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Jochen Küppera,b, Frank Filsingerc, Izan Castro Molinaa

aCenter for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg,
Germany

bDepartment of Physics, University of Hamburg, Luruper Chausse 149, 22761 Hamburg,
Germany

cFritz-Haber-Institut der MPG, Faradayweg 4-6, 14195 Berlin, Germany

Abstract

The Controlled Molecule Imaging group (CMI) at the Center for Free Elec-
tron Laser Science (CFEL) has created the jkstarksoftware to calculate,
view and analyse the energy levels of adiabatic Stark energy curves of linear,
symmetric-top and asymmetric top molecules.

Keywords: Asymmetric top molecule, Stark effect

1. Program summary

Program title:. jkstark

Licensing provisions:. Open source BSD License. See code for licensing de-
tails.

No. of lines in distributed program, including test data, etc.:. 2602

No. of bytes in distributed program, including test data, etc.:. 108606

Distribution format:. tar.gz

Programming language:. Python (version 2.6.6)

Computer:. Any Macintosh, PC, or Linux/UNIX workstations with a mod-
ern Python distribution

Email address: jochen.kuepper@cfel.de (Jochen Küpper)
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Operating system:. Tested on Mac OS X and a variety of Linux distributions

RAM:. 2 GB for typical calculations

External routines:. numpy, scipy Python packages, utilizes BLAS and LA-
PACK through scipy. All available under open-source licenses.

Nature of problem:. Calculation of the Stark effect of assymetric top molecules
in arbitrarily strong DC electric fields and correct symmetry classification and
labelling of the adiabatic Stark curves.

Solution method:. We set up the full M matrices of the quantum-mechanical
asymmetric rotor Hamiltonian in the basis of the symmetric top wavefunc-
tions and Wang transform the Hamiltonian. We separate the matrix ac-
cording to the appropriate remaining Fourgroup symmetry, and according to
J if possible, and diagonalize the individual blocks. The application of all
symmetry of the system allows for the direct correlation of the asymmetric
top eigenstates in the DC electric field to the field-free eigenstates, directly
yielding correct adiabatic labels and correspondingly, adiabatic Stark energy
curves.

Restrictions:. For practical purposes, the maximum J is limited by the avail-
able main memory. A modern PC with 8 GB of main memory allows for
calculations including J = 50 or higher.

Running time:. 1 s–1 week on a single CPU (depending greatly on system
size and RAM)

2. Introduction

Over the last year, the manipulation of complex molecules using inho-
mogeneous electric fields has been rejuvenated. It has been demonstrated,
that it is possible to deflect, focus, and decelerate even large asymmetric
top molecules [1, 2]. Moreover, it is possible to spatially separate neutral
molecules according to their quantum state, their structural form, and their
size using these techniques [3, 4]. Therefore, world-wide many groups in
molecular physics and physical chemistry are now setting up and starting
experiments on the structural-isomer and cluster-size separation using in-
homogeneous electric fields for advanced studies of well-defined samples of
complex molecules.
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3. Description

3.1. Overview

In quantum mechanics, the energy E of a molecule is calculated from the
Schrödinger equation

H Ψ = EΨ, (1)

where H denotes the Hamiltonian in the center-of-mass frame and Ψ is
the internal wave function. Couplings between the motion of the nuclei
and the motion of the electrons and nuclear spin wave functions will be
neglected at any time leaving the internal wavefunction as the product of
electronic, vibrational and rotational wave functions, which are denoted as
Ψel,Ψvib,Ψrot, respectively:

Ψ = ΨelΨvibΨrot. (2)

Thus, the total energy is given by the sum of electronic (Eel), vibrational
(Evib) and rotational energies (Erot):

E = Eel + Evib + Erot. (3)

Since this code is meant to study energy levels of very cold molecules (on the
order of 1 K) and all of them are in the electronic and vibrational ground
level, we shall analyze the rotational term of the Hamiltonian Hrot.
Within the classic approximation, any molecule can be characterized by three
principal moments of inertia Ia, Ib and Ic. By convention, the principal
axes a, b and c are labelled such as Ia ≤ Ib ≤ Ic. In this program we use
the rotational constants instead of the moments of inertia. The rotational
constants, expressed in units of MHz, are defined as

A =
h

8π2Ia
, B =

h

8π2Ib
, C =

h

8π2Ic
, (4)

where h is Planck’s constant. Throughout the code, |J,K,M〉 wavefunctions
will be used for a proper description of the energy levels, where J is the total
angular momentum quantum number, K characterizes the projection of the
total angular momentum onto its figure axis and M is the quantum number
characterizing the projection of the total angular momentum of the molecule
onto a space fixed Z-axis. The quantum number of the angular momentum
can take only the integral values

J = 0, 1, 2, 3, ... (5)
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while K and M , which measure in units of ~ the components of the angular
momentum along its figure axis and a space-fixed Z-axis, respectively, can
take the values

K = J, J − 1, ..., 0, ...,−J + 1,−J, (6)

M = J, J − 1, ..., 0, ...,−J + 1,−J. (7)

Nevertheless, henceforth we will only implement the M = 0 case.

3.2. Linear top

In a linear, polyatomic molecule the angular momentum about the prin-
cipal axis a is zero whereas the two other moments of inertia along axes b
and c are equal: Ib = Ic = I. Therefore the energy eigenvalues are

E0
J = 〈J |H0|J〉 = 〈J |P

2

2I
|J〉 =

h2J(J + 1)

8π2I
. (8)

With the substitution of the spectral constant B ≡ h/8π2I, this becomes:

E0
J = hBJ(J + 1). (9)

However,this first order term on the energy corresponds to the rigid rotor
model of the molecule. The Hamiltonian for the nonrigid rotor can be written
as

H = H0 + Hd, (10)

where H represents the centrifugal distortion energy. For the linear molecule
there is only one axis of distortion and Hd takes the form

Hd = −(
h

~4
)DP 4, (11)

where D is a constant. The first-order perturbation energy is the average of
Hd over the eigenfunction Ψ0

J of the unperturbed Hamiltonian H0, or

E(1) = 〈J |Hd|J〉 = −(
h

~4
)DP 4 = −hDJ2(J + 1)2. (12)

If we now apply an electric field E to the molecule a new Hamiltonian term
HStark will appear. The Stark effect Hamiltonian operator can then be ex-
pressed as

HStark = −E
∑

g=x,y,z

µgφZg , (13)

where φZg are the direction cosines of the x, y, z axes with reference to the
space-fixed Z-axis. Linear (and also symmetric-top) molecules have a dipole
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moment component only along the symmetry axis z. For them, µz = µ, µx =
µy = 0; the Hamiltonian the becomes simply

HStark = −µE φZz . (14)

Hence, now we present the Hamiltonian matrix elements corresponding to
HStark

〈J,K,M |µ|J,K,M〉 = − MK

J(J + 1)
µE , (15)

〈J + 1, K,M |µ|J,K,M〉 = 〈J,K,M |µ|J + 1, K,M〉

= −
√

(J + 1)2
√

(J + 1)2 −M2

(J + 1)
√

(2J + 1)(2J + 3)
µE . (16)

3.3. Symmetric top

A molecule in which two of the principal moments of inertia are equal
is a symmetric-top rotor. In a symmetric-top molecule, one of the principal
axes of inertia must lie along the molecular axis of symmetry. The principal
moments of inertia which have their axes perpendicular to this axis are equal.
If a, the axis of least moment of inertia (Ia < Ib = Ic), lies along the symmetry
axis, the molecule is a prolate symmetric top. If c, the axis of the greatest
moment of inertia (Ia = Ib < Ic), lies along the symmetry axis is an oblate
symmetric top. With the a axis chosen along the symmetry axis (Ic = Ib)
and with P 2 = P 2

a +P 2
b +P 2

c , the Hamiltonian operator may be expressed as

H0 =
P 2

2Ib
+

1

2
(

1

Ia
− 1

Ib
)P 2

a (17)

Thus, we have the eigenvalues, for instance, for the rigid prolate symmetric
top

E0 = 〈J,K|H0|J,K〉 =
1

2Ib

〈
J,K|P 2|J,K

〉
+

1

2
(

1

Ia
− 1

Ib
)
〈
J,K|P 2

a |J,K
〉

= (
h2

8π2Ib
)J(J + 1) + (

h2

8π2
)(

1

Ia
− 1

Ib
)K2. (18)

With the substitution of the spectral constants, E0 can be written

E0 = h[BJ(J + 1) + (A−B)K2]. (19)

For the oblate symmetric top, the expression of the parenthesis of the second
term becomes (C −B).
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As in the case of the linear-top molecule, now we introduce the Hamilto-
nian for the nonrigid rotor Hd for the symmetric-top case. The centrifugal
distortion Hamiltonian has the form

Hd =
h4

4

∑
αβγδ

ταβγδPαPβPγPδ (20)

where α, β, γ, δ represent the principal coordinate axes of the moments of
inertia for the molecule (each must be summed over all three coordinate axes)
and where ταβγδ are the distortion constants. To first order, the distortion
energy is

Ed = 〈J,K,M |Hd|J,K,M〉
= h[DJJ

2(J + 1)2 +DJKJ(J + 1)K2 +DKK
4], (21)

in which the DJ , DJK and DK are the usual first-order centrifugal stretching
constants of the symmetric-top molecule. The D´s represent a combination
of the τ´s. Moreover, if we now apply an electric field, just as in the case
of the linear top, we will have another Hamiltonian term HStark. Thus, we
have the Hamiltonian matrix elements corresponding to HStark

〈J,K,M |µ|J,K,M〉 = − MK

J(J + 1)
µE , (22)

〈J + 1, K,M |µ|J,K,M〉 = 〈J,K,M |µ|J + 1, K,M〉

= −
√

(J + 1)2 −K2
√

(J + 1)2 −M2

(J + 1)
√

(2J + 1)(2J + 3)
µE . (23)

3.4. Asymmetric top

The last, most general case we are describing in this paper is the asymmetric-
top molecule. When a molecule has none of its three principal moments of
inertia equal to zero and when no two are equivalent, is considered as an
asymmetric top. Due to the considerably complexity of this case the rota-
tional frequencies can no longer be expressed in convenient equations, as can
be done for linear or symmetric-top molecules. But before we get further,
one must first become familiar with the notation used to designate the lev-
els. Pseudo-quantum numbers, customarily labeled by subscripts on J , are
employed in the designation of the energy levels in a way that will be explain
later on. First of all, we shall introduce the parameter κ that is a measure
of the asymmetry of the molecule. In the conventional order, Ia < Ib < Ic.
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Thus, when Ib → Ic, the prolate symmetric top is approached; and when
Ib → Ia, the oblate symmetric top is approached. Then we define κ as

κ =
2B − A− C
A− C

, (24)

with A,B,C the rotational constants with respect to the a, b, c axes. The lim-
iting values for κ, -1 and +1, correspond to the prolate and oblate symmetric
tops, respectively. The most asymmetric top has κ = 0. An asymmetric ro-
tor has (2J + 1) distinct rotational sublevels for each value of J , whereas the
symmetric rotor has only (J + 1). With an increase in asymmetry, the ”K
spliting” increases until there is no longer any close correspondence between
the two levels and the degenerate K levels of the symmetric top. Neverthe-
less, by connecting the K levels for a given J of the limiting prolate symmetric
top with those of the limiting oblate symmetric top in the ordered sequence
one may obtain a qualitative indication of the levels of the asymmetric rotor.
Hence, from now on we will be using the following notation JKaKc in order to
label the energy levels. The first subscript, Ka represents the K value of the
limiting prolate top while the second one, Kc, represents the K value of the
limiting oblate top. Note that the highest sublevels of the prolate symmetric
top have the highest K values, whereas the highest sublevels for the oblate
symmetric top have the lowest K values. Analogously to the linear and sym-
metric top cases, we shall now present the eigenvalues of the Hamiltonian
corresponding with the rigid rotor approximation.

〈J,K,M |H0|J,K,M〉 =
(B + C)

2
(J(J + 1)−K2) + AK2, (25)

〈J,K + 2,M |H0|J,K,M〉 = 〈J,K,M |H0|J,K + 2,M〉

=
(B − C)

4

√
J(J + 1)−K(K + 1)

√
J(J + 1)− (K + 1)(K + 2). (26)

And now, the distortable rotor terms according to Watson’s A reduction

〈J,K,M |Hd|J,K,M〉 = ∆J(J(J + 1))2 −∆JKJ(J + 1)K2 −∆KK
4, (27)

〈J,K + 2,M |Hd|J,K,M〉 = 〈J,K,M |Hd|J,K + 2,M〉

= (−δJJ(J + 1)− δK
2

((K + 2)2 +K2))

×
√

(J(J + 1)−K(K + 1))(J(J + 1)− (K + 1)(K + 2)), (28)
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where ∆J ,∆JK ,∆K , δJ and δK are the quartic distortion coefficients.
If we apply an electric field E to the molecule a Hamiltonian term HStark

will appear. The Stark effect Hamiltonian operator can then be expressed as

HStark = −E µ, (29)

where µ can be projected on the three principal axes of the molecule in order
to split the Hamiltonian term HStark in three different parts corresponding
to the components of µ : µa, µb and µc. Then, according to the component
along the principal axis a of the molecule we have

〈J,K,M |µa|J,K,M〉 = −µaEMK

J(J + 1)
, (30)

〈J + 1, K,M |µa|J,K,M〉 = 〈J,K,M |µa|J + 1, K,M〉

− µaE
√

(J + 1)2 −K2
√

(J + 1)2 −M2

(J + 1)
√

(2J + 1)(2J + 3)
. (31)

Now for the b axis

〈J,K + 1,M |µb|J,K,M〉 = 〈J,K,M |µb|J,K + 1,M〉

= −MµbE

√
(J −K)(J +K + 1)

2J(J + 1)
, (32)

〈J + 1, K + 1,M |µb|J,K,M〉 = 〈J,K,M |µb|J + 1, K + 1,M〉

= µbE

√
(J +K + 1)(J +K + 2)

√
((J + 1)2 −M2)

2(J + 1)
√

(2J + 1)(2J + 3)
, (33)

〈J + 1, K − 1,M |µb|J,K,M〉 = 〈J,K,M |µb|J + 1, K − 1,M〉

= −µbE
√

(J −K + 1)(J −K + 2)
√

((J + 1)2 −M2)

2(J + 1)
√

(2J + 1)(2J + 3)
. (34)

And finally, the HStark matrix elements involving µc

〈J,K + 1,M |µc|J,K,M〉 = 〈J,K,M |µc|J,K + 1,M〉

= iMµcE

√
(J −K)(J +K + 1)

2J(J + 1)
, (35)
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〈J + 1, K + 1,M |µc|J,K,M〉 = 〈J,K,M |µc|J + 1, K + 1,M〉

= −iµcE
√

(J +K + 1)(J +K + 2)
√

((J + 1)2 −M2)

2(J + 1)
√

(2J + 1)(2J + 3)
, (36)

〈J + 1, K − 1,M |µc|J,K,M〉 = 〈J,K,M |µc|J + 1, K − 1,M〉

= −iµcE
√

(J −K + 1)(J −K + 2)
√

((J + 1)2 −M2)

2(J + 1)
√

(2J + 1)(2J + 3)
. (37)

Although the energy levels can be found by diagonalizing the Hamiltonian
matrix, a further simplification can be obtained by consideration of the sym-
metry properties of the Hamiltonian. The symmetry properties may be de-
duced from its ellipsoid of inertia, which is symmetric not only to an identity
operation E but also to a rotation of 180o, C2, about any of its principal
axes of inertia. This set of symmetry operations form a group known as the
Four-group designated by V (a, b, c). These symmetry operations cause the
angular momentum to transform in the following manner:

E : Pa → Pa, Pb → Pb, Pc → Pc, (38)

Ca
2 : Pa → Pa, Pb → −Pb, Pc → −Pc, (39)

Cb
2 : Pa → −Pa, Pb → Pb, Pc → −Pc, (40)

Cc
2 : Pa → −Pa, Pb → −Pb, Pc → Pc. (41)

The symmetry group of the Hamiltonian is extremely important in quantum
mechanics because a knowledge of it allows the classification of quantum
states and simplification thereby of the energy matrix. Each asymmetric ro-
tor wave function may be classified according to its behaviour under V (a, b, c).
A wave function that is, for instance, symmetric for a twofold rotation about
axis a and antisymmetric for a two fold rotation about the other two axes
may be classified as belonging to species Ba of the group. A function that
is invariant with respect to all symmetry operations of the group obviously
belongs to species A. Each wave function could then be classified according
to one of the symmetry species A,Ba, Bb and Bc of V , and hence the ma-
trix elements of the Hamiltonian 〈Ψi|H |ΨJ〉 would be nonzero only between
states of the same symmetry. As a consequence, the secular determinant for
any value of J will factor into four independent subdeterminants, one for
considerably simplifies the diagonalization problem and has the further ad-
vantage that pairs of degenerate or nearly degenerate K levels are separated
into different submatrices.
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Figure 1: Energy curves for indole molecule form J=0 up to J=2

3.5. Results

We have successfully calculated Stark curves for several different molecules,
such as indole, water, 2,6-difluoro-iodobenzene, 4-aminobenzonitrile, ben-
zonitrile, iodobenzene, etc. One of the calculations for indole molecules is
shown in Figure 1 where the energy of the molecule is presented as a function
of the applied electric field E . Here we can clearly see that the lowest energy
levels of this molecule are high-field-seeking.

We have also calculated the energy curves for OCS using three different
algorithms. These enable us to calculate the Stark curves of a molecule by
considering it as an asymmetric-top, symmetric-top or as a linear molecule,
whenever is possible. In the case of OCS, we have calculated the energy
levels up to J = 32 through three different algorithms with the following
computation times:

• Asymmetric-top code: 12min 21.28s

• Symmetric-top code: 5min 11.7s (2.4 times faster)

• Linear code: 9.46s (78.36 times faster)

Furthermore, the maximum difference founded in the energy values using
the three different algorithms is approximately 0.02%. In Figure 2 we can
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Figure 2: Energy curves for OCS molecule from J = 0 up to J = 26, J = 10 and J = 5
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Figure 3: Energy curves for iodomethane molecule from J = 0 up to J = 2

see a three-figure representation of the energy levels for an OCS molecule
after a calculation for levels from J = 0 up to J = 26, J = 10 and J = 5,
respectively.

We have also simulated the Stark curves for iodomethane, which is a
symmetric-top molecule, with both the symmetric and asymmetric-top algo-
rithms. The results for the calculated times for the energy levels from J = 0
up to J = 27 were:

• Asymmetric-top code: 6min 25.86s

• Symmetric-top code: 2min 9.29s (3 times faster)

A representation of the three first Stark curves for iodomethane is shown in
Figure 3.
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4. Installation instructions

Installation is as simple as running the generic Python install command
python setup.py install. This requires write access to the packages di-
rectory tree of the Python distribution. Alternatively, on Unix-like systems
the provided shell-script user-install.sh canbe used to install the program
into somewhere in the user $HOME directory. This method requires the user
to define the shell variable PYTHONHOME to include this directory in the
package search path.

5. Alternative software

Several programs exist for the simulation of rotationally resolved spectra
of asymmetric top molecules in dc electric fields [5, 6, 7]. Inherently these
programs work by calculating the energies of all states possibly involved in
the relevant transitions, i.e., they do perform similar calculations to jkstark.
Only PGopher provides direct access to the Stark curves of individual or a few
states, but its graphical/text based access is not well suited for the storage of
many precisely calculated Stark curves for further use in trajectory simulation
codes. For example, even for relatively small molecules like benzonitrile or
indole thousands of Stark curves need to be calculated and stored, with
hundreds of energies per curve for specific dc field strengths.

6. Outlook

The current program has been successfully used in the calculation of Stark
energy maps of various asymmetric top molecules, including, for example,
benzonitrile, 3-aminophenol, indole, and indole-water clusters. However, for
molecules containing large nuclear quadrupole constants the corresponding
quadrupole coupling terms need to be implemented. This real challenge here
is to still automatically symmetrize the Hamiltonian and the resulting states.
Moreover, especially many of the small molecules employed in electric-field
manipulation experiments are open-shell, i.e., they possess electric angular
momentum. The respective Hamiltonians should also be implemented in jk-
stark. We will implement extensions as they are relevant for the simulation
of our manipulation experiments, but we are happy to support third parties
to extend our code to their needs, under the provision that is is provided to
all users after a reasonable amount of time.
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[1] J. Küpper, F. Filsinger, G. Meijer, Faraday Disc. 142 (2009) 155–173.

[2] F. Filsinger, G. Meijer, H. Stapelfeldt, H. Chapman, J. Küpper, Phys.
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Phys. Lett. 325 (2000) 523–530.

13

http://pgopher.chm.bris.ac.uk
http://pgopher.chm.bris.ac.uk

	Program summary
	Introduction
	Description
	Overview
	Linear top
	Symmetric top
	Asymmetric top
	Results

	Installation instructions
	Alternative software
	Outlook

