauli form factors as 

 

 
2

2 2 2

1 22
( ) ( ) ( )

4
E p

p

Q
G Q F Q k F Q

M
= −                             (2.5) 

2 2 2

1 2( ) ( ) ( )M pG Q F Q k F Q= +                                      (2.6) 

 

At 2 0Q = , (0) 1EG = and (0) 1M p pG kµ= = + where pµ  is the proton magnetic 

moment. So we can rewrite the expression for the cross section as 

 
2 2 2 2

2 2 2( ) ( )
2 ( ) tan

1 2

E M
Mott M

d G Q G Q
G Q

d

σ τ θ
σ τ

τ
 +

= + Ω + 
(2.7) 

 

where 
2

24 p

Q

M
τ = . This expression for the cross section is known as the 

Rosenbluth formula in the one photon exchange approximation (Born 

Approximation). Both 2( )EG Q  and 2( )MG Q  depend only on 2Q [4]. 
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2.2 Elastic cross section. 

 
The Feynman diagrams contributing to the elastic scattering cross section to 

order 3α  are shown in Fig. 2.[5]  

 

 

2 3 31 2
3 4 1 2 3 41

2 2 2 2
1 2

6
† †

1 1 1

2

1
(2 ) ( )

4
( )

2Re( )

elastic

i

spin i

E E
d p p p p d p d p

p p m M

M M M M

σ π δ

=

= + − −
 − 

 
× + 

 

∫

∑ ∑
(2.8) 

 

 
FIG. 2. Feynman diagrams for elastic scattering. 

The expression for the elastic scattering cross section can be written as 

 

where E1 is the energy of input beam, m – mass of the electron, M – mass of 

the proton. 

The first term in the square bracket of Eq.(2.8) represents the Rosenbluth 

cross section. The Rosenbluth cross section is given by Eq (2.7). 

Neglecting the noninfrared terms in matrix elements we have 

 

[ ]2 1 2 1 4 3( , ) ( , )
2

Z
M M K p p K p p

α
π

= − − + − (2.9) 

[ ]3 1 2 1 4 3( , ) ( , )
2

Z
M M K p p K p p

α
π

= − + − (2.10) 

[ ]
2

6 1 2 4 2 2( , ) ( , )
2

Z
M M K p p K p p

α
π

= − − (2.11) 

 

For vacuum polarization (M4) and electron vertex (M5) diagrams, we have 
2

4 12

5 1
ln

9 3

Q
M M

m

α
π

  
= − +  

  
(2.12) 

2

5 1 3 1 1 12

3
( , ) ( , ) ln 2

2 2

Q
M K p p K p p M

m

α
π

  
= − − − +  

  
(2.13) 
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where 
21

2 2

0

( , ) ( , ) ln
y

i j i j

y

pdy
K p p p p

p λ
= ∫ , (1 )y i jp p y p y= + − . 

 

Substituting expressions for matrix elements in Eq. (2.8), we obtain the 

elastic scattering cross section 

 

1 3 1 1 2 1

2

4 3 2 3 4 1 2 4

2
2

2 2 2

{1 [ ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )

28 13
( , )] ln }

9 6

elastic Rosenbluth

d d
K p p K p p ZK p p

d d

ZK p p ZK p p ZK p p Z K p p

Q
Z K p p

m

σ σ α
π

α
π

   = + − + −   Ω Ω   

− + + −

 
+ + − + 

 

(2.14) 

 

 

3. Bremsstrahlung 

 
The Feynman diagrams for the matrix elements contributing to the inelastic 

cross section to order 3α  are shown in Fig. 3.[5] 

 
Fig. 3. Feynman diagrams for inelastic scattering. 

 

Since we are interested only in the soft foton emission, the vertex function 

connecting the real photon k and the proton current may be approximated by νγ . 

Thus the matrix elements 1bM  and 2bM  may be written as 

 
3

3 1
1 37/2 1/2

1 2 3 4 3 1

1 4 2 2

1 3

( )[ ]
(2 ) (2 ) 2 2

1
( ) ( ) ( )

( )

b

p k m p k me mMZ
M u p e e

E E E E p k p k

u p u p Г u p
p p k

µ µ

µ

γ γ
π ω

+ + − +
= −

×
− −

(3.1) 

3 2

2 3 1 47/2 1/2

1 2 3 4

4 2 2

2

4 2 1 3

( ) ( ) ( )
(2 ) (2 )

( )

2 2 ( )

b

e mMZ
M u p u p u p

E E E E

p k M p k M u P
e Г Г e

p k p k p p

µ

µ µ

γ
π ω

= −

 + + − +
× −  − 

                    (3.2) 
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with the approximation 1
3(1 2 )

E
E E

M
∆ + << (where E∆  is the maximum energy 

loss of the electron or the maximum energy of a photon which can be emitted, E3 is 

the energy of scattering electron) we may write 

 
1/2

3 1 4 2
1 2 12 1/2

3 1 4 2

1

2 (2 )
b b

p e p e Zp e Zp ei
M M M

p k p k p k p k

α
π ω

  + ≈ − + +  
   

 

 

The inelastic cross section can be calculated by using the formula 

 

2 3 3 31 2
3 4 3 4 1 21/2

2 2 2

1 2

† †

1 2 1 2

1
(2 ) ( )

4( )

( )( )

b

b b b b

spin

E E
d d p d p d k p p k p p

p p m M

M M M M

σ π δ= + + − −
 − 

× + +

∫

∑
(3.3) 

 

This expression can be transformed to 

 
2

2

2 2

2
8 2( )

M E

k

b Rosenluth M

d d xdx
d

d d x m

η

λ

σ σ α
χ

π

∆
   = − Ω   Ω Ω +    ∫ ∫ % (3.4) 

 

where 

2

2 3 1 4 2

3 1 4 2

p p Zp Zp

p k p k p k p k
χ

 
= − − + 
 

 

 

Finally inelastic cross section can be written as 

 

( )1
elastic b Rosenluth

d d d d

d d d d

σ σ σ σ
δ     = + ≡ +     Ω Ω Ω Ω     

(3.5) 

 

where  



 9 

2 2
23 11 4

2 2

3

1 1

2 2 2
2 4 4 4 4 4

4 4 4 4 4 4

28 13
{ ln ln 1 2 ln 2ln 3ln ln

9 6

1 1 11 1
ln ln 2 ln ln

1 2 1 2 1

E EE EQ Q
Z Z

m m E E M

E M E MM Z
Z

E M E M

α
δ η η

π

β β β
η β β β β β

       − = − − + − + − −Φ −        ∆       

  
     + + + − +  + − + −Φ −       ∆ − − + −         

3 3 3 3 3 4 1

1 3 4 1 3 4 1 1 3 3

4 3 4 3 1 4 3 1 4 3

3 1 4 3 1 4 3 3 1

( ) 2 ( ) 2
ln ln

2 2 ( 2 ) 2

( ) 2 ( ) 2
ln

2 2 ( 2 )

M E M M E E M E E E ME M
Z

E E E ME E E ME E M E E

E E M E E E E E E E ME
Z

E E E ME E E ME E M E





       − − − −
+ Φ − −Φ +Φ +        − − −         

     − − − −
− Φ − −Φ +Φ +     − − −      1

1 1 1

1 1 1 1

3 3 3

3 3 3 3

ln
2

2( )
ln ln

2 2

2( )
ln ln }

2 2

M

E

M E M E M E M M
Z

E E M E M E

M E M E M E M M
Z

E E M E M E

  
  
   

      − − − − Φ − −Φ +Φ +        −       

      − − − + Φ − −Φ +Φ +        −        

(3.6) 

 

Where ( )xΦ  is the Spence function  

 

                            
0

ln 1
( )

x y dy
x

y

− −
Φ = ∫ , 4 1 3E E M E= + − , 2 2 1/2

4 4 4( ) /E M Eβ = −  

 

We have kept Z in our formula for convenience of discussion. Z is equal to 

+1 for e p− +  scattering and is equal -1 for e p+ +  scattering. 

 

 

4. Calculations. 
 

The goal of this work was to calculate radiative correction for the case of 

one photon bremsstrahlung. First of all I calculate elastic cross section in Born 

approximation (Rosenbluth cross section) from kinematic variables. Here are plots 

of Rosenbluth cross section from the angle of scattering electrons (positrons) and 

from four momentum 2Q .  
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Rosenbluth crossection section
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Fig 4. Rosenbluth cross section (in nb^-1) from kinematic variables. 

 

To find cross section was used equation (2.7). 

 

Then the calculations were made for radiative correction δ (Eq. (3.6)) which 

includes matrix elements (2.9)-(2.13), (3.1),(3.2). The Spence function in equation 

was calculated by using numerical integration (trapezoidal method with using an 

adaptive algorithm) with ROOT data analysis Framework [6]. The results of 

calculations are presented on Figs. 5,6 

 

 
 

Fig 5. Radiative correction for electron-proton scattering. 
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e+-p/e--p correction 
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Fig. 6. Radiative corrections for electron-proton and positron-proton 

scattering. 

 

 

5. Conclusion. 

 

In this work, there were calculated the radiatiative  corrections ,+ −δ δ  for 

electron-proton and positron-proton scattering at the  beam energy of  2.01 GeV, 

respectively. Following to [4],  the calculations have  been done under the 

assumption that the proton excitations in the intermediate state are neglected 

(amplitudes M2, M3 in Fig.2).  The obtained results  are to  be used in the analysis 

of OLYMPUS experiment for a simple estimation of the two photon exchange 

effect on the measured e+p and e-p differential cross sections.  It has been shown 

that for OLYMPUS kinematics the size of possible beam charge asymmetry due to 

the radiative correction is on the level of  1.5%. Further, it is assumed that the 

obtained result will be used in the OLYMPUS Monte Carlo where the detector 

acceptance will be taken into account. 
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